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Abstract

We investigate the existence of infinite dimensional Banach spaces
having rigid sets with an infinite number of elements. Among Banach
lattices, examples are provided by infinite dimensional AM -spaces as
well as for some abstract Lp-spaces, 1 ≤ p < ∞.
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Resumen

Se investiga la existencia de espacios de Banach que contengan con-
juntos ŕıgidos con infinitos elementos. Entre los ret́ıculos de Banach se
proveen ejemplos mediante espacios AM de dimensión infinita aśı como
algunos espacios Lp abstractos, 1 ≤ p < ∞.
Palabras y frases clave: conjuntos ŕıgidos, ret́ıculos, espacios de Ba-
nach.

1 Introduction

According to [1] a compact subset A of a real normed space X is said to be
rigid if A is the closure of a sequence {xn} satisfying

||xn+k − xn|| = ||x1+k − x1||,
for all n, k ∈ N. In [9] it was proved that any finite dimensional space with
a polyhedral norm has only finite rigid sets. In particular, this is true for ln1 ,
the vector space {(x1, . . . , xn), xi ∈ R, i = 1, . . . , n} with the l1-norm, and
for the space ln∞ (the same vector space as before with the l∞-norm).
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A natural problem would be to investigate if there are other finite dimen-
sional normed spaces with this property. Among the lnp -spaces (1 < p < ∞)
we know that this is not true if p is a positive even integer (see [1]). For exam-
ple, if p = 2, the normed space l22 has an infinite rigid set given by A = {xn},
with xn = (cos nθ, sin nθ), θ irrational. The above problem is not easy. How-
ever, if we turn our interest into finding infinite dimensional Banach spaces
that have an infinite rigid set, then several things can be said. It is clear from
the definition of rigid sets that if X and Y are normed spaces such that X has
an infinite rigid set and Y contains an isometric copy of X, then Y contains
an infinite rigid set. By exploiting this observation when X is the space c0

(it has an infinite rigid set, see [3]) or it is the euclidean plane, we are able
to show that each abstract AM -space and some abstract Lp-spaces contain
infinite rigid sets.

This paper is organized as follows. In Section 2, we review some facts from
the theory of Banach lattices. In Section 3, we deal with infinite dimensional
AM -spaces and show that they admit infinite rigid sets. In Section 4 we see
that this is also true for some abstract Lp-spaces, 1 ≤ p < ∞.

2 Banach lattices

Let recall some notations and results from [7] and [8]. A Riesz space is a
partially ordered real vector space E which in addition is a lattice, i.e., any
two elements x, y ∈ E have a least upper bound, denoted by x∨y = sup{x, y},
and a greatest lower bound, denoted by x ∧ y = inf{x, y}. For every x ∈ E,
let x+ = x ∨ 0, x− = (−x) ∧ 0 and |x| = x ∨ (−x) be the positive part, the
negative part and the absolute value of x, respectively. We have the identities
x = x+ − x− and |x| = x+ + x−. The set E+ = {x : x ≥ 0} is called the
positive cone of E and its elements are called positive. Two vectors x and y
in E are said to be disjoint, written x ⊥ y, if |x| ∧ |y| = 0. A set M of vectors
is pairwise disjoint if x, y ∈ M and x 6= y imply |x| ∧ |y| = 0. We have the
following characterization for disjoint vectors.

Lemma 2.1. Let x, y ∈ E. The following are equivalent:

(i) x ⊥ y;

(ii) |x + y| = |x− y|;
(iii) |x + y| = |x| ∨ |y|.
Proof. (i) ⇔ (ii) follows from |x| ∧ |y| = 1

2

∣∣ |x + y| − |x− y| |; the equivalence
(ii) ⇔ (iii) comes from |x| ∨ |y| = 1

2 (|x + y|+ |x− y|). Finally, (iii) ⇔ (i),
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|x + y| = |x| ∨ |y| = 1
2 (|x + y|+ |x− y|) implies |x + y| = |x − y| and so we

get |x| ∧ |y| = 1
2

∣∣ |x + y| − |x− y| | = 0.

Corollary 2.2. If {x1, . . . , xn} is a finite pairwise disjoint set of vectors, then

|
n∑

i=1

xi| =
n∑

i=1

|xi| =
n∨

i=1

|xi|.

Proof. Recalling a + b = a ∨ b + a ∧ b, we have x1 ⊥ x2 implies

|x1 + x2| = |x1| ∨ |x2| = |x1|+ |x2| − |x1| ∧ |x2| = |x1|+ |x2|.
Since xn ⊥ (x1 + . . . + xn−1), the statement follows by induction on n.

A Riesz space E is said to be Archimedean, if x, y ∈ E and nx ≤ y for all
n ≥ 1 imply x ≤ 0.

Proposition 2.3 ([7]). Let E be an Archimedean Riesz space. If each col-
lection of nonzero pairwise disjoint elements in E is finite, then E is finite
dimensional.

A norm || · || on a Riesz space is a lattice norm whenever |x| ≤ |y| implies
||x|| ≤ ||y||. A Riesz space equipped with a lattice norm is known as a normed
Riesz space. If a normed Riesz space is also norm complete, then it is referred
to as a Banach lattice. We observe that the positive cone E+ = {x ∈ E :
x− = 0} of a normed Riesz space E is closed as the inverse image of the
closed set {0} under the continuous map x → x−. Therefore, in particular,
E is Archimedean. In fact, if x, y ∈ E and nx ≤ y for all n ≥ 1, then
x− n−1y ∈ −E+ for all n ≥ 1, which implies x ∈ −E+, or x ≤ 0, since −E+

is closed.
Examples of Banach lattices are:

1. Lp(µ) = Lp(X, Σ, µ), 1 ≤ p ≤ ∞, the Banach space of equivalence
classes of real measurable functions on (X, Σ, µ) whose p-th power is
integrable (resp. which are essentially bounded if p = ∞). The norm is
defined by ||f ||p = (

∫
X

|f(x)|pdµ)1/p (resp. by esssup |f(x)| if p = ∞).

We write Lp(0, 1) when (X, Σ, µ) is the usual Lebesgue measure space
on [0, 1], and lp = Lp(N, Σ, µ) (resp. lnp = Lp({1, . . . , n}, Σ, µ) when µ is
the counting measure on the set N (resp. {1, . . . ,n}).

2. c, the subspace of l∞ consisting of convergent sequences, and c0 the
subspace of l∞ of all sequences convergent to zero.

3. C(K), the Banach space of all continuous scalar-valued functions on the
compact Hausdorff space K with the supremum norm.
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3 AM-spaces and rigid sets

A Banach lattice E is called an abstract M -space, also AM -space, if ||x+y|| =
max{||x||, ||y||} whenever x∧y = 0. In an AM -space ||x∨y|| = max{||x||, ||y||}
for x, y ∈ E+.

Theorem 3.1. Every infinite dimensional AM -space E contains rigid sets
with an infinite number of elements.

Proof. The statement will follow showing the existence of an isometry from
c0 into E, i.e. a linear map c0 → E that satisfies ||Tx|| = ||x|| for all x ∈ c0.
By Proposition 2.3, there exists a disjoint sequence {xn} of nonzero vectors
in E. Replacing each xn by |xn|/||xn||, we can assume xn ≥ 0 and ||xn|| = 1
for each n. Let {ξ1, . . . , ξn} be arbitrary scalars. By Corollary 2.2

|
n∑

i=1

ξixi| =
n∑

i=1

|ξi|xi =
n∨

i=1

|ξixi|,

and since E is an AM -space we get

|| |
n∑

i=1

ξixi| || = ||
n∑

i=1

ξixi|| = ||
n∨

i=1

|ξixi| || = max
1≤i≤n

{|ξi| ||xi||} = max
1≤i≤n

|ξi|.

Hence

||
n∑

i=1

ξixi|| = ||
n∑

i=1

|ξi|xi|| = max
1≤i≤n

|ξi|.

Let ξ = {ξ1, ξ2, . . .} ∈ c0. By the above equality it follows that
∞∑

i=1

ξixi is norm

convergent, |
∞∑

i=1

ξixi| = ||ξ||∞, and the map T : c0 → E, T ({ξ1, ξ2, . . .}) =
∞∑

i=1

ξixi, is an isometry.

The map T : c0 → E defined in the previous proof is actually a lattice
embedding of c0 into E. This means that T is a lattice homomorphism (i.e.
T (x∨y) = T (x)∨T (y), for all x, y ∈ c0) and that T is an embedding (i.e. there
exists two positive constants K and M such that m||x|| ≤ ||T (x)|| ≤ M ||x||,
for all x ∈ c0). This fact is a consequence of the next result that characterizes
the embedding of c0 into a Banach lattice.

Theorem 3.2. [2] The Banach lattice c0 is lattice embeddable in a Banach
lattice E if and only if there exists a disjoint sequence {xn} of E+ such that
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(i) {xn} is not convergent in norm to zero;

(ii) {xn} has a norm bounded sequence of partial sums, i.e. there exists

some M > 0 such that ||
n∑

i=1

xi|| ≤ M for all n.

Corollary 3.3. The Banach lattices C(K), c, L∞(µ) and l∞ have infinite
rigid sets.

Proof. Immediate from Theorem 3.1 because they are AM -spaces.

Remark 3.4. A lattice isometry from c0 into C[0, 1] can be explicitly con-
structed as follows. For each n choose a function 0 ≤ fn ∈ C[0, 1] such that
||fn||∞ = 1 and fn(t) = 0 for every t /∈ [ 1

n+1 , 1
n ]. Then the linear operator

T : c0 → C[0, 1], T ({ξ1, ξ2, . . .}) =
∞∑

n=1
ξnfn gives the statement.

Corollary 3.3 can be used to produce another example of an infinite di-
mensional Banach space with infinite rigid sets.

Proposition 3.5. The Banach space B(l2) of all bounded linear operators
from l2 to l2 has infinite rigid sets.

Proof. This follows from the fact that B(l2) contains an isometric copy of
l∞. The map ϕ : l∞ → B(l2), defined by ϕ({ξi})({xi}) = {ξixi} for {xi} ∈
l2, is in fact an isometry. It is enough to show that ||{ξi}||∞ = 1 implies

||ϕ({ξi})||B(l2) = 1. If ||x||2 = (
∞∑

i=1

|xi|2)1/2 = 1, then

||{ξixi}||2 = (
∞∑

i=1

|ξi|2|xi|2)1/2 ≤ ||{ξi}||∞(
∞∑

i=1

|xi|2)1/2.

Thus ||ϕ({ξi})||B(l2) has norm at most 1. On the other hand, choosing x =
en = {0, . . . , 0, 1, 0, . . .}, (1 in the nth-entry), we have ||ϕ({ξi})|| ≥ |ξn|, for
all n. Therefore ||ϕ({ξi})||B(l2) ≥ 1.

4 Abstract Lp-spaces and rigid sets

A Banach lattice E is called an abstract Lp-space, for some 1 ≤ p < ∞,
whenever its norm is p-additive, i.e., whenever ||x + y||p = ||x||p + ||y||p holds
for all x, y ∈ E with x∧y = 0. Examples of abstract Lp-spaces are the Banach
lattices Lp(µ), 1 ≤ p < ∞. There is the following representation Theorem
due to Kakutani.

Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 87–94



92 Luca Guerrini

Theorem 4.1 ([6]). An abstract Lp-space E, 1 ≤ p < ∞, is lattice isometric
to an Lp(µ)-space for a suitable measure space (X, Σ, µ).

Let recall some facts about Lp(µ)-spaces. The support of a function f ∈
Lp(µ) is the set {x : f(x) 6= 0}. We say that two functions f, g ∈ Lp(µ)
are disjointly supported if the sets {f 6= 0} and {g 6= 0} are disjoint, that is
f · g = 0. A sequence {fn} in Lp(µ) is called a basic sequence if it is a basis
for its closed linear span [fn].

Lemma 4.2. Let {fn} be a sequence of disjointly supported nonzero vectors
of Lp(µ), 1 ≤ p < ∞. Then {fn} is a basic sequence in Lp(µ) and [fn] is
isometric to lp.

Proof. The linear span of {fn} is unaffected if we replace each element fn by
fn/||fn||p. Thus, we may assume that each fn has norm one. Next, since the
fk are disjointly supported, we have

||
m∑

k=n

akfk||pp =
∫

X

|
m∑

k=n

akfk|pdµ =
m∑

k=n

|ak|p
∫

X

|fk|pdµ =
m∑

k=n

|ak|p,

for any scalars {ak}. This tells us that
∞∑

n=1
anfn converges in Lp(µ) if and only

if
∞∑

n=1
|an|p < ∞. Since the linear span of the en’s is dense in lp, this fact tells

us that the map T (en) = fn extends linearly to an isometry from lp onto [fn].
In particular, it follows that {fn} is a basic sequence in Lp(µ).

Theorem 4.3. Abstract L2m-spaces, m ≥ 1, have infinite rigid sets.

Proof. Theorem 4.1, Lemma 4.2 and the fact that the space l22m is an isometric
subspace of l2m will give the statement.

Recall that a subset S of a Riesz space E is called solid if |y| ≤ |x| and
x ∈ S imply y ∈ S. A solid vector subspace of E is called an ideal of E.
The ideal generated by S is the intersection of all ideals that include S. An
element z ∈ E+ is called an atom for a Riesz space E if the ideal generated
by z is one-dimensional.

For a separable abstract Lp-space E with no atoms, the representation
given in Theorem 4.1 can be realized in a more concrete manner.

Theorem 4.4. [8] Let 1 ≤ p < ∞. Every separable abstract Lp-space E
without atoms is isometrically lattice isomorphic to Lp(0, 1).
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As a consequence we have the following result.

Theorem 4.5. Let 1 ≤ p < ∞. Every separable abstract Lp-space E without
atoms has infinite rigid sets.

Proof. This follows from the previous Theorem and the fact that lm2 is an
isometric subspace of Lp(0, 1), for all 1 ≤ p < ∞ and m ≥ 2, as the next
result says (see[4]):

”Let 1 ≤ p < ∞, 1 ≤ r ≤ ∞ and m ∈ N, m ≥ 2. Then lmr is an isometric
subspace of Lp(0, 1) if and only if one of the following assertions holds: (i)
p ≤ r < 2; (ii) r = 2; (iii) m = 2 and p = 1.”

Recall that a Banach lattice is called a Hilbert lattice if it is n Hilbert
space with respect to the same norm.

Proposition 4.6. Every Hilbert lattice E has infinite rigid sets.

Proof. This follows from Theorem 4.1 since E is an abstract L2-space. In fact,
if x, y ∈ E are disjoint, then Lemma 2.1, (ii), implies ||x + y||2 = ||x − y||2.
Since E is a Hilbert space, this shows that < x, y >= 0 and hence ||x+ y||2 =
||x||2 + ||y||2.

Remark 4.7. The Lebesgue spaces Lp(R), Lp(a, b), Lp(a,∞) are all isometric
to Lp(0, 1), for 1 ≤ p < ∞, and so they have infinite rigid sets.

Remark 4.8. By the Riesz-Fischer Theorem, every infinite dimensional sep-
arable Hilbert space is isometrically isomorphic to l2. Therefore such spaces
admit infinite rigid sets. Similarly, every euclidean space of dimension n ≥ 2
is isometrically isomorphic to ln2 and so also have infinite rigid sets.
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