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Abstract

The stability of core-anular flows is of fundamental scientific and
practical importance. The interface between two immiscible fluids can
become unstable by several physical mechanisms. Surface tension is one
of those mechanisms of practical importance. We include in our model
the effects of insoluble surfactants. A full problem is derived consider-
ing the surfactant transport equation. We carried out an asymptotic
solution of the problem when the annulus is thin compared to the core-
fluid radius and for waves which are of the order of the pipe radius.
We obtain from matched asymptotic analysis a system of two coupled
nonlinear partial differential equations for the interfacial amplitude and
the surfactant concentration on the interface.
Key words and phrases: core-annular flow, surfactants, interfacial
tension.

Resumen

La estabilidad de flujos centro-anulares es de fundamental impor-
tancia cient́ıfica y práctica. La interface entre dos fluidos puede llegar
a inestabilizarse por varios mecanismos f́ısicos. La tensión superficial es
uno de esos mecanismos de importancia práctica. Incluimos en nuestro
modelo los efectos de surfactantes insolubles. Derivamos nuestro pro-
blema completo considerando la ecuación de transporte de surfactantes.

Received 2004/03/26. Revised 2004/11/12. Accepted 2004/11/16.
MSC (2000): 35Q35, 76E17, 76T99.



118 S. Kas-Danouche, D. Papageorgiou, M. Siegel

Buscamos una solución asintótica del problema cuando el ánulo es fino
comparado con el radio del fluido central y para ondas que son del or-
den del radio del tubo. Obtenemos del análisis asintótico empalmado un
sistema de dos ecuaciones diferenciales parciales no lineales acopladas
para la amplitud interfacial y la concentración de surfactantes sobre la
interface.
Palabras y frases clave: flujo centro-anular, surfactantes, tensión in-
terfacial.

1 Introduction

Two immiscible fluids, generally, arrange themselves such that the less viscous
one is in the region of high shear (Joseph and Renardy [18], 1993). When a
fluid in a capillary tube is displaced by another, a layer of the first fluid is
left behind coating the tube walls (Taylor [34], 1961). This is called a core-
annular flow. In general, core-annular flows are parallel flows of immiscible
liquids in a cylinder; one fluid flows through the cylinder core and the other
ones move in successive annuli that surround the core fluid. Core-annular
flow occurs, for example, during liquid-liquid displacements in porous media
(Edwards, Brenner, and Wasan [4], 1991) when a wetting layer is present,
and in lung airways where internal airway surface is coated with a thin liquid
lining (Halpern and Grotberg [10], 1992 and [11], 1993).

The case of lubricated pipelining is an important technological application
of interest to the oil industry, where the annular liquid (water) lubricates
the motion of the core liquid (viscous oil). There are several flow regimes
in horizontal pipes including, stratified flow with heavy fluid below, bamboo
waves, oil bubbles and slugs in water, water in oil with(out) emulsions, and
an annulus of water surrounding a concentric oil core.

Stein ([33], 1978), and Oliemans, Ooms, Wu and Duÿvestin ([24], 1985)
have developed experiments on water-lubricated pipelining. Advances of eco-
nomically acceptable pipelines has been developed by The Shell Oil Com-
pany. About ten years ago, Maraven of PdVSA (Petróleos de Venezuela So-
ciedad Anónima) implemented a 60 kilometer pipeline for the transportation
of water-lubricated heavy oil.

There are a number of studies concerned with core-annular flows when the
interfaces are free of surfactant. For the case of no flow, studies of a long
cylindrical thread of a viscous liquid suspended in a different unbounded fluid
were developed by Tomotika ([35], 1935). Goren ([9], 1962) studied the linear
stability of an annular film coating a wire or the inner surface of a cylinder,
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when the ambient or core fluid is inviscid. His results indicate that the film
is unstable to infinitesimal sinusoidal disturbances.

Hammond ([12], 1983) developed a nonlinear analysis based on lubrication
theory for the adjustment of a thin annular film under surface tension. He
suggests that an initial sinusoidal disturbance of the interface may lead to the
breakup of the film in the form of axisymmetric droplets or ‘lenses’ of the
annular liquid separated by the core fluid.

For the more general case of two co-flowing fluids with a core-annular
configuration, the linear theory of stability has been studied by several people.
Hickox ([13], 1971), Joseph, Renardy, and Renardy ([15], 1983 and [16], 1984),
Smith ([29], 1989), Russo and Steen ([26], 1989), Hu and Joseph ([14], 1989),
and Chen, Bai, and Joseph ([1], 1990) are some of them.

Georgiou, Maldarelli, Papageorgiou, and Rumschitzki ([8], 1992) analyzed
the linear stability of a vertical, perfectly concentric core-annular flow in the
limit when the film is much thinner than the core. Using asymptotic expan-
sions, they developed a new theory for the linear stability of the wetting layer
in low-capillary-number liquid-liquid displacements.

Kouris and Tsamopoulos ([21], 2001) studied the linear stability of core-
annular flow of two immiscible fluids in a periodically constricted tube.

Dynamics of core-annular flows in which effects of nonlinearity are kept
can be described by nonlinear stability theories. Frenkel, Babchin, Levich,
Shlang, and Sivashinsky ([7], 1987) studied two fluids in a straight tube with
the annular one being thin. Both fluids have equal properties and only in-
terfacial tension acts between them. They derived the Kuramoto-Sivashinsky
equation which includes both stabilizing and destabilizing terms related to the
interfacial tension, leading to growth of the initial disturbances. Frenkel ([6],
1988) considered the wavelength to be long compared to the annular thick-
ness but of the order of the core radius. He developed a modified Kuramoto-
Sivashinsky equation for slow flow and discussed how the extra terms in his
equation could alter the behavior of the Kuramoto-Sivashinsky equation. Pa-
pageorgiou, Maldarelli, and Rumschitzky ([25], 1990) investigated the weakly
nonlinear evolution of thin films (wavelength long compared to the annular
thickness). They studied the core contribution by searching in a larger set of
core flow regimes. They conclude that viscosity stratification greatly increases
the likelihood of regular nonlinear traveling waves.

Kerchman ([20], 1995) modeled the problem of oil in the annular region
using strongly nonlinear theory. A modified Kuramoto-Sivashinsky equation
was derived with additional dispersive terms. By solving this last equation
he found a large variety of solutions in the dynamics, from chaos to quasi-
steady waves. Coward, Papageorgiou, and Smyrlis ([2], 1995) examined the
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case when the pressure gradient is modulated by time harmonic oscillations.
Viscosity stratification and interfacial tension are present. They developed a
weakly nonlinear asymptotic approximation valid for thin annular films.

Kouris and Tsamopoulos ([22], 2001) studied the nonlinear dynamics of
a concentric, two-phase flow of immiscible fluids in a cylindrical tube, when
the more viscous fluid is in the core for any thickness of the film. Also, in
Kouris and Tsamopoulos ([23], 2002) they studied the nonlinear dynamics of
a concentric, two-phase flow of immiscible fluids in a cylindrical tube, with
the less viscous fluid in the core.

In general, the presence of even minute amounts of surfactant on a fluid-
fluid interface can have a substantial effect on the evolution of the interface
(Edwards, Brenner, and Wasan [4], 1991). Insoluble surfactants are large
molecules possessing a dipolar structure formed of hydrophobic (i.e. water-
repeling) and hydrophilic (i.e. water-attracting) segments; in this way, insolu-
ble surfactants are distributed on interfaces separating aqueous and nonaque-
ous phases as water and oil. Surfactants influence the interfacial dynamics in
two ways. Firstly, most types of surfactant reduce the interfacial tension, i.e.
the surface tension in a surfactant coated interface is lower than that for a
clean interface, with the interfacial tension correspondingly lower over regions
of the interface with higher surfactant concentration. Secondly, the presence
of a gradient in surfactant concentration introduces a Marangoni force. This
is a force along the interface which is directed from regions of high surfactant
concentration (i.e. low surface tension) to regions of low surfactant concentra-
tion (i.e. high surface tension). In general, the Marangoni force acts to oppose
any external flow which promotes build-up or excess of surfactant along the
interface.

Some theoretical studies of deforming drops under the effects of surfactants
were developed by Flumerfelt ([5], 1980). Siegel ([28], 1999) employed a simple
plane flow model to examine the deformation of a bubble in strain type flows
and under the influence of surfactants.

The stability of core-annular flows in the presence of surfactant has re-
ceived little attention. Most of the work on the effects of surfactant in core-
annular flow have been motivated by applications to pulmonary fluid dynam-
ics. The lung airways are internally coated by a thin film of a liquid forming
a liquid-air interface. The interfacial tension tries to minimize the interfacial
area. Thus, the coating liquid may cause closing off of the tiny airways by
the formation of a meniscus during exhalation. Biological surfactant tends
to reduce the interfacial tension by decreasing the attractive force between
molecules of the film. A role of surfactant then, is to have a stabilizing effect
which prevents collapses and keeps airways open.
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Here, we want to explore the influence of surfactant in a core-annular flow
when the core liquid is surrounded by another annular liquid. We assume
the surfactant to be insoluble in the film and the core. This, physically,
corresponds to surfactant that has a very low solubility in both the film and
core fluids. So, the surfactant remains at the fluid-fluid interface.

In this work, we employ a long wave asymptotic analysis to carefully derive
a coupled nonlinear system of equations. The nonlinear system derived is a
forced Kuramoto-Sivashinky equation, the forcing arising from the Marangoni
effect.

Section 2 describes the mathematical model, governing equations, and
basic flow. Section 3 presents the asymptotic analysis leading to the evolution
equations. Section 4 re-scales the evolution equations to canonical form and
presents the linear analysis of a particular case.

2 Mathematical model, governing equations,
and basic flow

Our problem consists of an annular liquid film (fluid 2), −∞ < z < ∞,
surrounding an infinitely long cylindrical fluid core (fluid 1). Fluid 1 is of
undisturbed radius R1 and viscosity µ1. The viscosity of fluid 2 is µ2 and
the tube is of radius R2. Here, we take the densities of the film and core
fluids to be the same and equal to ρ. Hence, gravitational effects are neglected
(Hammond [12], 1983, Hu and Joseph [14], 1989, and Joseph and Renardy [18],
1993); gravity does not appreciably change the shape of the interface if the

Bond number B0 =
ρga2

σ
is small. The flow is driven by a constant pressure

gradient 5p = −Fez, where ez = (0, 0, 1) and F > 0. Insoluble surfactants
are present on the fluid interface; we denote the surfactant concentration (in
units of mass of surfactant per unit of interfacial area) by Γ∗.

The interfacial tension σ and the surfactant concentration Γ are related
by the linear expresion

σ(Γ) = σo(1− βΓ), (1)

where β =
RgTΓ∞

σo
and σo is the interfacial tension of the clean interface,

Rg is the ideal gas constant, T is the temperature, Γ∞ is the maximum pack-
ing concentration that the interface can support, and Γ is the dimensionless
surfactant concentration Γ = Γ∗

Γ∞
. Our asymptotic solution is developed for

small surfactant variations about a uniform state.

Divulgaciones Matemáticas Vol. 12 No. 2(2004), pp. 117–138



122 S. Kas-Danouche, D. Papageorgiou, M. Siegel

We use cylindrical polar coordinates ~x = (r, θ, z) with associated velocity
components ~u1 = (u1, v1, w1) for the fluid core and ~u2 = (u2, v2, w2) for the
fluid film. The interface between the fluids is denoted by r = S(z, θ, t). Our
problem is axisymmetric and the dimensional interface S(z, t) can be written
as

S(z, t) = R1(1 + δH), (2)

where R1 is the industurbed core radius, and δ is a dimensionless amplitude.
For the interface evolution, we start from the Navier-Stokes and Con-

tinuity equations for axisymmetric flows. We require a no-slip condition
at the pipe wall ~u2 = 0, continuity of velocity at the interface ~u1 = ~u2,
and the kinematic condition holding at the interface r = S(z, t) (Joseph
and Renardy [17], 1993). We also require Normal Stress Balance and
Tangential Stress Balance at the interface.

We start from the convective-diffusion equation for surfactant transport
to obtain the surfactant concentration evolution (Wong, Rumschitzki, and
Maldarelli [37], 1996), using results from tensor analysis (Rutherford [27],
1989, Wheeler and McFadden [36], 1994, and Kas-Danouche [19], 2002).

Let us non-dimensionalize lengths, selecting the base core radius R1, veloc-
ities are non-dimensionalized by the centerline velocity W0, time by R1/W0,
interfacial tension by the surface tension σ0 in the absence of surfactants,
which is called the ‘clean’ surface tension, and pressure by ρW 2

0 , where ρ is
the density of the fluids.

For the Navier-Stokes equations the nondimensionalization introduces the
Reynolds numbers (Rei), i = 1 for the core fluid and i = 2 for the film
fluid, defined by Rei = ρW0R1/µi corresponding to the relative importance of
the inertial and viscous forces acting on unit volume of the fluid i. The nondi-
mensionalization of the surfactant transport equation produces the Peclet
number (Pe) which defines the transport ratio between convection and dif-

fusion and is given by Pe =
W0R1

Ds
. In the normal stress balance, the nondi-

mensionalization leads to a surface tension parameter J =
σ0R1

ρν2
1

. The

Capillary number (Ca) and viscosity ratio m arise in the dimensionless

tangential stress balance. The capillary number is given by Ca =
µ1W0

σ0
. It

measures the relative ratio between the base flow velocity and the capillary
velocity. The viscosity ratio is given by m =

µ2

µ1
, the ratio of the film fluid

viscosity to the core fluid vistosity. Note that the capillary number can be

expressed in terms of Re1 and J as Ca =
Re1

J
and the viscosity ratio in terms
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of Re1 and Re2 as m =
Re1

Re2
.

The dimensionless Navier-Stokes equations and the continuity equation
are

(ui)t + ui(ui)r + wi(ui)z = −(pi)r +
1

Rei

[
52ui − ui

r2

]
, (3)

(wi)t + ui(wi)r + wi(wi)z = −(pi)z +
1

Rei
52 wi, (4)

(ui)r +
1
r
ui + (wi)z = 0, (5)

where i = 1, 2 for core and film respectively. The dimensionless surfactant
equation is

∂Γ
∂t

− ṠS′

1 + (S′)2
∂Γ
∂z

+
1

S
√

1 + (S′)2

{
∂

∂z

[
SΓ√

1 + (S′)2
(w + S′u)

]}

− 1
Pe

1
S

√
1 + (S′)2

∂

∂z

(
S√

1 + (S′)2
∂Γ
∂z

)
(6)

+
Γ

S(1 + (S′)2)

[
1− SS′′

1 + (S′)2

]
(−S′w + u) = 0.

The no-slip condition at the pipe wall is

u2 = w2 = 0 at r =
R2

R1
,

the continuity of velocities is

{ui}21 = 0, {wi}21 = 0 on r = S(z, t),

and the Kinematic condition is

u =
∂S

∂t
+ w

∂S

∂z
= St + wS′.

The dimensionless normal stress balance is
{

p(1 + (S′)2)− 2
Rei

[(S′)2wz − S′(uz + wr) + ur]
}2

1

=

J(1− βΓ)
Re2

1

{
S′′ − 1

S
[1 + (S′)2]

}
[1 + (S′)2]−

1
2 , (7)
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and the dimensionless tangential stress balance is

{
mi

[
2S′(ur − wz) + [1− (S′)2](uz + wr)

]}2

1
=

−βΓz

Ca
[1 + (S′)2]

1
2 , (8)

where m1 = 1 and m2 = m.
We begin our stability analysis by finding the dimensionless basic state

driven by a constant pressure gradient pz = −FR1

ρW 2
0

and using the definition

of the Reynolds number, Rei =
ρw0R1

µi

w1 = − 1
4µ1

FR2
1

W0
(r2 − 1)− 1

4µ2

FR2
1

W0
(1− a2), (9)

w2 = − 1
4µ2

FR2
1

W0
(r2 − a2). (10)

The dimensionless centerline velocity is w1(r = 0) = 1, and the dimensional
centerline velocity is

W0 =
1

4µ1µ2
[(µ2 − µ1)R2

1 + µ1R
2
2].

Substitution of W0 in (9) and (10) leads to a closed form of w1 and w2 in
terms of r, a, and m

w1 = 1− mr2

a2 + m− 1
, 0 ≤ r ≤ 1, (11)

w2 = − r2 − a2

a2 + m− 1
, 1 ≤ r ≤ a, (12)

where a = R2/R1 and m = µ2/µ1.
The difference in pressures of the basic core-annular flow comes from the

normal stress balance

p2 − p1 = −J(1− βΓ0)
Re2

1

= −σ0(1− βΓ0)
ρW 2

0 R1
, (13)

where p1 and p2 are the basic core and film pressures, respectively.
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3 Derivation of the evolution equations

Now, we derive an asymptotic solution considering the smallness of the thick-
ness of the film (relative to the core). A coupled system of leading order
evolution equations is obtained. One equation describes the spatio-temporal
evolution of the interface between the core and the film, and the other de-
scribes the evolution of the concentration of surfactant at the interface. The
core radius (in the nondimensional undisturbed state) is 1 and the distance
from the wall to the interface is ε = a− 1, where a = R2/R1.

We proceed asymptotically with ε << 1. Let us consider deformation of
the interface to heights of order δ, where δ << ε. (This corresponds to a
weakly nonlinear theory; in the absence of a background flow, we can deal
with δ ∼ ε.) Thus, the disturbed interface, can be expressed as S(z, t) =
1 + δH(z, t) and the dimensionless film thickness is ε− δH(z, t).

To separate the radial scales in the film and core, a local variable is in-
troduced in the film region by r = a − εy, where y is 0 at the pipe wall and

1− δ

ε
H(z, t) at the interface.

3.1 Derivation of the Interface Evolution Equation

Balance of terms in the scaled continuity equation for small ε provides an
estimate for u2 to be equal to ε times the order of w2. Similarly, from the
continuity equation in the core, u1 and w1 must be of the same order.

Suppose p1 = p̄1 + p̃1 and p2 = p̄2 + p̃2, where ¯ and ˜ indicate
base and perturbed states, respectively. From the Navier-Stokes equation (4)
in the film and in the core, and supposing (p̄2)z ∼ 1 and (p̄1)z ∼ 1, we find
that balancing viscous terms with the perturbation pressure gradient (this is
essentially a lubrication approximation) gives

p̃2z ∼
1

Re2ε2
(order of w2) and p̃1z ∼

1
Re1

(order of w1),

respectively. Continuity of axial velocity at the interface yield order of w1=
order of w2. From the normal stress balance (7), we obtain the order of the

perturbation pressure to be p̃2 ∼ Jδ

Re2
1

. This scaling indicates that we are

considering capillary driven motions which arise from pressure changes due to
surface tension. Therefore,

w2 ∼ ε2δJRe2

Re2
1

and u2 ∼ ε3δJRe2

Re2
1

.
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For the case of m =
Re1

Re2
∼ O(1), the film perturbation velocities can be

estimated to be

w2 ∼ ε2δJ

Re1
and u2 ∼ ε3δJ

Re1
. (14)

The difference in basic axial velocity, w1 − w2, at the interface, r = S =
1 + δH, is

(w1 − w2)|r=1+δH
=

2(1−m)δH + O(δ2)
m + 2ε− ε2

∼ O(δ). (15)

Physically, this arises from viscosity stratification. We already know, from
(14), that the axial velocity perturbation in the film is of O(ε2δJ/(Re1)),
implying that the core contribution must be of O(δ), to ensure continuity of
velocities.

From the tangential stress balance (8), the dominant term in the film is
the radial derivative of the axial film velocity, w2r , which is of O(εδJ/(Re1))
and the core contribution is of O(δ). So, we consider various regimes.

Regime 1. Film and core do not couple (film contribution dominates
over the core contribution):

If the film contribution dominates over the core contribution; i.e. εJ >>
Re1 and Ca << ε, then the core influence is not introduced into the dynam-
ics of the problem to leading order. This decoupling is a result of the core
contribution in the tangential stress balance equation (8) being of lower order
than the corresponding film contribution. The kinematic condition (2)

u = St + (w̄ + w̃)Sz,

where w̄ represents the base state axial velocity and w̃ represents the per-
turbed axial velocity, taken in a frame of reference traveling with speed
w̄(r = 1; ε) ∼ O(ε), provides an estimate for δ, the interfacial amplitude.
This comes from balancing u and the convective term on the right hand side,
as well as allowing for unsteadiness on a new long time scale. We find

δ =
ε3J

Re1
>> ε2,

since
εJ

Re1
>> 1. The size of δ depends on the magnitude of

εJ

Re1
and the

evolution ranges from highly nonlinear regimes, δ ∼ ε, leading to Hammond
type equations (Hammond [12], 1983), or weakly nonlinear regimes leading
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to the Kuramoto-Sivashinsky equation (Smyrlis and Papageorgiou [30], 1991
;[31], 1996 and [32], 1998). We are interested in the case when film and core
couple, and in what follows, we describe these delicate scalings in full detail.

Regime 2. Film and core couple:
If the film contribution and core contribution balance, then εJ ∼ Re1

and Ca ∼ ε. In this regime, we consider two cases. One case with moderate
surface tension (J ∼ O(1)) and slow moving core (Re1 ∼ O(ε)). Another
case with strong surface tension (J ∼ O(1/ε)) and moderate core flow
(Re1 ∼ O(1)).

The kinematic condition using the film variables

u2 = St + (w̄2 + w̃2)Sz, (16)

where w̄2 and w̃2 represent the base state and perturbed axial velocities of the
film, respectively, has to be balanced; but, the term u2 is of O(ε2δ), St is of
order δ times order of the time scale t, and the term (w̄2 + w̃2)Sz is of O(εδ),
so, we can not balance them. Using the Galilean transformation defining a
system of coordinates traveling with speed w̄2ε ,

∂

∂t
−→ −w̄2ε

∂

∂z
+

∂

∂t̃
. (17)

where w̄2|r=1+δH
= w̄2ε + w̄2δ

, with w̄2ε ∼ O(ε) and w̄2δ
∼ O(δ), we achieve

a balance in (16). So, plugging (17) in the kinematic condition (16) and
balancing all the terms and introducing a new time variable τ we conclude
that δ = ε2 and τ = δt.

Consider the case J ∼ O(1) and Re1 ∼ O(ε) of the regime 2. Then, in
the film

u2 = ε4ũ2 + O(ε5) (18)
w2 = w̄2 + ε3w̃2 + O(ε4) (19)
p2 = p̄2 + p̃0 + εp̃2 + . . . (20)

and in the core

u1 = ε2ũ1 + O(ε3) (21)
w1 = w̄1 + ε2w̃1 + O(ε3) (22)
p1 = p̄1 + εp̃1 + . . . . (23)

Set Re1 = λε, where λ ∼ O(1). Substituting u2, w2 and, p2 into the Navier-
Stokes equations and using Re1 = mRe2, we obtain to leading order from
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(4)

p̃0z
− m

λ
w̃2yy

= 0. (24)

From (3) keeping leading order terms, we obtain p̃0y = 0 and keeping leading
order terms in the continuity equation (5) yields w̃2z

= ũ2y
.

The fact that p̃0 is not a function of y, allows us to integrate (24) twice to
get

w̃2 =
λ

m

(
1
2
p̃0z

y2 + A(z, t)y
)

, (25)

where the no-slip condition w̃2(y = 0, z, t) = 0 has been used. Now, we
differentiate w̃2 with respect to z and then integrate the resulting equation
over y to obtain an expression for ũ2

ũ2 =
λ

m

(
1
6
p̃0zzy3 +

1
2
Az(z, t)y2

)
, (26)

where the no-slip condition ũ2(y = 0, z, t) = 0 has been used again. Next, we
use the normal stress balance (7) and tangential stress balance (8), to obtain,
to leading order,

p̃0 =
J

λ2
(H + Hzz) (27)

and

mw̃2y (1, z, t) + ũ1z (1, z, t) + w̃1r (1, z, t) =
β

Caε2
Γz. (28)

Consider w̄2 at the interface

w̄2|r=1+ε2H
∼ (2 + ε)ε

m + 2ε + ε2
− 2ε2H

m + 2ε + ε2
. (29)

where w̄2ε =
(2 + ε)ε

m + 2ε + ε2
. From the kinematic condition (16) and using the

Galilean transformation (17), we obtain to leading order

ũ2 = Hτ − 2
m

HHz. (30)

Now, consider w̄1 at the interface

w̄1|r=1+ε2H
∼ (2 + ε)ε

m + 2ε + ε2
− 2mε2H

m + 2ε + ε2
(31)
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and due to continuity of velocities at the interface, we obtain from (31) and
(29),

−2H + w̃1|r=1+ε2H
= − 2

m
H. (32)

Therefore, we conclude from continuity of axial velocities, w1 = w2, and radial
velocities, u1 = u2, at the interface, r = 1 to leading order, that

w̃1|r=1 = 2H

(
1− 1

m

)
and ũ1|r=1 = 0. (33)

A(z, τ) still unknown. Solving the core problem, we can use the normal
stress balance (7) to find A(z, τ). Substitution of the core variables into the
governing equations (3), (4), and (5), and considering Re1 = λε, gives the
following leading order core problem

λp̃1r = 52ũ1 − ũ1

r2
(34)

λp̃1z = 52w̃1 (35)
1
r
(rũ1)r + w̃1z = 0.

Let us introduce the streamfunction ψ as

ũ1 = −1
r
ψz and w̃1 =

1
r
ψr. (36)

Thus,

ũ1z = −1
r
ψzz (37)

w̃1r = − 1
r2

ψr +
1
r
ψrr. (38)

Differentiating (25) with respect to y, gives

w̃2y =
λ

m
(yp̃0z + A(z, t)) . (39)

Since Ca =
Re1

J
, we have, in this regime, Ca ∼ ε. Considering β = ε3β0 and

Ca = εC̄a, and substituting (37), (38), (39) into the tangential stress balance
equation (28), yields

λp̃0z + λA(z, τ) = ψzz + ψr − ψrr +
β0

C̄a
Γz. (40)
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The choice β = ε3β0 is made in order to keep Marangoni effects in the leading
order evolution equations.

On the other hand, substituting (36) into (34) and (35), differentiating
(34) with respect to z and (35) with respect to r, and eliminating p̃1, we
obtain the creeping flow equation

(
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2

)2

ψ = 0. (41)

This is consistent with the fact that Re1 is order ε. The solution of the
creeping flow equation (41) is most easily accomplished in Fourier space, and
is

ψ̂ = C1(k)rI1(kr) + C2(k)r2I0(kr), (42)

where ψ̂ =
∫ ∞

−∞
ψ(r, z)e−ikzdz is the Fourier transform of ψ and I0, I1 are

the modified Bessel functions of order zero and one, respectively. C1(k) and
C2(k) are two functions independent from r and z, to be found.

Differentiating (42) with respect to r and plugging ψ̂r and ψ̂rr into the
Fourier transform of (40), we find that

Â = −2k

λ
(kC1 + C2)I1(k)− 2C2k

2

λ
I0(k) +

ikβ0

λC̄a
Γ̂− ik ˆ̃p0 (43)

Taking the Fourier transform of (26) and plugging (43) into it, we have:

ˆ̃u2 =
λk2

3m

(
1− 1

3
y

)
y2 ˆ̃p0 − ik2(C1k + C2)

m
y2I1(k)

− ik3C2

m
y2I0(k)− k2β0

2mC̄a
y2Γ̂. (44)

In order to find C1(k) and C2(k), we consider the Fourier transform of (36)

ψ̂ =
ir

k

∫ ∞

−∞
ũ1e

−ikzdz and ψ̂r = r

∫ ∞

−∞
w̃1e

−ikzdz. (45)

Evaluating ψ̂ and ψ̂r at the interface and using (33), we obtain, taking the
leading order terms,

ψ̂(r = 1) = 0 and ψ̂r(r = 1) = 2
(

1− 1
m

)
Ĥ, (46)
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respectively. Thus, we find that C1(k) = −I0(k)F (k)Ĥ(z, t) and C2(k) =
I1(k)F (k)Ĥ(z, t), where

F (k) =
2(1− 1

m )
kI2

1 (k)− kI2
0 (k) + 2I0(k)I1(k)

. (47)

Evaluating (44) at r = y = 1 (the undisturbed interface), we obtain

ˆ̃u2|y=1 =
λk2

3m
ˆ̃p0 − 2ik2I2

1 (k)
m(kI2

1 − kI2
0 + 2I0I1)

(
1− 1

m

)
Ĥ − k2β0

2mC̄a
Γ̂. (48)

Let us define d = kI2
1 (k)− kI2

0 (k)+2I0(k)I1(k) and N(k) =
k2I2

1 (k)
d

. On the

other hand, we know that k2 ˆ̃p0 = −̂̃p0zz and k2Γ̂ = −Γ̂zz. Thus,

ˆ̃u2|y=1 = − λ

3m
̂̃p0zz −

2i

m
(1− 1

m
)N(k)Ĥ +

β0

2mC̄a
Γ̂zz. (49)

Applying inverse Fourier transform and substituting (27) and (30) into the
last equation, we find the interface evolution equation

Hτ − 2
m

HHz +
i

mπ

(
1− 1

m

) ∫ ∞

−∞
N(k)

∫ ∞

−∞
H(z, τ)eik(z−z̃)dz̃dk

+
J

3mλ
(H + Hzz)zz −

β0

2mC̄a
Γzz = 0. (50)

The intergral term represents the influence of viscosity stratification, and
when m = 1, that term disappears. Note that the equation (50) (without the
surfactant diffusion and integral terms) is known as the Kuramoto-Sivashinsky
equation (Frenkel, Babchin, Levich, Shlang, and Sivashinsky [7], 1987; Papa-
georgiou, Maldarelli, and Rumschitzki [25], 1990 and Smyrlis and Papageor-
giou [31], 1996).

3.2 Derivation of the Concentration of Surfactant
Evolution Equation

Consider the non-dimensional concentration of surfactant equation (6). Sup-
pose Pe ∼ O(1/ε2) and substitute (18) and (19) into (6). Evaluation of w̄2

at r = 1 + ε2H, gives, neglecting high order terms,

Γt + w̄2εΓz − 2ε2

m
(HΓ)z − ε2

P̃ e
Γzz = 0, (51)
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where P̃ e = ε2Pe ∼ O(1). Using the Galilean transformation (17), we finally
obtain, dropping ˜ symbol, the concentration of surfactant evolution
equation

Γτ − 2
m

(HΓ)z − 1
Pe

Γzz = 0. (52)

This coupled system, (50) and (52), of evolution equations constitutes an
initial value problem for H and Γ, which has to be addressed numerically, in
general.

4 Re-scaling to Canonical Form and Analytical
Properties

4.1 Re-scaling to canonical form

We want to go from domains of length 2L to domains of length 2π. We
redefine H −→ αH, Γ −→ γΓ, and ∂

∂τ −→ β ∂
∂t , where α, β, and γ are chosen

to make as many coefficients as possible in the nonlinear equations equal to
one.

Thus, we obtain the re-scaled coupled system of the interface and concen-
tration of surfactant evolution equations

Ht + HHz + i
3λ

πνJ

(
1− 1

m

) ∫ ∞

−∞
N(
√

νk̃)
∫ ∞

−∞
H(z, t)eik̃(z−z̃)dz̃dk̃

+ (H + νHzz)zz = −Γzz (53)

and
Γt + (HΓ)z =

3mλ

PeJ
Γzz. (54)

4.2 Analytical Properties

In this section, we start calculating the canonical form of the perturbed axial
velocity W2. Next, we show that the volume of fluid and the amount of
surfactants are conserved. We devote the last part of this section to the linear
analysis of the system (53) and (54), when (m = 1)

Hτ + HHz + Hzz + νHzzzz = −Γzz (55)
Γτ + (HΓ)z = ηΓzz, (56)

where η = 3λ
PeJ .
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4.2.1 Canonical form of the perturbed axial velocity W2:

Here, we calculate W2 which is the canonical form of w̃2. Evaluating equation
(25) at y = 1 and considering m = 1, we know that

w̃2|y=1 = λ

(
1
2
p̃0z

+ A(z, t)
)

. (57)

Since C1 = C2 = 0 when m = 1, equation (43) becomes

Â =
ikβ0

λC̄a
Γ̂− ik ˆ̃p0. (58)

Applying the inverse Fourier transform and plugging it in (57), we obtain

w̃2|y=1 = λ

(
−1

2
p̃0z +

β0

λC̄a
Γz

)
. (59)

Taking the leading order of the equation (27) and plugging it in equation (59),
yields

w̃2 = − J

2λ
(H + Hzz)z +

β0

C̄a
Γz. (60)

Re-scaling w̃2 to canonical form W2, we use the same re-scaled variables as in
§4.1 and obtain

W2 = − J2ν

12λ2

[
(H + νHzz)z +

4
3
Γz

]
. (61)

4.2.2 Conserved quantities:

We start considering the system (55) and (56), then

d

dτ

(∫ 2π

0

Hdz

)
=

∫ 2π

0

Hτdz (62)

= −
∫ 2π

0

(Γzz + HHz + Hzz + νHzzzz)dz = 0 (63)

because of periodicity of H at the boundaries. Therefore,

∫ 2π

0

Hdz = constant = 0 (64)
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if H has zero mean initially.

d

dτ

(∫ 2π

0

Γdz

)
=

∫ 2π

0

Γτdz (65)

= −
∫ 2π

0

(ηΓzz − (HΓ)z)dz (66)

= −Γ0

∫ 2π

0

Hzdz = 0 (67)

because Γ = Γ0 is a constant and because of periodicity of H at the bound-
aries. Therefore,

∫ 2π

0

Γdz = constant = Γ0

∫ 2π

0

dz = 2πΓ0. (68)

4.2.3 Linear stability:

We consider the undisturbed state

H = 0, Γ = Γ0, 0 < Γ0 < 1 (69)

and take normal modes (Drazin and Reid [3], 1999) in the form

H = Ĥeikz+ωt, Γ = Γ0 + Γ̂eikz+ωt, (70)

where k is the wave number and ω is the growth rate. Substituting (70) in
(55) and (56) and retaining only linear terms, we obtain

ωĤ − k2Ĥ + k4νĤ = k2Γ̂
ωΓ̂ + ikĤΓ0 = −k2ηΓ̂.

Grouping Ĥ terms together and Γ̂ terms together, yields the system

(ω − k2 + νk4)Ĥ = k2Γ̂
ikΓ0Ĥ = −(ω + ηk2)Γ̂,

which we solve to obtain

(ω − k2 + νk4)(ω + ηk2) = −ik3Γ0. (71)

Rewriting the last equation we obtain a quadratic equation for ω

ω2 + (ηk2 − k2 + νk4)ω + ηνk6 − ηk4 + ik3Γ0 = 0, (72)
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which gives two complex values of the growth rate ω1 and ω2

ω1,2 = −1
2
(η − 1 + νk2)k2 ±

√
1
4
(η − 1 + νk2)2k4 − ηk4(νk2 − 1)− ik3Γ0.

Next, we consider Γ0 = 1 and η = 1 and compute the values of ω1 and ω2 for
a range of values of the wave number k.

Considering the growth rate, Re(ω1), we can see that it takes positive and
negatives values. A cutoff wave number kν exists for each ν that we studied
here. This indicates that for each ν, Re(ω1) < 0 for k > kν . On the other
hand, all the values of the growth rate, Re(ω2), are negative. Therefore, we
can conclude that the solutions are linearly stable for wave numbers k bigger
than kν . This is consistent with the short wave stabilization supported by the
Kuramoto-Sivashinsky equation.
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