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Abstract

The theory of the goodness of fit procedures for multivariate nor-
mality based on spherical harmonics, introduced in [6], is extended to
cover the context of the multivariate linear model (MLM). The limiting
distribution of the statistics considered does depend on the distribution
of the covariates in the MLM, and our results provide a complete de-
scription of the manner in which the covariate distribution affects the
goodness of fit statistics. We provide two methods for approximation of
the limiting distributions when, as is usually the case, the covariate dis-
tribution is unknown, and evaluate their performance in simulations.
Key words and phrases: Conditional models, empirical processes,
Goodness of fit testing.

Resumen

La teoŕıa de los métodos de bondad de ajuste para la familia normal
multivariada, basados en armónicas esféricas, presentada en [6], se ex-
tiende, en el presente trabajo, al contexto del modelo lineal multivaria-
do (MLM). Nuestros resultados proporcionan una descripción completa
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de la distribución ĺımite de los estad́ısticos considerados, incluyendo la
manera en que la distribución de la covariable afecta dicha distribu-
ción ĺımite. Describimos dos métodos para la obtención de cuantiles
aproximados para los estad́ısticos considerados (cuando se desconoce la
distribución de la covariable) y evaluamos el desempeño de estos méto-
dos mediante simulaciones.
Palabras y frases clave: Modelos condicionales, procesos emṕıricos,
pruebas de bondad de ajuste.

1 Introduction

In recent years, a number of meaningful and effective methods have been
developed for testing the null hypothesis of multivariate normality. Among
these, we would like to mention the statistics obtained from kernel density
estimators of Bowman and Foster [3], the statistics that use the empirical
characteristic function of Henze and Wagner [4] and the statistics based on
spherical harmonics and radial functions studied by Manzotti and Quiroz [6].
These statistics join the classic procedures of Mardia [7] among the best tools
for deciding on the question of multivariate normality.

It seems natural to try to adapt the best of the test statistics for multivari-
ate normality to the problem of testing for the adequacy of the Multivariate
Linear Model (MLM, also referred to as the General Linear Model [1]) in
the context of models with covariates, by applying the tests for multivari-
ate normality to the residuals of the fitted conditional model. In doing so,
some caution must be exerted, since the covariate distribution could affect the
distribution of the test statistics being used.

When assessing goodness of fit of the MLM, it is common practice to
informally examine the residuals for lack of uniformity, that is often associated
with lack of independence between the radial and directional components of
the residuals. In this respect the statistics proposed in [6] and, in particular,
their Z2

2,n, is well suited to detect this kind of departures from multivariate
normality. Thus, the main goal of the present article is to carry out the
adaptation of this statistic to the context of goodness of fit for the MLM. For
this purpose we will describe a generalization of Theorem 2 in [8] and provide
procedures for estimation of quantiles under minimal assumptions when the
covariate distribution is unknown.

In order to present the statistic that we will consider, we will first intro-
duce some notation. Let (X1, Y1), . . . , (Xn, Yn) be an i.i.d. sample from the
probability law P on RI p × RI q. The X ′

is (resp. the Y ′
i s) are assumed to be
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random vectors in RI p (resp. RI q). In the MLM, the conditional assumption
(the null hypothesis that we want to test) is that, given Xi,

Yi = B Xi + Zi (1)

where B is a q × p parameter matrix and Zi ∈ RI q has distribution N(0, Σ),
for an unknown positive definite covariance matrix Σ. Let us denote by µ the
marginal distribution (on RI p) of X1 and by P = P0 the joint distribution of
the pair (X1, Y1) under the null distribution. Let X (resp. Y) denote the X
(resp. Y ) sample written in matrix form: X is an n× p matrix in which each
Xi appears as a row. Then, as is well known (see, for example, [1]), the MLE
for θ0 = (B, Σ), namely, θ̂ = (B̂, S), is given by

B̂t = (XtX)−1XtY and S =
1
n
YtQY (2)

where Q = I −X(XtX)−1Xt. Denote by Pθ̂ the joint distribution of a vector
(X,Y ) for which X has distribution µ and the conditional distribution of Y
given X is N(B̂ X, S). The standardized residuals are the vectors S−1/2(Yi −
B̂Xi).

The statistic we want to consider is obtained by application, to the stan-
dardized residuals, of radial functions and spherical harmonics described next.
Let Ωq = {y ∈ RI q : ‖y‖ = 1} be the q-dimensional unit sphere. A spherical
harmonic of degree j is the restriction to Ωq of a homogeneous polynomial p(y)
on RI q, of degree j, such that ∆(p) ≡ 0 on RI q, where ∆ denotes the Laplace
operator

∑q
i=1 ∂2/∂x2

i . In dimension 2, the spherical harmonics coincide with
the trigonometric functions on the unit circle. In higher dimensions, as in di-
mension 2, their linear combinations are dense, with respect to the sup norm,
in the space of continuous functions on Ωq [9]. In [6] closed form formulae
have been worked out for the spherical harmonics of degree up to 4, in an or-
thonormal basis with respect to the uniform probability measure on the unit
sphere. We will denote Ej the set of spherical harmonics of degree j in this
orthonormal basis. The number of linearly independent spherical harmonics
of degree j, in dimension q, is given by LI(q, j) =

(
q+j−1

j

) − (
q+j−3

j−2

)
, with

LI(q, 0) = 1 and LI(q, 1) = q, for all q.
In what follows, x and y denote points in RI p and RI q, respectively. For

y 6= 0 in and a positive integer j, define the functions

rj(y) = ‖y‖j and u(y) = y/‖y‖. (3)

r1 and u give the polar coordinates of y. For n large enough (to guaran-
tee that S is, with high probability, non singular), let us define the sample
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standardization transformation by

Tn(x, y) = S−1/2(y − B̂x). (4)

It is convenient to define, as well, the asymptotic transformation

T∞(x, y) = Σ−1/2(y −Bx). (5)

We will apply to the sample pairs (Xi, Yi), functions which are products of
spherical harmonics and powers of the radial component: (rj ◦Tn)(p ◦u ◦Tn),
where p is a harmonic spheric in El, 0 ≤ l ≤ 2, and rj and u are as defined in
(3). Based on power considerations, we will use, specifically, the functions

(r3 ◦ Tn)(p ◦ u ◦ Tn), r1 ◦ Tn and r3 ◦ Tn, (6)

where p ∈ E1 ∪ E2, and these spherical harmonics are listed in the same
order as in Table 1 of [6]. This gives a total of k =

(
q+1
2

)
+ q + 1 functions.

The functions just introduced will be denoted hj,n, 1 ≤ j ≤ k. Under the
null hypothesis, we have consistency of θ̂ and the functions hj,n converge, in
L2(P ), to the limiting hj,∞, obtained by replacing T∞ for Tn in (6). Denote
by hn the vector of functions (h1,n, . . . , hk,n)t and by h∞ the corresponding
vector of the hj,∞. For each function h ∈ L2(P ), let

Ph =
∫ ∫

h(x, y) dP (x, y), Pθ̂h =
∫ ∫

h(x, y) dPθ̂(x, y)

Pnh =
1
n

∑

i≤n

h(Xi, Yi), νn(h) =
√

n(Pnh− Ph)

and ν̂n(h) =
√

n(Pnh− Pθ̂h). (7)

For the vector hn defined above, let ν̂n(hn) = (ν̂n(h1,n), . . . , ν̂n(hk,n)) and
define, similarly, νn(h∞) = (νn(h1,∞), . . . , νn(hk,∞)). The functions in h∞
are fixed, as opposed to those in hn that depend on the sample through the
estimates B̂ and S. Thus, the covariance matrix, under the null hypothesis,
of the vector h∞, can, in principle, be calculated in advance. Call M0 this
covariance matrix that, in our case, due to our particular choice of functions,
turns out to be computable in closed form and coincides with matrix V of
formula (2.18) in [6]. Then, the statistic that we will consider is the quadratic
form

Z2
n = ν̂t

n(hn)M−1
0 ν̂n(hn). (8)

In the following section we present some properties of the statistic Z2
n,

including its asymptotic distribution and, in Section 3, we discuss bootstrap
procedures for getting approximate quantiles of Z2

n.
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2 Invariance and limit distribution of Z2
n

We will now state, without proofs, some results regarding the calculation and
distribution of Z2

n. These results generalize those obtained in [6] and show how
the covariate distribution affects the distribution of the statistic considered.
Proofs, based mostly on methods from empirical processes (as described, for
instance, in [11]), will appear elsewhere [10].

By our choice of functions, a simplification occurs in the computation of
ν̂n(hn). When calculating Pθ̂hj,n, we need to average, with respect to µ, the
integral ∫

(r3 ◦ Tn)(p ◦ u ◦ Tn)(x, y)dN(B̂x, S)(y). (9)

Noticing that the estimators B̂ and S appear both in the definition of Tn

and in the N(B̂x, S) distribution, we get, through a change of variables, that
the integral in (9) takes the value

∫
r3(y)p(y/‖y‖)dN(0, Iq)(y). This last

expression is straightforward to compute and not random!. Our process ν̂n

can be decomposed as

ν̂n hj,n = νn hj,n +
√

n(Phj,n − Pθ̂hj,n). (10)

Always assuming the null hypothesis, write Yi = BXi +Σ1/2Ui, where the
Ui have the standard Gaussian distribution in RI q. Let B̂U and SU be the
estimators of the parameters B and Σ for the sample (X1, U1), . . . , (Xn, Un).
(For this hypothetical sample, B is the zero matrix and Σ = Iq). It is not
difficult to verify that these estimators relate to those for the original sample
through B̂ = B +Σ1/2B̂U and S = Σ1/2SUΣ1/2. It follows that the standard-
ized residuals S−1/2(Yi − B̂Xi) relate to the corresponding residuals for the
(Xi, Ui) sample via

S−1/2(Yi − B̂Xi) = ρS
−1/2
U (Ui − B̂UXi) (11)

where ρ = (Σ1/2SUΣ1/2)−1/2Σ1/2S
1/2
U . Since ρ is an orthogonal matrix and

the functions applied to the residuals are products of radial functions and
spherical harmonics, it follows as in [8], Proposition 8, that the distribution
of our Z2

n does not depend on the underlying parameters B and Σ. Thus, we
have a further simplification in the analysis of Z2

n in the sense that we can
assume, in what follows, that the true parameters are B = 0 and Σ = Iq.

We will now introduce some definitions needed to describe the limiting
distribution of Z2

n. Let ξ2(x, u) denote the q-dimensional N(Bx, Σ) density
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evaluated at u. Put ξ0(x, u) = ξ(x, u) |B=0,Σ=Iq . Let us give an order to the
parameters in our model (entries of B = (bij) and Σ = (σij)) as follows:

b11, . . . b1p, b21, . . . b2p, . . . bq1, . . . bqp,

σ12, . . . σ1q, σ23, . . . σ2q, . . . σq−1,q, σ11, . . . σqq. (12)

Notice that we have a total of s = pq+
(
q+1
2

)
parameters. Denote by ξ̇(x, u)

the vector of partial derivatives of ξ(x, u) with respect to the parameters listed
above (in the order just given), evaluated at B = 0,Σ = Iq. For each j ≤ k,
let c(hj,∞) be the (s-dimensional) vector given by

c(hj,∞) = 2
∫ ∫

hj,∞(x, u)ξ0(x, u)ξ̇(x, u)du dµ(x). (13)

Also, let J = (Ji,j)1≤i,j≤s be the Fisher information matrix for the MLM at
θ0, given by

Ji,j = 4P (ξ̇iξ̇j/ξ2
0), (14)

where ξ̇i denotes the i-th component of the vector ξ̇. Let C be the k×s matrix
in which the j-th row is c(hj,∞). In our case, complete expressions for both
J and the matrix C can be worked out in terms of moments of the covariate,
as follows: Let τ = (µ(X1,1), . . . , µ(X1,p)) (a row vector of moments) and
MX = (µ(X1,iX1,j))1≤i,j≤p (matrix of crossed moments). Then

J =




MX 0 0 · · · 0
. . .

0 · · · MX 0 0
0 · · · 0 I(q

2) 0

0 · · · 0 1
2Iq




(15)

and

C =




d0 τ 0 · · · 0
. . .

0 · · · d0 τ 0 0
0 · · · 0 d1 I(q

2) 0

0 · · · 0 A3,3




, (16)

where the block MX appears q times in the diagonal of J , as does the vector
d0 τ in the ‘diagonal’ of C; d0 =

√
q(q +2), d1 =

√
2(q +1)(q +3)β/

√
q(q + 2)

and the block A3,3 is as in [6], equation (2.20).
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Generalizing Theorem 2 in [8], we have that the limiting distribution of
ν̂n(hn) is k-dimensional Gaussian with mean zero and covariance matrix M0−
CJ−1Ct, and, therefore the distribution of Z2

n converges to that of

k∑

j=1

δjW
2
j (17)

where the Wj are i.i.d. N(0, 1) variables and the δj are the eigenvalues of

I −M
−1/2
0 CJ−1CtM

−1/2
0 . (18)

From this result and the formulas for J and C in (15) and (16), we see how the
covariate moments enter the distribution of our statistic, although it has been
computed on ‘residuals’. Since we do not assume a distributional form for the
covariate, the moments that appear in τ and MX must be estimated from the
sample. That the null distribution of Z2

n can indeed be effectively estimated
without knowing the covariate distribution is illustrated in the simulations
that we describe next.

3 Bootstrapping quantiles of Z2
n

We will now describe a Monte Carlo experiment, performed to evaluate the
convergence of Z2

n to its limiting distribution and the influence of the covariate
distribution on it. We will also present a parametric bootstrap procedure that
approximates very closely the null finite sample distribution of Z2

n. Our setting
is as follows: we take p = 3 and q = 4. Without loss of generality, we assume
B = 0 and Σ = Iq. For our first example, we generate the 3-dimensional co-
variate from the one parameter multivariate Burr-Pareto-Logistic distribution
whose density is given in [5], formula (9.10), with parameter λ = 0.5. In our
second example the covariate has independent coordinates with the student’s
t4 distribution. The first distribution considered has bounded support and
correlated coordinates, while the second distribution has relatively heavier
tails and independent coordinates.

To approximate the finite sample null distribution of Z2
n, for different

sample sizes ranging from n = 20 to n = 200, and each of the two covari-
ate distributions considered, we generated (using the R Statistical Language)
10,000 samples of Xis. Then, the Yis were generated according to the MLM
(1). For each sample, ν̃n(hn) and Z2

n were computed (with code in the R lan-
guage available from the authors) and finite sample quantiles were extracted.
These quantiles are displayed in Tables 1 and 2, in rows labeled Z2

n.
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Assuming no knowledge of the covariate distribution, the limit distribu-
tion can be approximated as follows: We take one sample (the ‘actual sample’)
and from the Xis we estimate the moments that go in the definitions of τ and
MX . Then we plug these estimates in (15) and (16), and we can compute
an approximation to the matrix in (18). Call the eigenvalues of this matrix
δ̂j , j ≤ k. Then, we can use Monte Carlo quantiles of

∑k
j=1 δ̂jW

2
j (based on

10,000 samples of Wjs) as approximate quantiles for the limit distribution.
This procedure was implemented for the sample sizes and covariate distri-
butions considered (using only the first covariate sample) and the quantiles
obtained are displayed in Tables 1 and 2 in the rows labelled Z2

∞.
Finally, a different approximation to the finite sample quantiles of Z2

n can
be obtained through a parametric bootstrap, conditioning on the observed Xi

sample. For l = 1 to 10,000 generate the null Yi sample according to (1),
using B = 0 and Σ = Iq (recall that this does not affect the distribution of
our statistic). Then, compute the corresponding Z2

n for these 10,000 samples
and extract quantiles. This method will produce quantiles that converge,
as n → ∞, to the limiting quantiles of Z2

n (a justification can be obtained
with arguments similar to those in [2]). This bootstrap approximation was
implemented (again, based on just one covariate sample for each sample size)
and the quantiles obtained are displayed in Tables 1 and 2 in rows labeled
Z2

n,b.
From the results of these simulations we can conclude the following: In the

case of the Burr-Pareto-Logistic distribution with bounded support, the limit-
ing quantiles (rows Z2

∞) display little variability with sample size, suggesting
that, in this case, a good approximation to the limiting distribution can be
attained even with small samples. There is more variability among these rows
in Table 2, as could be expected. Still, in both cases, the finite sample quan-
tiles of Z2

n are approaching the approximate limiting quantiles from below, as
n grows. Thus, use of the approximate asymptotic quantiles will produce a
conservative procedure, as is usually the case with this type of statistics. In
both cases, the agreement between approximate finite sample quantiles, Z2

n,
and limiting quantiles, Z2

∞, becomes fairly acceptable for n ≥ 200. On the
other hand, for both distributions of the covariate, the parametric bootstrap
procedure seems to provide a good approximation to the finite sample dis-
tribution of Z2

n for all the sample sizes considered. This could be expected,
since the parametric bootstrap is simulating the finite sample statistic and not
the asymptotic distribution. On the other hand, the approximate asymptotic
quantiles are significantly less expensive from the computational viewpoint.
Each number in the Z2

∞ rows takes a couple of seconds of computation on
a desktop PC, while the corresponding numbers in row Z2

n,b, for n = 200,
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require about 15 mins of computation on the same machine. The code in the
R statistical language that implements the test statistics and the bootstrap
procedures described here is available from the authors.

One important conclusion we can extract from these simulations is that
the distribution of Z2

n is significantly affected by the covariate distribution,
as we can judge by the differences between corresponding entries in Tables
1 and 2. This result is a bit surprising, considering that the spherical har-
monics and radial functions are applied to the standardized residuals. In this
regard, the theory presented in this article is useful in telling us how the co-
variate effect appears, and how to obtain valid approximate quantiles for Z2

n

by appropriately using the information contained in the covariate sample.

Table 1: MC quantile approximations for Z2
n, p = 3, q = 4, m = 104,

X ∼MultivB-P-L(0.5)

Sample size Approx. 90% 92.5% 95% 97.5% 99%
20 Z2

n 4.431 4.731 5.114 5.845 6.972
20 Z2

n,b 4.545 4.817 5.197 5.900 6.883
20 Z2

∞ 5.524 6.005 6.607 7.684 9.294
50 Z2

n 4.981 5.344 5.917 6.928 8.549
50 Z2

n,b 4.721 5.136 5.700 6.672 8.348
50 Z2

∞ 5.599 6.062 6.726 7.844 9.403
100 Z2

n 5.217 5.655 6.287 7.526 9.563
100 Z2

n,b 5.120 5.529 6.112 7.115 8.768
100 Z2

∞ 5.680 6.175 6.797 8.024 9.619
200 Z2

n 5.367 5.787 6.459 7.656 9.347
200 Z2

n,b 5.303 5.752 6.390 7.653 9.209
200 Z2

∞ 5.590 6.071 6.759 7.960 9.616
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Table 2: MC quantile approximations for Z2
n, p = 3, q = 4, m = 104, X:

independent coordinates t4

Sample size Approx. 90% 92.5% 95% 97.5% 99%
20 Z2

n 6.789 7.125 7.548 8.205 9.177
20 Z2

n,b 6.581 6.894 7.313 7.882 8.831
20 Z2

∞ 8.489 9.149 10.03 11.55 13.45
50 Z2

n 8.434 8.969 9.704 11.00 12.87
50 Z2

n,b 8.131 8.730 9.588 11.08 13.41
50 Z2

∞ 9.634 10.42 11.50 13.14 15.25
100 Z2

n 8.851 9.503 10.41 11.96 13.98
100 Z2

n,b 9.040 9.686 10.59 12.21 14.06
100 Z2

∞ 9.231 9.948 10.90 12.57 14.46
200 Z2

n 9.341 10.17 11.14 12.81 14.96
200 Z2

n,b 9.465 10.10 11.02 12.60 14.73
200 Z2

∞ 9.705 10.48 11.58 13.33 15.38
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[10] Tapia, J. M. El proceso emṕırico condicional en bondad de ajuste a mod-
elos con covariables. Tesis Doctoral. Universidad Central de Venezuela.
To appear, 2006.

[11] van der Vaart, A. W. and Wellner, J. A. Weak Convergence and Empirical
Processes with Applications to Statistics. Springer. New York, 1996.
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