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Abstract

Let Zd
3 be the affine space of dimension d on the Z3 field. The main

goal of this paper is the geometric representation of the maximum line-
free set E in Zd

3. Therefore the complement T of E is the minimum
size set in Zd

3 intersecting all the affine lines in Zd
3. We describe, from

an affine point of view, the geometric structure for d = 2, 3 of set E
producing the maximal cardinality. The case d = 4 is partly obtained
from these structures.
Key words and phrases: affine space; line; plane; hyperplane; line-
free; zero-sum.

Resumen

Sea Zd
3 el espacio af́ın de dimensión d sobre el cuerpo Z3. El principal

objetivo de este art́ıculo es la representación geométrica del conjunto
E de máxima cardinalidad sin ĺıneas en Zd

3. En consecuencia el com-
plemento T de E es un conjunto en Zd

3 de mı́nima cardinalidad el cual
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intercepta todas las ĺıneas afines en Zd
3. Describimos desde una perspec-

tiva af́ın, las estructuras geométricas de E para d = 2, 3 and 4.
Palabras y frases clave: espacio af́ın; ĺınea; plano; hiperplano; suma-
cero.

1 Introduction

Let Zd
3 be the affine space of dimension d over the field Z3. In [1] Cruthirds,

Mattics, Isaacs and Quinn show that the maximum sizes of line-free sets in Z2
3

and Z3
3 are 4 and 9. Moreover they claim that there is a line in any 21 points

of Z4
3. In [5] Pellegrino shows that 20 is the size of the maximum line-free set

in Z4
3. We have taken a different approach in the sense that we specify the

geometric structure of the maximum line-free set E that produces d = 2, 3
and 4. The size of the maximum line-free set is 45 for d = 5 and it was
discovered a few years ago [3]. Characterize the maximum line-free sets in Zd

3

is an open problem that has received a lot of attention over the years. The
article [2] by Davis and Maclagan covers some of these issues and contains
other useful references. The context of our work are the sequences with zero-
sum. Notice that a 3-subset in Zd

3 has zero-sum if and only if it is a line of
Zd

3. The Erdős-Ginzburg-Ziv theorem [4] states that any (2n− 1)-sequence in
an abelian group of order n, contains an n−subsequence with zero-sum. In
a geometric formulation this theorem is equivalent to state that every 2n− 1
points of one-dimensional lattice contain a subsequence of n points, which has
its center of gravity on the lattice.

Our main goal is to show that:

• the number of line-free points in Z3
q (q ≥ 3 prime power) is at least

(q − 1)3 + 1.

• the maximum number of line-free points in Z2
3 is 4. Moreover a set of 4

points in Z2
3 is line-free if and only if they form a parallelogram.

• the maximum number of line-free points in Z3
3 is 9. Additionally 9 points

in Z3
3 are line-free if and only if they are distributed on a cube: 4 points

are placed in the vertices of one face. Other 4 points are placed in the
middle points of the sides of its parallel face. Finally the last point is
placed in the center of the cube. This distribution will be denoted by
the following figures A,B, C in Z2

3 :
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A =
◦ · ◦
· · ·
◦ · ◦

, B =
· · ·
· ◦ ·
· · ·

, C =
· ◦ ·
◦ · ◦
· ◦ ·

, showing the positions of sec-

tions of E by parallel planes, with respect to the canvas
22 02 12
20 00 10
21 01 11

,

where the points inside and outside the figure are represented by ◦ and
by · respectively.

• In Z4
3 = Z2

3×Z2
3, it is possible to distribute on 32 parallel planes (whose

position is given by a 2-vector with components 0, 1 or 2) 20 points in
order to build a line-free set E. This set is described by its intersection
with each of these planes, where A,B or C are placed. Each three
aligned planes (i.e. its position vector constitute a line in Z2

3) constitute
a 3-dimensional affine subspace of Z4

3, then they must contain at most 9
points. The maximum number of line-free points in Z4

3 is 20. Moreover
we conjecture that the above distribution is the only way to build a
line-free set on 20 points in Z4

3.

In what follows, some elements of affine geometry used in this work are
described.

1.1 Elements of affine geometry and orbits

Let F d
q be an affine space of dimension d ≥ 1 on a finite field with q elements

Fq. Each line in F d
q has q points and the total number of points of F d

q is qd.

Moreover each point lies on qd−1
q−1 lines, hence the affine space F d

q contains

qd−1 qd−1
q−1 lines. Finally any affine space of dimension e with 0 ≤ e ≤ d−1 lies

on qd−e−1
q−1 affine spaces of dimension e+1. Let a, b ∈ Zd

3, we denote by m(a, b)
the middle point of a and b and b− a the vector v such that the translate of
a by v is b.

Definition 1. A 4-subset {p1, p2, p3, p4} of Zd
3 (with d ≥ 2) is a parallelo-

gram if there exists an ordering of these points such that one of the equivalent
equalities holds:

• m(p1, p3) = m(p2, p4)

• p2 − p1 = p3 − p4

• p4 − p1 = p3 − p2
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Then the pairs of points {p1, p3} and {p2, p4} are the diagonals and the other
pairs the sides of the parallelogram.

We shall use the following theorem:

Theorem 1. Let G be a group which acts on a set X, and let x be any chosen
elements on X. Then we have the equation:

|θ(x)| × |Gx| = |G|
where θ(x) = {gx : g ∈ G} is the orbit of x and Gx = {g ∈ G : gx = x} is
the subgroup of G called the stabilizer of x.

Besides this introduction, this paper contains two main sections. Section
2 discusses general results on the field Fq. In section 3, the structure of the
maximum line-free set in Zd

3, d = 2, 3, 4 is given.

2 The problem in F d
q

Theorem 2. Let fq(d) be the maximum cardinality of the line-free subsets in
F d

q . Then we have fq(d + e) ≥ fq(d)fq(e).

Proof. It is sufficient to consider line-free subsets C and D in F d
q and F e

q

respectively. Their cartesian product C ×D is also line-free in F d
q × F e

q that
is isomorphic to F e+d

q .

Theorem 3. The expression d
√

fq(d) has a limit lq when d → ∞. Moreover
q − 1 ≤ lq ≤ q.

Proof. Set ud = d
√

fq(d). Since q − 1 ≤ ud < q we know that ud has a
superior limit and an inferior limit. We have for n ≥ 1 and 0 ≤ a ≤ b the

inequality fq(nb + a) ≥ fq(b)nfq(a). Hence unb+a ≥ u
nb

nb+a

b ≥ u
n

n+1
b and then

lim inf(ud) ≥ ub. Therefore lim inf(ud) ≥ lim sup(ud) so that the sequence ud

has a limit. Finally since fq(1) = q− 1 then q− 1 ≤ lq. The inequality lq ≤ q
is obvious.

Theorem 4. Let q ≥ 3 be a prime power. Then fq(3) ≥ (q − 1)3 + 1.

Proof. Consider F 3
q as a product G×D with G the affine plane on Fq and D

the affine line on Fq; both are endowed with a point 0.
Let T be the subset of G × D defined by the union of G \ {0} × 0 (the

horizontal plane with the point 0 removed) and the q − 1 sets (unions of
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two lines in the “horizontal” plane G × {ai}, meeting at (0, ai)) defined as
(Bi

⋃
Ci)× {ai}, where the ai’s are all the elements of D \ {0} and (Bi, Ci)’s

are pairs of lines of G, having distinct directions and passing through 0, such
that all q + 1 directions are obtained at least once (this can be done since
q + 1 ≤ 2(q − 1) for q ≥ 3).

We will show that this set T intersects all the lines in G × D; therefore
its complement is line-free. Since T has (q2 − 1) + (q − 1)(2q − 1) = 3q2 − 3q
elements, its complement has (q − 1)3 + 1.

First, the horizontal lines. Each line of G× {0} contains q or q− 1 points
of E and each line in G× {a} for a 6= 0 intersects 1 or 2 points of T .

Then the non-horizontal lines meet the horizontal plane G × {0}. If the
intersection is not (0, 0), it is a point of T . Otherwise, the line belongs to a
vertical plane P = F ×D, with F a line of G going through 0.

Now such a plane P intersects T along the vertical line L1 = {0} × D
without (0, 0), the horizontal line F × {0} without (0, 0) and along at least
another horizontal line. Hence every line in it intersects T .

Notice that in Zd
2 any set with 2 points is a line. Then the minimal

cardinality of a set intersecting all the affine lines in Zd
2 is 2d − 1.

3 The problem in Zd
3 for d = 2, 3, 4

Theorem 5. In Z2
3 a set of 4 points is line-free if and only if it is a parallel-

ogram. Moreover the maximum number of line-free points in Z2
3 is 4.

Proof. Let {a, b, c} be a line-free set of 3 points in Z2
3. There is, up to affine

isomorphism, only one way of placing them in Z2
3. That is to say, if {a′, b′, c′} is

a line-free set on 3 points, there exists a bijective affine application mapping
a to a′, b to b′ and c to c′. Therefore the other 6 points of the 9 points
constituting Z2

3 can be split in two categories:

• the middle points m(a, b), m(b, c) and m(c, a), which are not suitable
because they form lines with a, b, c.

• each one of the other 3 points added to {a, b, c} builds a parallelogram,
that is of course line-free.

Hence, each line-free set on 4 points is a parallelogram.
It is now easy to see that each one of the 3 remaining points is either the

middle point of one of the 4 sides of the parallelogram or the common middle
point of the two diagonals. This observation proves that there is no line-free
set on 5 points in Z2

3.
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Theorem 6. The maximum line-free set E in Z3
3 is 9. Moreover, a set of

9 points (x, y, z)is line-free if and only if they are distributed, up to affine
isomorphism, as follows: 222, 212, 112, 122, 021, 201, 101, 011, 000. These
points are distributed on three parallel planes Πz=2, Πz=0, Πz=1, such that E∩
Πz=2 = A, E ∩Πz=0 = B, E ∩Πz=1 = C.

Proof. It is easy to check that this set is line-free.
Now let us prove its unicity and maximality (up to the action of the affine

group).
Let E ⊆ Z3

3 with |E| ≥ 2 and E line-free. Let L be a line with 2 points of
E. If each one of the 4 planes through L has at most 3 points of E, then E
has at most 4(3− 2) + 2 = 6 points.

Now assume |E| ≥ 8 and E line-free. There exists at least a line L having
two points of E and for each such line there exist at least two planes P such
that E ∩ P has 4 points, and thus is a parallelogram.

Choosing now L as a side of a parallelogram, two cases appear:

• L is a side of the parallelograms P1 ∩ E and P2 ∩ E.

By an appropriate choice of origin and basis in Z3
3, we can assume that

the 6 points of E in P1 and P2 have coordinates 021, 011 (points of L),
222, 212, 122, 112. The points that are not yet forbidden are 020, 000,
010, 221, 201, 211, 121, 101, 111. Surely 0 or 1 points among 010, 211,
111 are in E, since at most 4 points of E have 1 as second coordinate.

- If one of these 3 points is in E, we may assume by symmetry that
it is 010. Then 201, 101 are also forbidden.
If 000 is in E, then 020, 221, 121 are also forbidden. We have then
8 points only in E.
If 000 is not in E, then E does not meet the plane y = 0, it has at
most 8 points.

- Now, we assume that none of these 3 points is in E; we can assume
by symmetry that also none of 020, 221, 121 is in E, and then E
may contain the 3 points 000, 201, 101. The set obtained in this
way has thus 9 points.

• L is a side of the parallelogram P1 ∩E and a diagonal of P2 ∩E. Then
we may assume that the points are 021, 011 (points of L), 122, 112, 101,
201.

Then the following points are not yet forbidden 222, 202, 212, 100, 022,
002, 012, 000.
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Since we do not want to have again a line to be a side of two parallelo-
grams, we are left with only 202, 002, 000, 100. Moreover, the vertices
in the pairs (000, 202), (000, 100), (100, 002), (202, 002) cannot be used
together without creating two parallelograms with a common side. The
pair (000, 202) is aligned with 101 and the pair (100, 002) is aligned with
201.

So this leads to no new line-free configuration with at least 8 points.
We can now conclude that only a configuration, up to the action of the
affine group, is line-free and has 9 points.

In the following remark, we conclude that the affine bijections preserving
that configuration, denoted by E, give 1 orbit on it. Therefore each one of
these 9 line-free points in E play the same role. Moreover we show that G has
at least 144 elements. Hence there exist 144/9 affine bijections preserving E
and fixing any chosen element of E.

Remark 1. In Theorem 6, the 6 points which are a bijection with 6 points of
the given 9 line-free points, are not whatever. They constitute the two paral-
lelograms P1 ∩E and P2 ∩E having L as a common side. The origin and the
base taken in the geometric reasoning in this theorem are the following: the
origin is a point of the side L and the base is constituted by the three sides of
the two parallelograms passing through the selected origin, being one of them
the common side L.

Now we show that the group G of affine bijections of Z3
3 preserving E has

at least 144 elements. This group G acts on E and on the complete space.
Consider the following two affine applications on E:

• x, y, z =⇒ 2x + 2y, x + 2y, 2z of order 8, preserves E, leaving point 000
fixed and cyclically permuting the other 8 points.

• the one that sends points 000 on 222, 011 on 011, 201 on 000, 021 on
101, preserves also E.

The first application forms two orbits, one of which is the point 000 and
the other contains the other 8 elements in E. The second applications send
000 on the other orbit.
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According to the above reasoning, we observe that the complete group of
affine bijections preserving E defined only one orbit on E. Therefore by The-
orem 1, since E has nine elements, the number of elements in the group G
is nine times that of H = G000, subgroup of G preserving 000. This group
H forms only one orbit on the elements of E \ 000. Hence by Theorem 1, its
number of elements is 8 times that of K = H011, subgroup of G preserving E
and fixing 000 and 011 (011 was chosen arbitrarily in E \ 000).

This group K, being formed of affine bijections, will send the planes pass-
ing through the line defined by 000 and 011. Since it preserves E, it will send
the intersections of the superposed planes with E. Now, these intersections
are 000 011 101 112, 000 011 201 212 , 000 011 021 , 000 011 122 222.

It is observed that the third plane will not change, since it has only 3 points
of E and it is the only one. Moreover, point 021 is fixed by K. The fourth
plane will not change, since {000, 101} is a diagonal of the parallelogram on
this fourth plane, and a side of the parallelogram for the two first plans.

In consequence, an element k of group K can exchange points 122 and 222
or can leave them fixed. In the second case, it fixes (at least) 4 non coplanar
points, hence it is the identity (because k is affine). If k exchange these two
points, we can observe that it is the affine symmetry with respect to the plane
defined by the 3 points 000 011 021 that changes 122 and 222, because there
is only one of such affine symmetry, and k coincides with this symmetry on
(at least) 4 non coplanar points.

Hence, there are only 2 elements in K: the identity and one symmetry,
so that H has at least 8 × 2 = 16 elements and G has at least 9 × 16 = 144
elements.

Remark 2. From Theorem 6 and more precisely the fact that G has only one
orbit, we can conclude that there exist three line-free figures of 8 points, up
to affine isomorphism: the one that can be extended to a line-free figure on 9
points A,B,C and the following two non isomorphic figures, with 8 line-free
points and that cannot be extended to 9 line-free points:

- the usual cube (up to affine isomorphism) A ∅ A.

- the cube with a shifted edge (up to affine isomorphism) A ∅A′ where

A′ =
◦ · ◦
· · ◦
◦ · ·

,
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Theorem 7. The maximum number of line-free points (x, y, z, w) in Z4
3 is

20 and a way to build a line-free set E with 20 points in Z4
3 assimilated to

Z2
3 × Z2

3 is the following:
A B C
B ∅ B
C B A

where the 9 symbols show the intersections of E with the 9 planes Z2
3× (z, w).

For example , E ∩ Z2
3 × (2, 2) = A, E ∩ Z2

3 × (0, 0) = ∅.

Proof. Let E ⊆ Z4
3 with |E| > 2 line-free. Let L be a line with 2 points of

E. If every plane through L has at most 3 points of E, then the 13 planes
through L show that E has at most 15 points.

Thus we assume |E| ≥ 16. There exists a plane P containing at least 4
points of E. By Theorem 6 the four 3-dimensional affine subspaces containing
P have at most 9 points, then E has at most 4 + (9− 4)4 = 24 points. Hence
|E| ≤ 24.

At most 4 of the 9 parallel planes to P have 4 points of E. Assuming, E
contains 5 parallel planes, say Πz=ai,w=bi , 1 ≤ i ≤ 5. By Theorem 5 in the
subset {(a1, b1), (a2, b2), (a3, b3), (a4, b4), (a5, b5)} of Z2

3 there is a line L, for
example L = {(a1, b1), (a2, b2), (a3, b3)}. It is easy to show that the 3 planes
Πz=ai,w=bi , 1 ≤ i ≤ 3 constitute a 3-dimensional affine subspace with 12
points of E. Therefore by Theorem 6 there exists a line in E. Contradiction.

Now we consider the following four cases according to the number of par-
allel planes to P containing 4 points of E.

4 planes. By Theorems 5 and 6, they must constitute a parallelogram where the
vertices are of type A or type C. By a simple inspection according to
the way of combining A and C, we can see that the maximal cardinality

is 20, obtained in the following way:
A B C
B ∅ B
C B A

The expressions X,Y, Z, in the following two cases, represent sets with
at most 2 points of Z2

3. Moreover, owing to the affine bijection that
sends A to C, we can reduce the types of feasible planes with 2 points of

E to H and V and their translates where H =
· · ·
◦ · ◦
· · ·

and V =
· ◦ ·
· · ·
· ◦ ·

To avoid lines in E, three aligned planes must satisfy:
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- if P ∩ E is C the intersections of the two other ones with E must
be a translate of V and a translate of H.

- if P ∩ E is A the intersections of the two other ones with E must
be two translates of V or two translates of H.

3 planes. In this case no distribution is possible with 20 points. Indeed, by the
following inspection we observe that it is not possible to have a line-free

set on 20 points in Z4
3 with the distribution:

A B C
B ∅ X1

C Y2 Z2

. Notice that

the presence of two C forces ∅ in the matrix central position. If Y2 is
a translate of V then the presence of C forces that Z2 is a translate of
H and X1 is a translate of V . But a forbidden CV B appears then as
BX1C. If Y2 is a translate of H then the presence of C forces that Z2

is a translate of V and X1 is a translate of H. But a forbidden CHB
appears then as BX1C.

2 planes. Let us consider the possibility of having a line-free set on 21 line-free

points in Z4
3 with the following distribution

A B C
X1 Y1 Z1

X2 Y2 Z2

. If X1 is a

translate of H then the presence of A forces that X2 is a translate of
H. Then the presence of C and Xi’s forces Y1 and Y2 to be translates
of V , then the presence of A and the Yi’s implies that the Zi’s have to
be translates of V . But a forbidden CV V appears then as CZ1Z2.

Starting with X1 a translate of V , the same argument leads also to forbid
CHH to be the third column. Therefore, this case excludes line-free sets
with more than 20 points.

1 plane. Since there exists only one plane P with 4 points among the planes with
the same direction, then by Theorem 6 the four 3-dimensional affine
subspaces containing P have at most 8 points. Therefore E has at most
20 points.

Conjecture 1. The only way, from an affine point of view, to build a line-free

set on 20 points in Z4
3 is:

A B C
B ∅ B
C B A
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Problem 1. Try to use a similar idea of Theorem 7 to distribute geometrically
45 line-free points in Z5

3. In general, the characterization of the geometric
structure from an affine point of view, of the maximum line-free set in Zd

3,
d ≥ 5, is an open problem.
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