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J. Arteaga-Arispe (jhonnathan_arteaga@ciens.ucv.ve)
Departamento de Matemáticas, Universidad Central de Venezuela

Los Chaguaramos, Caracas 1020
J.M. Guevara-Jordan (jguevara@euler.ciens.ucv.ve)
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Abstract

A new discretization scheme for partial differential equations, based
on the finite differences method, and its application to the two dimen-
sional static diffusion equation is presented. This scheme produces bet-
ter approximations than a standard use of finite differences. It satisfies
properties of continuous differential operators and discrete versions of
integral identities, which guarantee its conservative character. In addi-
tion, a global quadratic convergence rate is obtained naturally from the
gradient second order one-sided approximation at the boundary nodes
on a non-uniform staggered grid (of distributed points). This approach
avoids the commonly used ghost points or extended grid concepts.
Key words and phrases: conservative discretizations; finite differ-
ence; divergence; gradient; static diffusion equation; Robin boundary
conditions; boundary layer.

Resumen

Se presenta un nuevo esquema de discretización para ecuaciones en
derivadas parciales, basado en el método de diferencias finitas, y su apli-
cación a la ecuación estática de difusión en dos dimensiones. El nuevo
método produce mejores aproximaciones que los esquemas tradicionales
de diferencias finitas estándar. Este satisface propiedades de operado-
res diferenciales continuos y las versiones discretas de las identidades
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integrales, garantizando aśı su carácter conservativo. Adicionalmente,
una tasa cuadrática global de convergencia es obtenida naturalmente
de la aproximación unilateral de segundo orden para el gradiente en los
nodos de la frontera sobre una malla no uniforme escalonada (de pun-
tos distribuidos). Esta metodoloǵıa elimina el uso de nodos fantasmas
y mallas extendidas.

Palabras y frases clave: discretizaciones conservativas; diferencias fi-
nitas; divergencia; gradiente; ecuación de difusión; condiciones de borde
tipo Robin; capa de frontera (capa ĺımite)

1 Introduction

The Ghost points and extended grids are normally used in discretizations
of partial differential equations and boundary conditions by standard finite
difference methods [1, 2, 3, 4]. They have the great advantage that their for-
mulation is straightforward, but some regularity at the boundary is implicitly
assumed. This assumption is not well justified and it produces weak numerical
schemes.

Recently, a new set of mimetic discretizations for gradient and divergence
operators based on one side higher order lateral approximations at boundaries
was developed in [5]. Applications of those discretizations for solving partial
differential equations have been reported in [6, 7, 8]. They provided strong
evidences that the second order mimetic schemes applied to partial differential
equations achieve global quadratic convergence rates. In [9] a rigorous proof
of this fact has been given for the one dimensional static diffusion equation.
Moreover, it has been found that every mimetic scheme, based on the ap-
proximation presented in [5], allows an associated conservative scheme with
a simpler formulation, an easier computer implementation and approxima-
tions as accurate as those produced by fully mimetic schemes. A proof of its
quadratic convergence rate was presented for one dimensional static diffusion
equation in [9, 10].

In this article, a new conservative scheme, and its general formulation in
terms of discretized differentials operators and their corresponding representa-
tions in matrix form, is presented and analyzed in a two dimensional context.
In addition, it is applied to the 2D static diffusion equation. The new method
proposed is the conservative scheme associated to the mimetic method, in
the sense stated in previous paragraph, and it satisfies a discrete version of
the Gauss Theorem. On the other hand, its formulation avoids ghost points
and extended grid concepts, an improvement on traditional finite difference
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methods. Its analysis was originally obtained, as a partial result, in [11]. A
theoretical convergence analysis, a general matrix representation and a set of
numerical results of the new conservative scheme have not been reported in
a multidimensional context; they represents main contributions of this work,
and a natural continuation and a generalized formal extension of the one
dimensional studies [9, 10].

The rest of this article is divided into several sections, covering the contin-
uous model, a description of the new second order conservative scheme, proofs
of its quadratic convergence rate and conservative properties, a numerical test
and conclusions.

2 Continuous Model

In this section the multidimensional static diffusion equation will be presented.
Since this is one of the most important and widely used equation in mathe-
matical physics, the effort and time devoted in finding ways to obtain high
quality numerical solution of it on different contexts are well justified. In
terms of invariant operators, such as the divergence (∇·) and the gradient
(∇), the static linear non-homogeneous diffusion equation is written in the
form

∇ · (K(~x)∇f(~x)) = F (~x), (1)
where K(~x) is a symmetric tensor, f(~x) is the target property we are looking
for and F (~x) represents the source term. In this context with K = I the
above equation is called Poisson’s equation.

In order to have a properly posed boundary value problem, a nontriv-
ial mixed (Robin type) boundary condition will be imposed. In its general
formulation this condition may be written in the form

αf(~x) + β(K(~x)∇f(~x)·~n) = g(~x), (2)

where the coefficients α and β are not zero. Discretization of boundary value
problem (1)-(2) will be discussed and detailed in the next section. It should
be noted that conditions provided on the static diffusion equation and its
boundary conditions are sufficient for existence and uniqueness of a solution
f(~x) [12].

3 Conservative Discretization

Without loss of generality, the same number of nodes in x and y directions
have been taken and represented in figure 1, a discretization of the region
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Figure 1: Staggered 2D(non-uniform point distributed) grid.

Ω = [x0, xn+1] × [y0, yn+1], where x0 = y0 = 0 and xn+1 = yn+1 = 1. This
grid has (n + 1)× (n + 1) blocks of size h×h, each one of which has a central
node, marked with a circle, denoted by (xi+ 1

2
, yj+ 1

2
) for i, j = 0, .., n. Notice

that each block with a side at a boundary contains an additional node and the
corner blocks contain, in consequence, two of them. This non-uniform point
distributed grid [13] is called a staggered uniform grid in mimetic articles.
The spacing h between edges xi and/or yj is obtained from h = (xn+1 −
x0)/(n + 1) = (yn+1 − y0)/(n + 1), and it follows that xi = x0 + i h and
yj = y0 + j h, where i, j = 0, .., n + 1. The following notation will be used
f(i,j) = f(xi, yj). In this grid, the scalar function f(~x) could be considered
as a vector having (n+1)2 +4(n+1) components corresponding to evaluation
of the function f at the center of each cell and at the additional nodes on the
boundaries, all denoted by black points in figure 1. For the sake of choosing
a vector structure, nodes will be ordered from left to right and from bottom
to top:

~f =
(
f(1/2,0), .., f(n+1/2,0), f(0,1/2), .., f(n+1/2,n+1)

)t
. (3)
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According to the notation of figure 1, the one-side difference approximation
for the gradient at the boundary points has the form

(Gf · ~n)(i1,j1)
=

8
3h

f(i1,j1) −
3
h

f(i2,j2) +
1
3h

f(i3,j3) = g(i1,j1) (4)

where, for nodes at the square’s bottom and top sides, x ∈ (0, 1) and y = 0
or y = 1, i1 = i2 = i3 = i + 1/2, i = 0..n, and j1 = 0, j2 = 1/2, j3 = 3/2 if
y = 0 or j1 = n + 1, j2 = n + 1/2, j3 = n− 1/2 if y = 1. On the other hand,
for nodes at the square’s left and right sides y ∈ (0, 1) and x = 0 or x = 1
j1 = j2 = j3 = j + 1/2, j = 0..n and i1 = 0, i2 = 1/2, i3 = 3/2 if x = 0 or
i1 = n + 1, i2 = n + 1/2, i3 = n− 1/2 if x = 1.

This approximation is the same as the one obtained for a 1D gradient
mimetic approximation at boundaries [6, 7, 8] and it has the advantage that
it can be obtained by a straightforward application of Taylor expansions [9]
or by the systematic approach developed in [5]. At inner points (cells or
edges), crosses in figure 1, gradient and divergence approximations coincide
with standard central difference schemes.

(Gf)(i, j) =

(
f(i+ 1

2 , j) − f(i− 1
2 , j)

h
,

f(i, j+ 1
2 ) − f(i, j− 1

2 )
h

)
i = 1...n
j = 1...n

(5)

(
Dφ

ψ

)
(i+ 1

2 , j+ 1
2 )

=
φ(i+1, j) − φ(i, j)

h
+

ψ(i, j+1) − ψ(i, j)

h

i = 0...n
j = 0...n

(6)

It should be noted that the discretized divergence operator (6) is defined only
at inner nodes or cells centers, while the gradient is defined at all nodal points.

As in [5], the construction of mimetic gradient approximation G follows
from mimetic discretized divergence D as a consequence of imposing on both
operators that they must satisfy a discrete version of the Gauss theorem,

∫

Ω

∇ · (K∇f) dA =
∫

∂Ω

(K∇f) · ~n dS. (7)

Discretized operators (4), (5) and (6) may be written in matrix form as it will
be shown. It has a great advantage which is that a general partial differen-
tial equation can be written as a composition of discretized operators. For
example, in terms of the discretized operators, static diffusion equation may
be written in the form

D (KGf(~x)) = F (~x) (8)

where D and G represent the discretized version of divergence and gradient
operators respectively. That is, rather than discretizing a particular differen-
tial equation, the method gives attention to discretizing operators.
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In matrix form, operator G matrix, denoted also by G, has dimension
m̃× ñ where m̃ = 2ñ and ñ = (n + 1)2 + 4(n + 1) = (n + 3)2 − 4. Its entries
are ±8

3h , ∓3
h and ±1

3h in rows corresponding to nodes at the boundary, while at
interior nodes they are 1

h and −1
h . On the other hand, the matrix associated to

operator D, denoted also by D, has dimension (n+1)2×m̃ and its coefficients
are the same as the one obtained from the finite difference method. F (~x) is
the (n + 1)2 vector of evaluations of F at the interior nodes.

4 Static Diffusion Equation

The continuous model described previously by equations (1) and (2) can be
approximated in matrix form, according to results presented in last section,
by the linear system of equation;

(A + BG + DKG) ~f = ~b. (9)

In this expression, matrix A and B with dimensions ñ× ñ and ñ× m̃, respec-
tively, are matrix representations of boundary conditions which have non-zero
values only in rows corresponding to boundary nodes. Those mentioned val-
ues are associated to α and β coefficients described in equation (2). K is a
diagonal matrix whose values are positive and evaluated conservatively [7] for
consistency at grid block edges. G and D are matrix representations of the
operators gradient and divergence described in previous section with the ad-
dition in D of 4(n + 1) rows of zeroes, corresponding to the boundary nodes.
Finally, components of ~b are equal to either F (~x) at interior nodes or g(~x) at
boundary nodes.

Any general partial differential equation given in terms of the divergence
and gradient operators and similar ones can be written easily in terms of the
matrices described before. Notice that the equation (9) represents the most
general discretization for a static diffusion equation using the conservative
method proposed in this paper. Analysis of the new scheme, as it will be shown
in the next section, only needs K = I in equation(9) which corresponds to
Poisson’s equation discretization. Expressions of the method will be listed for
this case on the staggered grid described in figure 1. Under these conditions,
discretization at inner grid nodes is represented by the following expression:

(DG)f
(i+ 1

2 ,j+ 1
2 )

=
f(i+ 3

2 ,j+ 1
2 )+f(i− 1

2 ,j+ 1
2 )−4f(i+ 1

2 ,j+ 1
2 )+f(i+ 1

2 ,j+ 3
2 )+f(i+ 1

2 ,j− 1
2 )

h2

(10)
This equation is valid for indexes i = 1, .., n − 1, j = 1, .., n − 1 and the
corresponding nodes (xi+1/2, yj+1/2) which are referred, in the rest of the
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article, asinterior square’s regular discretization nodes (i.n.)(figure 2).

(DG)f(i+ 1
2 ,j+ 1

2 )=
8
3f(i1,j1) + 4

3f(i3,j3) − 6f (i2,j2)+f(i4,j4) + f(i5,j5)

h2
(11)

Equation (11) is only valid for inner nodes next to boundary conditions, re-
ferred as interior square’s sides discretization nodes (ss) (figure 2).

(DG)f(i+ 1
2 ,j+ 1

2 )=
8
3f(i1,j1) + 4

3f(i3,j3) − 8f (i2,j2)+
8
3f(i4,j4) + 4

3f(i5,j5)

h2
(12)

This last equation is valid at inner corners nodes (interior square’s corners
discretization nodes (sc) figure(2)) (1/2, 1/2), (n+1/2, 1/2), (n+1/2, n+1/2),
(1/2, n + 1/2) or (i = 0, j = 0), (i = n, j = 0), (i = n, j = n), (i = 0, j = n)
respectively, and the relation between the generalized indexes and the grid is
described by the following relation

j1 = j2 = j3 = j + 1/2, i1 = i2 = i3 = i + 1/2,

i = 0 =⇒ i1 = 0, i3 = 3/2,
i = n =⇒ i1 = n + 1, i3 = n− 1/2,
j = 0 =⇒ j4 = 0, j5 = 3/2,
j = n =⇒ j4 = n + 1, j5 = n− 1/2.

(13)

As in equation (12), generalized indexes and grid indexes for equation (11)
must be related. For nodes corresponding to grid indexes j = 0 and j = n,
i = 2..n− 1, generalized indexes are i1 = i2 = i3 = i + 1/2, i4 = i + 3/2, i5 =
i − 1/2, j2 = j4 = j5 = j + 1/2 and j = 0 =⇒ j1 = 0 and j3 = 3/2, while
j = n =⇒ j1 = n + 1 and j3 = n− 1/2. On the left and right internal side
i = 0 and i = n, j = 1..n−1 generalized j’s indexes are j1 = j2 = j3 = j+1/2,
j4 = j + 3/2, j5 = j − 1/2, i2 = i4 = i5 = i + 1/2 and i = 0 =⇒ i1 = 0 and
i3 = 3/2, while i = n =⇒ i1 = n + 1 and i3 = n− 1/2.

Robin boundary conditions will be considered for ~x ∈ ∂ Ω, unit square
border in figure 1. In this case α and β are piecewise functions which take
the followings values;

α = αi0 β = βi0 y = 0, x ∈ (0, 1)
α = α1j β = β1j x = 1, y ∈ (0, 1)
α = αi1 β = βi1 y = 1, x ∈ (0, 1)
α = α0j β = β0j x = 0, y ∈ (0, 1)

(14)

In this last expression; α0j , β0j , α1j , β1j , αi0, βi0, αi1, βi1, are all constants.
Coefficients associated to β will not be null in our work. Robin conditions
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are discretized using the one-sided approximations (5). Its general expression
takes the following form;

(
α +

8β

3h

)
f(i1,j1) −

3β

h
f(i2,j2) +

β

3h
f(i3,j3) = g(i1,j1) (15)

where generalized indexes and their relation with the grid nodes is the same
as in equation (4).

5 Convergence Analysis

In this section, the convergence analysis of the new method for a two di-
mensional static diffusion equation will be presented. As a first step and for
simplicity, K in (1) will be considered as a diagonal and isotropic tensor.
Therefore, K(~x) = k(~x)I where I is a two dimensional identity matrix and
k(~x) is a continuously differentiable function of position ~x lower bounded by
a constant positive.

Convergence proof is achieved by making use of a discrete maximum prin-
ciple for elliptic equations [3]. According to the analysis presented in reference
[3, 9, 10] convergence of the new scheme for equation (1) is equivalent to ana-
lyze its convergence for Poisson’s equation, which was discretized in previous
section.

An auxiliary mesh function is defined by the relation;

φ(x, y) = (x− p(x))2 + (x− p(y))2 (16)

where p(x) and p(y) are constants to be determined later. This approach
follows the same arguments given in [3], essentially by fulfilling the elliptic
convergence theorem’s hypothesis described in the referred textbook.

As a first step, discretized boundary conditions (15) are substituted in
equations (12) and (11), obtaining the following set of equation for Poisson’s
conservative discretization;

4(2β+αh)f(i3,j3)−6(4β+3αh)f(i2,j2)+8hg(i,j)+(3αh+8β)(f(i4,j4)+f(i5,j5))
h2(3αh+8β)

(17)

4(2β+αh)(f(i3,j3)+f(i4,j4))−8(2β+3αh)f(i2,j2)+16hg(i,j)

h2(3αh+8β)
(18)

where the relation between generalized indexes and grid indexes for each node

have been described in previous sections.
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Figure 2: Discretization Nodes

These equations may be written in the following form;

8
h(3αh+8β)

[(
α + 8β

3h

)
f(i1,j1) − 3β

h f(i2,j2) + β
3hf(i3,j3) − g(i+ 1

2 ,j+ 1
2 )

]
+

[
8/3 f(i1,j1)+4/3 f(i3,j3)−6f(i2,j2)+f(i4,j4) +f(i5,j5)

h2 − F(i+ 1
2 ,j+ 1

2 )

]
= 0

(19)

which is valid for inner square’s inner sides nodes (ss), and the next equation
is valid for inner square’s inner corner nodes (sc) (figure 2).

8
h(3αh+8β)

[(
α + 8β

3h

)
f(i1,j1)− 3β

h f(i2,j2)+
β
3hf(i3,j3)−g(i+ 1

2 ,j+ 1
2 )

]
+

8
h(3αh+8β)

[(
α + 8β

3h

)
f(i4,j4)− 3β

h f(i2,j2)+
β
3hf(i5,j5)−g(i+ 1

2 ,j+ 1
2 )

]
+

8/3 f(i1,j1)+4/3 f(i3,j3)−8f(i2,j2)+8/3f(i4,j4)+4/3f(i5,j5)

h2 = 0

(20)

Both equations contains the differential equations and boundary conditions
approximations in a single one. A Taylor’s expansion calculation shows that
truncations error for equations (19) and (20), which will be denoted by Tss

(square’s inner sides) and Tsc (square’s inner corners), are only first order.

|Tsc| ≤ O(h) and |Tss| ≤ O(h) (21)

Truncation error for discretized Poisson’s equation at inner points (10) will
be denoted by T(i,j), and a standard calculation shows that it is second order.

|T(i,j)| ≤ O(h2) (22)
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Defining the grid function Lh as follows;

Lh(φ(xi, yj)) =





φ(xi+3/2,yj+1/2)−4φ(xi2,yj2)+φ(xi−1/2,yj+1/2)
h2 +

φ(xi+1/2,yj+3/2)+φ(xi+1/2,yj−1/2)
h2

4(2β+αh)φ(xi3,yj3)−6(4β+3αh)φ(xi2,yj2)
h2(3αh+8β) +

φ(xi4,yj4)+φ(xi5,yj5)
h2

4(2β+αh)(φ(xi3,yj3)+φ(xi4,yj4))−8(2β+3αh)φ(xi2,yj2)
h2(3αh+8β)

(23)

and substituying equation (16) into equation (23) yields;

Lh(φ(xi, yj)) =





4 i.n.

4 +
8(1−p(z))(p(z)−2β−1)

h(3αh+8β) s.s.

4 +
8[(1−p(x))(p(x)−2β−1)+(1−p(y))(p(y)−2β−1)]

h(3αh+8β) s.c.

(24)

It is possible to pick an appropriated p(x) and p(y) in equation (16) and
constants Kss,Ksc such that, for each node at discretization, the following
inequality holds;

Lh(φ(xi, yj)) ≥




4 at
(
xi+1/2, yj+1/2

)
i,j=1,..,n−1

Kss/h at inner sides (ss)

Ksc/h at inner corners (sc)

(25)

Combining inequality (25) and the modulus maximum principle for grid func-
tions results in the following estimate;

|f − fnum|≤ (max φ(x, y)) ·max

(
|Tss|

Kss/h
,
|Tsc|

Ksc/h
,

∣∣T(i,j)

∣∣
2

)
≤ O

(
h2

)
(26)

6 Conservatives Properties

A numerical scheme is conservative if it satisfies a discrete version of the Gauss
theorem; ∫

Ω

∆ f(x, y)dA =
∫

∂Ω

∇f(x, y) · n ds (27)
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The following summation results from approximating left integral by a quadra-
ture rule on the staggered grid;

∫

Ω

∆ f(x, y) dA =
n∑

i=1

n∑

j=1

(
∂2f

∂x2
(xi, yj) +

∂2f

∂y2
(xi, yj)

)
h2 (28)

Approximating the Laplace’s equation by (10), (11) and (12)the following
relationship is obtained;

∫
Ω

∆f(x, y) dA =

n−1∑
i=2

n−1∑
j=2

[
f(i+ 3

2 ,j+ 1
2 )+f(i− 1

2 ,j+ 1
2 )−4f(i+ 1

2 ,j+ 1
2 )+f(i+ 1

2 ,j+ 3
2 )+f(i+ 1

2 ,j− 1
2 )

h2

]
h2

+
n−1∑
i=2

[ 8
3 f(i+ 1

2 ,0)+
4
3 f(i+ 1

2 , 3
2 )−6f(i+ 1

2 , 1
2 )+f(i+ 3

2 , 1
2 )+f(i− 1

2 , 1
2 )

h2

]
h2

+
n−1∑
j=2




8
3 f(n+1,j+ 1

2 )+
4
3 f(n− 1

2 ,j+ 1
2 )

h2 +
−6f(n+ 1

2 ,j+ 1
2 )+f(n+ 1

2 ,j+ 3
2 )+f(n+ 1

2 ,j− 1
2 )

h2


 h2

+
n−1∑
i=2




8
3 f(i+ 1

2 ,n+1)+
4
3 f(i+ 1

2 ,n− 1
2 )

h2 +
−6f(i+ 1

2 ,n+ 1
2 )+f(i+ 3

2 ,n+ 1
2 )+f(i− 1

2 ,n+ 1
2 )

h2


 h2

+
n−1∑
j=2

[ 8
3 f(0,j+ 1

2 )+
4
3 f( 3

2 ,j+ 1
2 )−6f(n+ 1

2 ,j+ 1
2 )+f(n+ 1

2 ,j+ 3
2 )+f(n+ 1

2 ,j− 1
2 )

h2

]
h2

+
4∑

k=1

[
8
3 f(i1,j1)+

4
3 f(i3,j3)−8f(i2,j2)+

8
3 f(i4,j4)+

4
3 f(i5,j5)

h2

]
k

h2

(29)

Most terms in the above summation are telescopic and we obtain this simpli-
fied expression;

−
n∑

i=0

1
h

(
8
3f(i+1/2,0) − 3f(i+1/2,1/2) + 1

3f(i+1/2,3/2)

)
h

+
n∑

j=0

1
h

(
8
3f(n+1,j+1/2) − 3f(n+1/2,j+1/2) + 1

3f(n−1/2,j+1/2)

)
h

+
n∑

i=0

1
h

(
8
3f(i+1/2,n+1) − 3f(i+1/2,n+1/2) + 1

3f(i+1/2,n−1/2)

)
h

−
n∑

j=0

1
h

(
8
3f(0,j+1/2) − 3f(1/2,i+1/2) + 1

3f(3/2,i+1/2)

)
h

(30)

which represents the discrete version of the equation;

−
∫

Γ1

∂f

∂y
ds +

∫

Γ2

∂f

∂x
ds +

∫

Γ3

∂f

∂y
ds−

∫

Γ4

∂f

∂x
ds =

∫

∂Ω

∇f(x, y) · n ds (31)
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Figure 3: Square’s Domain and Boundary

where ∂Ω = Γ1

⋃
Γ2

⋃
Γ3

⋃
Γ4 as in figure 3.

7 Numerical Result

The new conservative scheme and a standard finite differences scheme were
implemented in a computer program for solving the static diffusion equation.
A comparative study of both schemes will be presented in this section.

The analysis is based on numerical solutions of the following equation

∆f(x, y) = n(n− 1)((1− x)n−2 − xn−2 + (1− y)n−2 − yn−2) (32)

for integer values of n and with analytic solution given by f(x, y) = (1 −
x)n +(1− y)n−xn− yn. Boundary conditions for (32) on the unitary square,
Ω = [0, 1]× [0, 1], are Neumann conditions on lower and left sides, along with
Robin conditions f(−→x )+∂nf(−→x ) on the other sides. Nonhomogeneous terms
in those conditions were obtained from explicit evaluation of analytic solution
f . The analytic solution, in this test problem, represents a boundary layer for
all sides of the unitary square. The higher is n, the closer is the boundary layer
to the border. Away from square borders solution is a flat linear function and
its approximation is easily obtained by any numerical scheme. High values of
n represent difficult problems for numerical schemes because boundary layers
are very close to the borders and extremely refined grids are needed in their
approximations. In this analysis, values of n were restricted to 5, 10, 15 and
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Figure 4: Extended grid with ghost points or nodes for standard finite differ-
ence scheme.

25. This choice was determined by requesting an accuracy of at least 10−1 for
each n value.

Implementation of a standard finite difference scheme for solving static
diffusion in two dimensions needs an extended grid with ghost points. Such
grid should contain staggered grid nodes, in figure 1, as a subset of its nodes.
Figure 4 represents an example of an extended 3×3 grid in the unitary square
Ω. Ghost points are represented by white circles. Real nodes are black circles
and they agree with staggered grid nodes at all places except at the corners.
Dotted lines are imaginary edges for extended grid blocks. In general, a
n × n two dimensional rectangular extended grid will have n2 + 4n + 4 real
nodes and 4n + 4 ghost nodes, while the staggered grid will need n2 + 4n real
nodes without ghost points in its formulation. This observation gives a real
advantage to the new conservative scheme against standard finite differences
approaches.

Approximated solutions errors computed by the new conservative scheme
and standard finite differences are presented in figure 5. It displays eight
straight lines. Solid lines are errors produced by standard finite differences
and dashed lines represent errors obtained by the new conservative scheme
proposed in this article. Each consecutive pair of solid and dashed lines is
associated with a specific value of n, which is displayed in the upper right
side in the figure. In this graph lower lines represent smaller errors and more
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accurate solutions. In this set of test problems the lowest error were obtained
in the case n = 5 , while the highest errors were observed for n = 25 for both
schemes. In all cases errors computed by the new conservative schemes were
more accurate than those produced by standard finite differences schemes.
In particular, for n = 5 the new scheme gives approximated solutions which
are at least two order of magnitude better than finite difference solutions. In
cases of n = 10, 15, and 20 the difference between initial errors decreases as
n values are increased. However, slopes for finite differences errors decrease
with increasing values of n, while those for new scheme errors remain almost
invariant. This observation is important because the line slope represents
the numerical convergence rate. Table 1 gives numerical convergence rates
associated to errors presented in figure 5. It shows, in the worst case, that

n 5 10 15 20

Standard Finite Difference 1.8841 1.7286 1.6104 1.5322
New Conservative Scheme 1.9705 1.9736 1.9736 1.9370

Table 1: Convergence Rates

the numerical convergence rate for the new scheme has a three percent error
with its theoretical quadratic convergence rate. This observation ratifies con-
vergence analysis done before. On the other hand, standard finite difference
scheme shows a numerical convergence rate which differs twenty five percent
and six percent from the optimum convergence rate, in the worst and best
cases respectively. It is worth noting that new scheme error lines for n = 15
and 25 cross finite difference error lines for n = 10 and 15, respectively. This
gives clear evidence of the new scheme’s superior performance in solving dif-
ficult boundary layer problems. Overall these results indicate the advantage
of the new scheme for solving static diffusion equation in a multidimensional
context with boundary layer-like solutions.

8 Conclusions

A new conservative finite difference scheme for solving the static diffusion
equation has been presented. Its convergence analysis shows its quadratic
convergence rate, which is the best possible result for this type of schemes.
This is not an obvious property because of its first order truncation errors at
inner nodes next to the boundary. This analysis is a natural generalized formal
extension to several variables of one dimensional case reported in [9], although
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Figure 5: Comparative set of errors in maximum norm.

it differs in details. Analysis was restricted to two dimensional problems
which represents the simplest case for several variables. It is quite evident
that extensions to higher dimensions does not add anything new, but require
longer expressions.

Comparison of the new scheme and standard finite difference schemes
show the advantage of the first scheme for solving static diffusion equation
with boundary layer-like solutions. Specifically the new scheme does not use
extended grid and ghost points formulation while it keeps its conservative
property and second order converge rate. This implies that its computer im-
plementation is simpler and linear systems associated to it are smaller than
those of traditional finite differences approach.

In general, the new conservative scheme represents a new alternative method
for solving static diffusion equation.
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