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Abstract

The theory of the goodness of fit procedures for multivariate nor-
mality based on spherical harmonics, introduced in [6], is extended to
cover the context of the multivariate linear model (MLM). The limiting
distribution of the statistics considered does depend on the distribution
of the covariates in the MLM, and our results provide a complete de-
scription of the manner in which the covariate distribution affects the
goodness of fit statistics. We provide two methods for approximation of
the limiting distributions when, as is usually the case, the covariate dis-
tribution is unknown, and evaluate their performance in simulations.
Key words and phrases: Conditional models, empirical processes,
Goodness of fit testing.

Resumen

La teoria de los métodos de bondad de ajuste para la familia normal
multivariada, basados en arménicas esféricas, presentada en [6], se ex-
tiende, en el presente trabajo, al contexto del modelo lineal multivaria-
do (MLM). Nuestros resultados proporcionan una descripcién completa
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de la distribucién limite de los estadisticos considerados, incluyendo la
manera en que la distribucién de la covariable afecta dicha distribu-
cién limite. Describimos dos métodos para la obtencién de cuantiles
aproximados para los estadisticos considerados (cuando se desconoce la
distribucién de la covariable) y evaluamos el desempeiio de estos méto-
dos mediante simulaciones.

Palabras y frases clave: Modelos condicionales, procesos empiricos,
pruebas de bondad de ajuste.

1 Introduction

In recent years, a number of meaningful and effective methods have been
developed for testing the null hypothesis of multivariate normality. Among
these, we would like to mention the statistics obtained from kernel density
estimators of Bowman and Foster [3], the statistics that use the empirical
characteristic function of Henze and Wagner [4] and the statistics based on
spherical harmonics and radial functions studied by Manzotti and Quiroz [6].
These statistics join the classic procedures of Mardia [7] among the best tools
for deciding on the question of multivariate normality.

It seems natural to try to adapt the best of the test statistics for multivari-
ate normality to the problem of testing for the adequacy of the Multivariate
Linear Model (MLM, also referred to as the General Linear Model [1]) in
the context of models with covariates, by applying the tests for multivari-
ate normality to the residuals of the fitted conditional model. In doing so,
some caution must be exerted, since the covariate distribution could affect the
distribution of the test statistics being used.

When assessing goodness of fit of the MLM, it is common practice to
informally examine the residuals for lack of uniformity, that is often associated
with lack of independence between the radial and directional components of
the residuals. In this respect the statistics proposed in [6] and, in particular,
their Z3,,, is well suited to detect this kind of departures from multivariate
normality. Thus, the main goal of the present article is to carry out the
adaptation of this statistic to the context of goodness of fit for the MLM. For
this purpose we will describe a generalization of Theorem 2 in [8] and provide
procedures for estimation of quantiles under minimal assumptions when the
covariate distribution is unknown.

In order to present the statistic that we will consider, we will first intro-
duce some notation. Let (X1,Y7),...,(X,,Y,) be an ii.d. sample from the
probability law P on IRP xIR?. The X/s (resp. the Ys) are assumed to be
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random vectors in/RP (resp. IR?). In the MLM, the conditional assumption
(the null hypothesis that we want to test) is that, given X,

Yi=BX;+7 (1)

where B is a ¢ X p parameter matrix and Z; €IR? has distribution N(0, %),
for an unknown positive definite covariance matrix 3. Let us denote by u the
marginal distribution (onIR?) of X; and by P = P, the joint distribution of
the pair (X1, Y1) under the null distribution. Let X (resp. Y) denote the X
(resp. Y) sample written in matrix form: X is an n X p matrix in which each
X; appears as a row. Then, as is well known (see, for example, [1]), the MLE
for 6y = (B, Y), namely, 6= (B, S), is given by

B! = (X!X)"'X'Y and S = lYtQY (2)
n

where Q = I — X(X'X)~*X". Denote by P; the joint distribution of a vector
(X,Y) for which X has distribution p and the conditional distribution of ¥
given X is N(E X, S). The standardized residuals are the vectors S—1/2(Y; —
BX;).

The statistic we want to consider is obtained by application, to the stan-
dardized residuals, of radial functions and spherical harmonics described next.
Let Q4 = {y €IR? : |ly|| = 1} be the g-dimensional unit sphere. A spherical
harmonic of degree j is the restriction to €24 of a homogeneous polynomial p(y)
onlR?, of degree j, such that A(p) = 0 onIR?, where A denotes the Laplace
operator Y +_, 0% /0z?. In dimension 2, the spherical harmonics coincide with
the trigonometric functions on the unit circle. In higher dimensions, as in di-
mension 2, their linear combinations are dense, with respect to the sup norm,
in the space of continuous functions on €, [9]. In [6] closed form formulae
have been worked out for the spherical harmonics of degree up to 4, in an or-
thonormal basis with respect to the uniform probability measure on the unit
sphere. We will denote &; the set of spherical harmonics of degree j in this
orthonormal basis. The number of linearly independent spherical harmonics
of degree j, in dimension ¢, is given by LI(q,j) = ((H';_l) — (q;—i;?,)v with
LI(¢,0) =1 and LI(g, 1) = g, for all q.

In what follows,  and y denote points inIRP and IRY, respectively. For
y # 0 in and a positive integer j, define the functions

ri(y) = llyl’ and u(y) = y/|lyl.- (3)

r1 and u give the polar coordinates of y. For n large enough (to guaran-
tee that S is, with high probability, non singular), let us define the sample
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standardization transformation by

To(z,y) = S~'*(y — Ba). (4)
It is convenient to define, as well, the asymptotic transformation

Too(a,y) = 7/%(y — Bu). (5)

We will apply to the sample pairs (X;,Y;), functions which are products of
spherical harmonics and powers of the radial component: (r;oT,)(pouoT,),
where p is a harmonic spheric in &, 0 <1 < 2, and r; and u are as defined in
(3). Based on power considerations, we will use, specifically, the functions

(rsoTy)(pouoTy,), r1oT, and r3 o T, (6)

where p € & U &, and these spherical harmonics are listed in the same
order as in Table 1 of [6]. This gives a total of k = (93') + ¢ + 1 functions.
The functions just introduced will be denoted h;,,1 < j < k. Under the
null hypothesis, we have consistency of 6 and the functions h;» converge, in
L2(P), to the limiting h; -, obtained by replacing T, for T}, in (6). Denote
by h,, the vector of functions (hin,..., kg n)" and by h., the corresponding
Vector of the hj . For each function h S L2 , let

Ph = //ha:ydey P;h = //hxydey)

Poh =~ Z h(Xi,Yy), va(h) = v/n(P,h — Ph)

i<n

and 1, (h) = Vn(P,h — P;h). (7)

For the vector h,, defined above, let 0y, (h,) = (Un(h1n),- .., 0n(hkn)) and
define, similarly, v, (hy) = (Wn(P1,00)s- -+ Vn(Pk,0o)). The functions in A
are fixed, as opposed to those in h, that depend on the sample through the
estimates B and S. Thus, the covariance matrix, under the null hypothesis,
of the vector h_, can, in principle, be calculated in advance. Call Mj this
covariance matrix that, in our case, due to our particular choice of functions,
turns out to be computable in closed form and coincides with matrix V of
formula (2.18) in [6]. Then, the statistic that we will consider is the quadratic
form

Z'?L = pfl(hn) MO ! ﬁn(h’n) (8)

In the following section we present some properties of the statistic Z2,
including its asymptotic distribution and, in Section 3, we discuss bootstrap
procedures for getting approximate quantiles of Z2.
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2 Invariance and limit distribution of 72

We will now state, without proofs, some results regarding the calculation and
distribution of Z2. These results generalize those obtained in [6] and show how
the covariate distribution affects the distribution of the statistic considered.
Proofs, based mostly on methods from empirical processes (as described, for
instance, in [11]), will appear elsewhere [10].

By our choice of functions, a simplification occurs in the computation of
Un(h,). When calculating Psh; ,, we need to average, with respect to p, the
integral

/ (rs 0 T)(p o wo Tp)(x, y)dAN (Bz, S)(y). )

Noticing that the estimators B and S appear both in the definition of T,
and in the N(Bx, S) distribution, we get, through a change of variables, that
the integral in (9) takes the value [r3(y)p(y/|ly|)dAN(0,1,)(y). This last
expression is straightforward to compute and not random!. Our process 7y,
can be decomposed as

Up, hj,n =Vp hj’n + \/E(Phj,n — Péhj,n)- (10)

Always assuming the null hypothesis, write Y; = BX,; 4+ X1/2U;, where the
U; have the standard Gaussian distribution in IR9Y. Let BU and Sy be the
estimators of the parameters B and X for the sample (X1,U1), ..., (Xn, Uy).
(For this hypothetical sample, B is the zero matrix and ¥ = I,). It is not
difficult to verify that these estimators relate to those for the original sample
through B = B+ XY/2By; and S = $1/25,51/2. 1t follows that the standard-
ized residuals S~1/2(Y; — BXZ) relate to the corresponding residuals for the
(X;,U;) sample via

STV, = BX,) = pS ' *(Us - BuX,) (1)

where p = (El/QSUZl/Q)_1/221/2511/2. Since p is an orthogonal matrix and
the functions applied to the residuals are products of radial functions and
spherical harmonics, it follows as in [8], Proposition 8, that the distribution
of our Z?2 does not depend on the underlying parameters B and Y. Thus, we
have a further simplification in the analysis of Z2 in the sense that we can
assume, in what follows, that the true parameters are B =0 and ¥ = I,.
We will now introduce some definitions needed to describe the limiting
distribution of Z2. Let &2(z,u) denote the g-dimensional N(Bz,Y) density
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evaluated at u. Put &o(z,u) = &(z,u) |p=o,x=1,- Let us give an order to the
parameters in our model (entries of B = (b;;) and X = (0;;)) as follows:

bi1, .. bip,bats - baps . bg1, - bps

012,..-01¢,023,...02¢,.--0q—1,4:0115---0¢qq- (12)

Notice that we have a total of s = pg+ (q;l) parameters. Denote by f(x, w)
the vector of partial derivatives of £(z, u) with respect to the parameters listed
above (in the order just given), evaluated at B = 0,¥ = I,. For each j < k,
let ¢(h;) be the (s-dimensional) vector given by

i) =2 [ [ Byelzi)éolo (e wpduduta). (13

Also, let J = (J;;)1<i,j<s be the Fisher information matrix for the MLM at
0o, given by

Jij = 4P(£€;/€2), (14)

where &; denotes the i-th component of the vector €. Let C be the k x s matrix
in which the j-th row is ¢(hj ). In our case, complete expressions for both
J and the matrix C' can be worked out in terms of moments of the covariate,
as follows: Let 7 = (u(X1,1),...,u4(X1,p)) (a row vector of moments) and
Mx = (u(X1,:X1,j))1<i,j<p (matrix of crossed moments). Then

Mx 0 0 - 0
J= 0 Mx 0 0 (15)

0 0 Iy 10

0 0 i,

and

doT 0 0
C=| 0o - dor O 0o | (16)

0 - 0 dily O

2
0 0  Ass

where the block Mx appears ¢ times in the diagonal of J, as does the vector

do 7 in the ‘diagonal’ of C; dy = /q(q+2), di = vV2(q+1)(g+3)8/+/alq + 2)
and the block As 3 is as in [6], equation (2.20).
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Generalizing Theorem 2 in [8], we have that the limiting distribution of
U (h,,) is k-dimensional Gaussian with mean zero and covariance matrix My —
CJ~1Ct and, therefore the distribution of Z2 converges to that of

k
> 6w (17)
j=1

where the W; are i.i.d. N(0, 1) variables and the §; are the eigenvalues of
- My Pegtotmy 2. (18)

From this result and the formulas for J and C in (15) and (16), we see how the
covariate moments enter the distribution of our statistic, although it has been
computed on ‘residuals’. Since we do not assume a distributional form for the
covariate, the moments that appear in 7 and Mx must be estimated from the
sample. That the null distribution of Z2 can indeed be effectively estimated
without knowing the covariate distribution is illustrated in the simulations
that we describe next.

3 Bootstrapping quantiles of 72

We will now describe a Monte Carlo experiment, performed to evaluate the
convergence of Z2 to its limiting distribution and the influence of the covariate
distribution on it. We will also present a parametric bootstrap procedure that
approximates very closely the null finite sample distribution of Z2. Our setting
is as follows: we take p = 3 and ¢ = 4. Without loss of generality, we assume
B =0 and ¥ = I;. For our first example, we generate the 3-dimensional co-
variate from the one parameter multivariate Burr-Pareto-Logistic distribution
whose density is given in [5], formula (9.10), with parameter A = 0.5. In our
second example the covariate has independent coordinates with the student’s
t4 distribution. The first distribution considered has bounded support and
correlated coordinates, while the second distribution has relatively heavier
tails and independent coordinates.

To approximate the finite sample null distribution of Z2, for different
sample sizes ranging from n = 20 to n = 200, and each of the two covari-
ate distributions considered, we generated (using the R Statistical Language)
10,000 samples of X;s. Then, the Y;s were generated according to the MLM
(1). For each sample, 7, (h,,) and Z2 were computed (with code in the R lan-
guage available from the authors) and finite sample quantiles were extracted.
These quantiles are displayed in Tables 1 and 2, in rows labeled Z2.
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Assuming no knowledge of the covariate distribution, the limit distribu-
tion can be approximated as follows: We take one sample (the ‘actual sample’)
and from the X;s we estimate the moments that go in the definitions of 7 and
Mx. Then we plug these estimates in (15) and (16), and we can compute
an approximation to the matrix in (18). Call the eigenvalues of this matrix
Sj, j < k. Then, we can use Monte Carlo quantiles of Z?Zl Sij (based on
10,000 samples of W;s) as approximate quantiles for the limit distribution.
This procedure was implemented for the sample sizes and covariate distri-
butions considered (using only the first covariate sample) and the quantiles
obtained are displayed in Tables 1 and 2 in the rows labelled Z2 .

Finally, a different approximation to the finite sample quantiles of Z2 can
be obtained through a parametric bootstrap, conditioning on the observed X;
sample. For [ = 1 to 10,000 generate the null ¥; sample according to (1),
using B = 0 and ¥ = I, (recall that this does not affect the distribution of
our statistic). Then, compute the corresponding Z2 for these 10,000 samples
and extract quantiles. This method will produce quantiles that converge,
as n — 00, to the limiting quantiles of Z2? (a justification can be obtained
with arguments similar to those in [2]). This bootstrap approximation was
implemented (again, based on just one covariate sample for each sample size)
and the quantiles obtained are displayed in Tables 1 and 2 in rows labeled
7,

From the results of these simulations we can conclude the following: In the
case of the Burr-Pareto-Logistic distribution with bounded support, the limit-
ing quantiles (rows Z2) display little variability with sample size, suggesting
that, in this case, a good approximation to the limiting distribution can be
attained even with small samples. There is more variability among these rows
in Table 2, as could be expected. Still, in both cases, the finite sample quan-
tiles of Z?2 are approaching the approximate limiting quantiles from below, as
n grows. Thus, use of the approximate asymptotic quantiles will produce a
conservative procedure, as is usually the case with this type of statistics. In
both cases, the agreement between approximate finite sample quantiles, Z2,
and limiting quantiles, Z2 , becomes fairly acceptable for n > 200. On the
other hand, for both distributions of the covariate, the parametric bootstrap
procedure seems to provide a good approximation to the finite sample dis-
tribution of Z2 for all the sample sizes considered. This could be expected,
since the parametric bootstrap is simulating the finite sample statistic and not
the asymptotic distribution. On the other hand, the approximate asymptotic
quantiles are significantly less expensive from the computational viewpoint.
Each number in the Z2 rows takes a couple of seconds of computation on

a desktop PC, while the corresponding numbers in row thb, for n = 200,
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require about 15 mins of computation on the same machine. The code in the
R statistical language that implements the test statistics and the bootstrap
procedures described here is available from the authors.

One important conclusion we can extract from these simulations is that
the distribution of Z?2 is significantly affected by the covariate distribution,
as we can judge by the differences between corresponding entries in Tables
1 and 2. This result is a bit surprising, considering that the spherical har-
monics and radial functions are applied to the standardized residuals. In this
regard, the theory presented in this article is useful in telling us how the co-
variate effect appears, and how to obtain valid approximate quantiles for Z?2
by appropriately using the information contained in the covariate sample.

Table 1: MC quantile approximations for Z2, p = 3,q = 4, m = 10%
X ~MultivB-P-L(0.5)

Sample size | Approx. | 90%  92.5% 95% 97.5%  99%
20 Z,QL 4.431 4.731 5.114 5.845 6.972
20 Zib 4.545 4.817 5.197 5900 6.883
20 Z?X) 5.524 6.006 6.607 7.684 9.294
50 ZEL 4981 5.344 5917 6.928 8.549
50 Zg,b 4.721 5.136 5.700 6.672 8.348
50 Zgo 5.599 6.062 6.726 7.844 9.403
100 Zﬁ 5.217 5.655 6.287 7.526 9.563
100 Zib 5.120 5,529 6.112 7.115 8.768
100 Zﬁo 5.680 6.175 6.797 8.024 9.619
200 ZTQL 5.367 5.787 6.459 7.656  9.347
200 Z?L’b 5.303 5.752 6.390 7.653  9.209
200 Zgo 5590 6.071 6.759 7.960 9.616
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Table 2: MC quantile approximations for Z2, p = 3, ¢ = 4, m = 10%, X:
independent coordinates t4

Sample size | Approx. | 90% 92.5% 95% 97.5% 99%
20 Z2 6.789 7.125 7.548 8205 9.177
20 Z2, | 6581 6.894 7313 7.882 8.831
20 Z2 8.489 9.149 10.03 11.55 13.45
50 Z2 8.434 8969 9.704 11.00 12.87
50 Z2, | 8131 8730 958 11.08 13.41
50 Z2, 9.634 10.42 11.50 13.14 15.25
100 Z2 8851 9.503 10.41 11.96 13.98
100 Z2, |9.040 9686 10.59 1221 14.06
100 Z2, 9.231 9.948 10.90 12.57 14.46
200 Z2 9.341 10.17 11.14 12.81 14.96
200 Z2, 9465 1010 11.02 1260 14.73
200 Z2, 9.705 10.48 11.58 13.33 15.38
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