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Abstract

The equation for the orbit of the classical Lotka-Volterra oscillator is
solved for one of two variables in terms of the other by using two inverse
functions of x exp(x). Moreover, the period of the orbit is expressed as
an integral, which is approximated numerically by Gauss-Tschebyscheff
integration rule of the first kind.
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Resumen

La ecuación de la órbita del oscilador clásico de Lotka-Volterra se
resuelve para una de las variables en términos de la otra usando dos fun-
ciones inversas de x exp(x). Más aun, el peŕıodo de la órbita se expresa
como una integral, que se aproxima numéricamente usando la fórmula
de integración de Gauss-Tschebyscheff de primera clase.
Palabras y frases clave: oscilador de Lotka-Volterra, función W de
Lambert, periodo, regla de integración de Gauss-Tschebyscheff de pri-
mera clase.
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1 Introduction

Scarpello and Ritelli [11] studied the classical Lotka-Volterra system




v′(t) = v{a− bu}

u′(t) = u{dv − c}
(1.1)

where a, b, c, d are given positive numbers. The authors state in p. 6 that “In
spite of its simple formulation, no closed form solution of (1.1) is known.”

Since 1920, the system (1.1), which was studied independently by Lotka [6]
and Volterra [14], has been known to have a functional relationship between
two dependent variables, from which one has graphically a one-parameter
family of periodic solutions with the critical point as the center in the first
quadrant. Existence of periodic solutions for the system (1.1) may be justified
mathematically by Morse lemma [7].

Lotka linearized this equation at the critical point of this system; while
Volterra analyzed this equation through an auxiliary variable, see also Davis
[1, pp. 102-109] for more information. The work of Scarpello and Ritelli
may be considered as an extension of Lotka’s procedure to higher degree
polynomials.

The aim of this short note is to make a remark that the functional relation-
ship between two dependent variables can be solved directly for one variable
in terms of the other. Such procedure is based on two inverse functions of
x exp(x). As a byproduct, the period of each orbit can be expressed as an
integral. On the other hand, solving this equation explicitly gives rise to a
nonlinear transformation between Lotka-Volterra oscillators and the harmonic
oscillators (more precisely, circles). These results echo what Davis states in
the Preface of his book [1]:

. . . . . .
Substantial progress could be made only when clever transfor-

mation had reduced the nonlinear problems to linear ones, or to
problems asymptotic to some linear algorithm.

. . . . . .
The solutions of nonlinear equations still possess singularities,

which only the analytical method can discover and describe.
. . . . . .

In fact, each end of the integral for the period of each orbit is revealed to have
a weak singularity of the square-root type through the asymptotics of two
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inverse functions of x exp(x) at the branch point − exp(−1). Thus, numeri-
cal approximations of such integral may be obtained by Gauss-Tschebyscheff
integration rule of the first kind.

In the computer algebra systems, two inverse functions of x exp(x) are
denoted by LambertW(−k, x) in Maple, and ProductLog[−k, x] in Mathe-
matica, respectively. A series expansion for one of these inverse functions was
employed when Euler solved in 1779 the trinomial equation proposed in 1758
by Lambert xα − xβ = (α − β)vxα+β in the limiting case as α → β. These
functions will appear [10] in the chapter on elementary functions, by R. Roy,
F. Olver and S. Krantz, of the Digital Library of Mathematical Functions,
an updated version of Abramowitz and Stegun’s Handbook of Mathematical
Functions (with Formulas, Graphs, and Mathematical Tables):

The Lambert W -function W (x) is the solution of the equation
WeW = x. The solution for which W (x) ≥ W (− exp(−1)) is called
the principal branch and denoted by Wp(x). The other solution is
denoted by Wm(x).

See Weisstein [15] for more information about these functions. This work
follows these notations.

For the sake of comparison, some related procedures in Scarpello and
Ritelli [11] are reviewed briefly as follows. The system (1.1) is first written as





d

dt
log(v(t)) = a− bu

d

dt
log(u(t)) = dv − c,

which is reduced via the change of variables x = log(
d

c
v), y = log(

b

a
u) to





x′(t) = a{1− exp(y)}

y′(t) = c{exp(x)− 1}.
(1.2)

For the initial conditions x(0) = x0, y(0) = y0, one has the orbit differential
equation in the xy-plane

dy

dx
= k

1− exp(x)
1− exp(y)

y(x0) = y0 k = − c

a
, (1.3)
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which is solved to give

y − exp(y) = k{x− exp(x)}+ C (1.4)

with C = y0 − exp(y0) − k{x0 − exp(x0)}. Then the authors say “If (1.4)
could be solved explicitly for y, the orbit of the Lotka-Volterra system would
be known: but unfortunately the transcendental nonlinearity of (1.4) prevents
this.” Scarpello and Ritelli [11] then solved (1.4) approximately for y in terms
of x via Taylor series and computer algebra software Mathematica.

2 Main results

The importance of (1.1) can be found with its applications in population
dynamics [8], chemical dynamics [3], laser dynamics [5], economics [4], and
virus dynamics [9].

Equations in (1.1) gives the separable differential equation

du

dv
=

u{dv − c}
v{a− bu} ,

which is integrated to yield

dv − c log(v)− a log(u) + bu = H, (2.1)

where H is the constant of integration defined by

H = dv0 − c log(v0)− a log(u0)− bu0

for the initial conditions v(0) = v0, u(0) = u0.
It is easy, by linearizing (2.1) at the critical point v = c/d, u = a/b, to see

that (2.1) gives periodic solutions in a neighborhood of this point in the vu-
plane. On the other hand, by using Morse lemma, (2.1) indeed gives periodic
orbits in the vu-plane, see for example Verhulst [13, p. 21].

An elementary technique in calculus shows that

H ≥ a + c− a log(
a

b
)− c log(

c

d
),

and the minimum value takes place at v = c/d, u = a/b. In the notation of
Hamiltonian systems, we write H = a+ c−a log(a/b)− c log(c/d)+E in (2.1)
to obtain

dv − c− c log(
d

c
v) + bu− a− a log(

b

a
u) = E (2.2)
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with the energy E ≥ 0 and E = 0 at v = c/d, u = a/b.
Lokta [6] linearized (2.1) at the equilibrium point v = c/d, u = a/b to ob-

tain an equation of the ellipse in order to find an approximation of the period
of the Lotka-Volterra oscillator. Volterra [14] introduced an auxiliary variable
in treating this equation in order to construct an integral representation for
the period of the Lotka-Volterra oscillator.

Shih [12] solved (2.2) for u in terms of v to obtain u = gk(v) in v ∈ [v0, v1]
for k = 0, 1, with Wp = W0,Wm = W1 for the clarity of the presentation

gk(v) = −a

b
Wk(−(

d

c
v)−c/a exp(

d

a
v − 1− c

a
− E

a
)), (2.3)

vk = − c

d
Wk(− exp(−1− E

c
)). (2.4)

Note that 0 < g0(v) < a/b < g1(v) < ∞. In other words, the function
u = g0(v) ∈ (0, a/b] gives the lower branch of the orbit (2.2) in the vu-plane
by traveling from the point (v0, a/b) to the point (v1, a/b) in the counter-
clockwise direction; while the function u = g1(v) ∈ [a/b,∞) describes the
upper branch by traveling from the point (v1, a/b) to the point (v0, a/b) in
the counterclockwise direction.

Next, traveling along the lower branch described by u = g0(v) from the
point (v0, a/b), with t = t|Pw , to the point (v1, a/b), with t = t|Pe , in the
counterclockwise direction yields

t|Pe − t|Pw =
∫ v1

v0

dv

v{a− b g0(v)} ;

while traveling along the upper branch described by v = g1(u) from the point
(v1, a/b), with t = t|Pe , to the point (v0, a/b), with t = t|Pw , in the counter-
clockwise direction yields

t|Pw − t|Pe =
∫ v0

v1

dv

v{a− b g1(v)} .

Thus we obtain an integral representation of the period

T (E) =
∫ v1

v0

{
1

v{a− b g0(v)} +
−1

v{a− b g1(v)}
}

du, (2.5)

where the functions g0(v), g1(v) are given by (2.3), and two endpoints v0, v1

of the integral are defined by (2.4).
Splitting the integration interval in (2.5) into two halves and performing

substitutions give
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T (E) =
1
ac

∫ E

0

Φ(
s

c
)Φ(

E − s

a
)ds, (2.6)

with

Φ(s) =
1

1 + Wp(− exp(−1− s))
− 1

1 + Wm(− exp(−1− s))
.

Asymptotic behavior of Φ(s) ∼
√

2/s, as s ↓ 0, shows that the integral
(2.6) possesses a weak singularity of the square root type at each endpoint of
the integration, and is thus computed numerically by the Gauss-Tschebyscheff
integration rule of the first kind. For more on this numerical quadrature, see
for example Davis and Rabinowitz [2]. To proceed further, the integral (2.6)
is converted to the form

T =
∫ 1

−1

f(x)√
1− x2

dx,

with

f(x) =
E

2ac
Φ(

E

2c
(1 + x))Φ(

E

2a
(1− x))

√
1− x2.

A numerical approximation to T by using the Gauss-Tschebyscheff integration
rule of the first kind is

Tsgt =
π

n

n∑

i=1

f(xi) with xi = cos(
(2i− 1)π

2n
); (2.7)

for i = 1, . . . , n, as well as the error term

T − Tsgt =
π

22n−1(2n)!
f (2n)(ξ) for some ξ ∈ (−1, 1).

Scarpello and Ritelli [11, p. 8] has a numerical value 5.27 for the period of
the system (1.2) subject to the initial conditions x(0) = 0, y(0) = 1. This value
has an excellent good agreement with the results 5.270242963, 5.270242894,
5.270242858, obtained from (2.7) in Maple 9.5 with n = 3, 5, 10, respectively.
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