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Abstract

A virus is a local configuration that, if present in a graph or a di-

graph, forbids these graphs or digraphs to have a specific property. The

aim of this article is to sketch the evolution of the virus theory from

its birth in 1991. Moreover some new results and open questions are

given. The properties with its known viruses, that will be discussed

in this work, are the following: hamiltonian, traceable, k-connected,

k-edge-connected, strongly connected and have a perfect matching.

Key words and phrases: virus, graph, digraph, graph property, di-

graph property.

Resumen

Un virus es una configuración local que estando presente en un gra-

fo o en un digrafo, impide que este tenga una propiedad espećıfica. El

objetivo del presente art́ıculo es presentar la evolución que ha tenido

la teoŕıa de virus desde su nacimiento en 1991. Además damos resul-

tados y problemas abiertos. Las propiedades con virus conocidos que
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discutiremos en este trabajo son: hamiltoniano, traceable, k-conectado,

k-lado-conectado, fuertemente conexo y contiene un matching perfecto.

Palabras y frases clave: virus, grafo, digrafo, propiedades de grafos,

propiedades de digrafos.

1 Introduction

The virus theory was born in 1991 from the continuing concern of the graph
theoretical group of Centro ISYS of the Universidad Central de Venezuela with
the automatic generation of “pseudo-random” graph with certain properties,
for use in interactive graphical systems called AMDI [9] and GREAT [8]. Of
course, it makes about equal sense to force or to forbid any given graph or
digraph property. When it comes to “almost sure” properties, i.e. properties
that a random graph possesses with probability tending to 1 as the number
of vertices tends to infinity, there is no problem in getting the graph with the
desired property. For the hard side of the problem in getting a graph without
the property, the notion of “virus” is introduced as a local configuration in the
graph, whose characterization is the main goal in virus theory, which forces
the graph not to possess the forbidden property. It is the right way to proceed,
in the sense that most graphs without the considered property, contain indeed
the corresponding local configuration. This implies that the imposition of the
configuration provides graphs which are nearly random within the set of all
graphs without the property.

Notice that the problem of identifying viruses is much more difficult when
the co-problem does not have a certification identifying it. For example, the
bipartite co-problem is the presence of odd length circuits.

Let P be a property defined on all graphs or digraphs and let N be the set
of nonnegative integers. In [2] a graph virus is a structure (H,T, f) composed
of a graph H and a function f defined on a subset T of its vertex set, with
values in N . The graph virus (H,T, f) is present in a graph G if it contains
a proper induced subgraph H1, isomorphic to H , such that, for all x ∈ T ,
dG(x)− dH1(x) = f(x), where dG(x) and dH1(x) denote the degree of vertex
x in the graphs G and H1, respectively (H1 and H are assimilated). For
digraphs a similar definitions was given in [2].

In order to clarify the applicability of the virus notion, consider first that
we wish to randomly generate a graph G of order n, that does not possess a
given property P . If we have a family of viruses characterizing the absence of
P , then we can randomly select a member (H,T, f) from the family of viruses
for P compatible with the order of G (thus |V (H)| + maxx∈V (G)f(x) ≤ n)
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then a random graph on n − |V (H)| vertices, and then add randomly edges
between V (H) and the remaining vertices subset, in a way compatible with
f , thus obtaining the desired graph.

On the other hand assume that we wish to decide if a given graph G

possesses property P. For certain important properties (as for instance, “G is
hamiltonian” or “G is traceable”) such decision problems can be very hard
to solve, the exact solution sometimes requiring a computational effort more
than polynomial on the order of the input graph. If a virus V for P is known,
and if the presence or absence of V can be inexpensively determined (in terms
of computational time), then an approximate solution to the problem can be
given simply by checking the presence/absence of V in G. If V is present
in G, then we know that G does not have P . On the contrary, if V is not
present in G, we can say that G has P with a relatively high probability. The
probability will depend on how close the presence of V comes to characterize
the absence of P , with respect to the uniform distribution on family of graphs
of a given order.

Another fact in favor of the importance of the virus theory, given in [11],
is the following: it is well known that the problem to decide when a digraph
is hamiltonian is NP-complete [13]. A “yes” answer to the hamiltonicity
problem for a given digraph can be verified by checking in polynomial time
that a sequence of vertices given by an oracle is a hamiltonian circuit. In case
of non-hamiltonian digraphs, as stated in [7] pages 28, 29, there is no known
way of verifying a “yes” answer to the complementary problem of deciding
if a digraph is non-hamiltonian. A solution to this problem is to provide
a hamiltonian virus, whose presence in the digraph can also be checked in
polynomial time. In case of the non-hamiltonian virus-free digraphs D, they
must hold the following particular structure given in [11]: for each vertex
x the remaining subdigraph D − x has a covering by vertex disjoint paths
P1, · · · , Pr such that each one of them makes a circuit with x.

In [2] the following “metaconjecture” is presented:

For many important properties there exist viruses of small order in “al-
most all” instances in which the property is not present.

The term “almost all” should be understood here in its usual probabilistic
sense meaning a proportion tending to 1 as the number of vertices tends to
infinity.

The study of this metaconjecture is useful because the presence (absence)
of a virus of order k inside a graph of order n can be detected by a procedure
with an execution time bounded by O(nk+1). If k is a small number (say, less
than or equal to 3) then, an almost surely correct answer to the question “does
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G have property P?” can be given with a procedure of low computational
cost. There are two examples in favor of this metaconjecture. It is proved for
non strongly connected graphs in [2] and graphs without perfect matching in
[3] that “almost all” of them contain a virus of smallest order of the class.

Some properties are characterized by viruses; more precisely, a property P

is characterized by a class of viruses V if the following assertions are equivalent:

(i) G does not have the property P

(ii) some virus V ∈ V is present in G

In general, the class of all viruses for property P gives only (ii) → (i). In
[2], it is proven that the property “G is strongly connected” are characterized
by its property viruses.

On the other hand, in [10] it is shown that the viruses for the property
“G is bipartite” do not characterize this property. Recall that a graph G is
bipartite if and only if does not contain cycles of order odd. In a similar way
in [10] it is shown that the viruses for the property “G has a perfect matching”
do not characterize this property; moreover, it gives a characteristic property
of the graphs without perfect matching and no viruses for the property “G
has a perfect matching”. However in [2] the virus for the property “G has a
perfect matching” are characterized.

In this paper, we show that the hamiltonian property is not character-
ized by its viruses, at least in the direct case. We give an example of a
non-hamiltonian digraph without viruses and we characterize such graphs
and digraphs. But we have found no non-hamiltonian graph without viruses.
Nevertheless in [11] we show that a balanced bipartite digraphs are hamilto-
nian if and only if they are hamiltonian virus-free. Moreover, we characterized
the viruses for “G is traceable”. We did not prove that the viruses for “G is
traceable” characterize the property. So it is an open problem. At the present,
we did not find non-traceable graphs or digraphs having no viruses. We give
some structure properties are given for such graphs or digraphs, sufficient to
show that no very small such graph can exist.

The situation is quite different for the properties “G is k-connected” and
“G is k-edge-connected” since these properties are characterized by their
viruses, and even by a reduced class of viruses, but the viruses themselves
are not characterized and it constitutes also an open problem.

1.1 Terminology

Our terminology is generally standard [1]. We give several definitions, intro-
duced in [2, 4], relevant to follow the discussion.
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Definition 1. A graph virus is a triple (H,T, f) where H is a graph, T a
subset of the vertex set of H, and f is a mapping from T to N.

A graph virus (H,T, f) is present in a graph G if it has a proper induced
subgraph H1 isomorphic to H (for convenience we identify H1 with H), such
that on each vertex x ∈ T the equality dG(x) = f(x) + dH(x) holds.

A graph virus V is a virus for a graph property P if every graph where V

is present lacks the property P .

Now we give the similar definitions for digraph viruses.

Definition 2. A digraph virus is a 5-tuple (H,T+, T−, f+, f−) where H is a
digraph, T+, T− are subsets of the vertex set of H, and f+, f− are mappings
from T+, T− respectively to N.

A digraph virus (H,T+, T−, f+, f−) is present in a digraph G if it has a
proper induced subdigraph H1 isomorphic to H (for convenience we identify
H1 with H), such that the equalities d+G(x) = f+(x) + d+H(x) on each vertex
x of T+ and d−G(x) = f−(x) + d−H(x) on each vertex x of T− hold.

A digraph virus V is a virus for a digraph property P if every digraph
where V is present lacks the property P .

Lemma 1. If a graph (or digraph) of order n has no virus of cardinality
h < n for some property P , then it has no virus of cardinality less than h for
P .

The virus theory and some of its applications, has been present in some
international congress, for example in [5, 6, 8, 12].

This paper besides of the introduction and conclusions, contains three
main sections dedicated to the traceable property, hamiltonian property, k-
connected property and k-edge-connected property.

2 Virus for “traceable” property

Theorem 1. Let (H,T, f) be a graph virus. It is a virus for the property “G
is traceable” if and only if every set of disjoint paths P1, P2, · · · , Pr covering
V (H), one at least of the two following conditions occurs:

1. There exist at least three paths Pj such that:

- if Pj consists of just one vertex {x1
j} then f(x1

j) ≤ 1.

- if Pj = (x1
j , · · · , x

q(j)
j ) then f(x1

j ) = 0 or f(x
q(j)
j ) = 0.
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2. There exists a path Pj = (x1
j , · · · , x

q(j)
j ) such that f(x1

j ) = 0 and

f(x
q(j)
j ) = 0.

Proof. Necessity: Assume (H,T, f) is given and suppose there exists r dis-
joint paths Pj , 1 ≤ j ≤ r covering V (H), ordered in such a way that:

i. for 1 < j < r

- if Pj = (x1
j ) then f(x1

j ) ≥ 2 or x1 6∈ T

- if q(j) > 1 and Pj = (x1
j , · · · , x

q(j)
j ) then f(x1

j ) ≥ 1 or x1
j 6∈ T and

f(x
q(j)
j ) ≥ 1 or x

q(j)
j 6∈ T .

ii. for j = 1

- if P1 = (x1
1) then f(x1

1) ≥ 1 or x1
1 6∈ T

- if q(1) > 1 and P1 = (x1
1, · · · , x

q(1)
1 ) then f(x

q(1)
1 ) ≥ 1 or xq(1) 6∈ T.

iii. for j = r

- if Pr = (x1
r) then f(x1

r) ≥ 1 or x1
r 6∈ T .

- if q(r) > 1 and Pr = (x1
r , · · · , x

q(r)
r ) then f(x1

r) ≥ 1 or x1
r 6∈ T.

We will build a traceable graph G containing a hamiltonian path P where the
paths Pj are subpaths of P and (H,T, f) is present.

If r > 2, we add r − 1 edges yizi, 1 ≤ i ≤ r − 1, and edges connecting yi

to x
q(i)
i and zi to x1

i+1 for 2 ≤ i ≤ r − 1.

If r = 1, we add one vertex connected by an edge to x1
1 or x

q(1)
1 .

Obviously, G has a hamiltonian path, but (H,T, f) may be not present
in G. Therefore, we replace the edges yizi by complete graphs Kn(i) with

n(i) ≥ 2 large enough to connect x
q(i)
i to f(x

q(i)
i ) vertices of Kn(i) and x1

i+1 to
f(x1

i+1) other vertices of Kn(i) if these values are defined. We may also have

to add complete graphs connected to x1
1 and x

q(r)
r .

Sufficiency: Let G be a traceable graph where (H,T, f) is present. Let
P be a hamiltonian path of G. Let P1, P2, · · · , Pr be the successive paths
induced by H on P . Clearly these paths constitute a covering of V (H). For
all 2 ≤ i ≤ r − 1 we have:

i. if Pi = (x1
i ) then dG(x

1
i ) ≥ dH(x1

i ) + 2 hence f(x1
i ) ≥ 2.
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ii. if Pi = (x1
i , · · · , x

q(i)
i ) then dG(x

1
i ) ≥ dH(x1

i ) + 1 and dG(x
q(i)
i ) ≥

dH(x
q(i)
i ) + 1. Hence f(x1

i ) 6= 0 and f(x
q(i)
i ) 6= 0.

For Pi with i = 1, r we have f(x1
i ) 6= 0 or f(x

q(i)
i ) 6= 0. Thus (H,T, f) does

not satisfy the conditions of the theorem.

Corollary 1. A graph G without virus for the traceable property has for each
vertex x the following condition: G is covered by paths ending at x and cycles
going through x, all disjoints in G \ x, and at most two paths (perhaps none)
appear.

Corollary 2. A non traceable graph G with minimum degree less than or
equal to 3 contains a virus for the traceable property.

Proof. Let us reason ab absurdo. Let G be a non-traceable graph, containing
no virus for the traceable property and let x a vertex of G of degree ≤ 3.
Then let V = (H,T, f) with H the graph induced on V (G) \ x, T = V (H)
and f = 1 on the neighbors of x in G and f = 0 on the other vertices of G\x.
The structure V is present in G and is not a virus for traceable property.

Since V is not a virus for traceable property, it has a partition into paths
such that:

- at most two paths contains a extremity y with f(y) = 0 and

- no path has both ends with f = 0.

Since G is not traceable, at least 3 paths appear in that partition. This implies
that at least 4 vertices have f = 1, thus the degree of x in G is at least 4.
This contradicts the degree of x.

Corollary 3. A non-traceable graph with order at most 9 contains a virus for
traceable property.

Proof. Let us reason ab absurdo. Let G be a non-traceable graph, containing
no virus for the traceable property. By Corollary 2 the minimum degree of G
is at least 4. Following, [1] Corollary 2.3 page 23, we know that every graph
of order n and minimum degree at least n−1

2 is traceable; thus G is traceable.
A contradiction.
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The following theorem provides a characterization of a virus for the digraph
property “D is traceable”.

The directed paths Pi used below will be lists of vertices (xj
i ), 1 ≤ j ≤ q(i),

with q(i) ≥ 1, such that all 2-tuples (xj
i , x

j+1
i ) are arcs.

Theorem 2. Let (H,T+, T−, f+.f−) be a digraph virus. It is a virus for the
digraph property “D is traceable” if and only if for every set of disjoint di-
rected paths P1, · · · , Pr covering V (H), one at least of the following conditions
occurs:

1. there exists at least two paths Pi and Pj such that:

- f−(x1
j ) = 0 and f−(x1

i ) = 0 or

- f+(x
q(j)
j ) = 0 and f+(x

q(i)
i ) = 0

2. there exists at least a path Pi such that f+(x
q(i)
i ) = 0 and f−(x1

i ) = 0.

Proof. The spirit of the proof is similar to the one of Theorem 1.

Corollary 4. A digraph D without virus for the traceable property has for
each vertex x the following condition: D is covered by cycles and perhaps one
path going through x, all disjoint in D \ x.

3 Virus for “hamiltonian” property

Theorem 3 ([2]). A graph virus (H,T, f) is a virus for the property “G is
hamiltonian” if and only if for every set of disjoint paths P1, · · · , Pr covering
V (H) there exists a path Pj such that: if Pj consists of just one vertex {x1

j}

then f(x1
j ) ≤ 1 and if V (Pj) = {x1

j , · · · , x
q(j)
j } then f(x1

j ) = 0 or f(x
q(j)
j ) = 0.

Some viruses are made of a stable S on s vertices, and a complete graph
of less that s+ 1 vertices all connected to all vertices in S, moreover T = S,
and f = 0 on T .

The Petersen virus is build from a circuit on 6 vertices, and 3 other vertices,
each connected by two edges to two opposite vertices of the circuit. T contains
the 9 vertices and f = 0 on the vertices of the cycle, and f = 1 on the three
other vertices. It is induced by the removal of one vertex of Petersen graph,
and prevents Petersen graph to be hamiltonian.
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Theorem 4. The digraph virus (H,T+, T−, f+, f−) is a virus for the property
“D is hamiltonian” if and only if for every set of disjoint paths P1, · · · , Pr

covering V (H) there exists a path Pj = (x1
j , · · · , x

q(j)
j ), with q(j) ≥ 1 such

that either f−(x1
j ) = 0 or f+(x

q(j)
j ) = 0.

This theorem is an extension of the one in [2] about viruses with T+ = T−.

Figure 1: A non-hamiltonian digraph W without viruses

The digraph W in Figure 1 shows that there exist non hamiltonian di-
graphs without any virus. Owing to the symmetries of W , the removal of any
vertex of W leaves a subdigraph of some hamiltonian digraph and by Lemma
1 W does not have viruses of cardinality less that 6.

Corollary 5 ([11]). A graph or digraph G without virus for the hamiltonian
property has the following structure: for each vertex x the remaining G\x has
a covering by vertex disjoint paths P1, · · · , Pr such that each of them makes a
circuit with x.

Proof. Directly from Lemma 1 and Theorem 3 and Theorem 4.

Corollary 6. A non-hamiltonian graph with minimum degree less that or
equal to 3 contains always a virus for the hamiltonian property.

Proof. Let us reason ab absurdo. Let G be a non-hamiltonian graph, contain-
ing no virus for the hamiltonian property and let x a vertex of G of degree≤ 3.
Then let V = (H,T, f) with H the graph induced on V (G)\x, T = V (H) and
f = 1 on the neighbors of x in G and f = 0 on the other vertices of G\x. The
structure V is present in G and is not a virus for hamiltonian property. Since
V is not a virus for hamiltonian property, it has a partition into paths such
that each extremity y of these paths has f(y) > 0 and vertices z having f ≥ 2.
Such vertices z cannot occur, because f ≤ 1 and since G is not hamiltonian,
the number of the paths is at least 2. This implies that at least 4 vertices have
f = 1, thus the degree of x in G is at least 4. This contradicts the degree of
x.
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The Petersen virus is obtained by the procedure described above from the
notoriously non-hamiltonian and cubic Petersen graph.

Corollary 7. A graph with al least 3 vertices, that contains no virus for the
hamiltonian property and has a vertex x with degree at most 5 is traceable.

Proof. Notice that the graph cannot have isolated vertices (they are viruses
for the hamiltonian property). Like in the former proof, we consider the virus
V induced on G \x; since it is not a virus for the hamiltonian property, it has
a partition into paths whose extremities are adjacent to x. At most two of
these paths can exist because of the degree of x; we have then a hamiltonian
path in G by concatenation of the first path, the vertex x and the second
path.

Corollary 8. A non-hamiltonian graph with order less than or equal to 8
contains a virus for the hamiltonian property.

Proof. Let us reason ab absurdo. Let G be a non-hamiltonian graph, con-
taining no virus for the hamiltonian property. By Corollary 6 the minimum
degree is at least 4. According to the theorem of Dirac [1] Theorem 2.1, page
20, every graph of order n and minimum degree at least n

2 is hamiltonian;
hence G is hamiltonian. A contradiction.

Some viruses for the property “D is hamiltonian” are made of a stable
S with s vertices and a complete graph K with less than s vertices all arcs
between S and K in both directions. T+ is S and f+ = 0 on T+ and T− is
empty.

4 Viruses for “k-connected” and

“k-edge-connected” properties

Some related results were already known:

Theorem 5 ([10]). The graph virus (H,T, f) is a virus for the property “G is
connected” if and only if for every vertex x ∈ T = V (H), the equality f(x) = 0
holds. Moreover, the viruses for the property “G is connected” characterize
this property.

Theorem 6 ([2]). The digraph virus (H,T+, T−, f+, f−) is a virus for the
property “D is strongly connected” if and only if
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- either T+ = V (H) and f+(x) = 0 on T+

- or T− = V (H) and f−(x) = 0 on T−.

Moreover, the viruses for the property “D is strongly connected” charac-
terize this property.

Some viruses for property “G is connected” are the triples (H,T, f) with
H a complete graph and f = 0 on T = V (H). Some viruses for property “D is
strongly connected” are the 5-tuples (H,T+, T−, f+, f−) with H a complete
graph and either T+ = V (H) and f+(x) = 0 on T+ or T− = V (H) and
f−(x) = 0 on T−.

Now we give our characterization for k-connectivity, that generalizes the
results above.

Theorem 7. Some viruses for the property “k-connected” are the (H,T, f)
such that there are at most k − 1 vertices of H that either do not belong to T

or have f > 0, and there is at least one vertex in T with f = 0.
This class of viruses is sufficient to characterize the property “k-connected”

but for the complete graphs.

Proof. If such a virus is present in a graph G, the set of the vertices of H that
either do not belong to T or have f > 0 constitute a cutset of G (removing
these vertices leaves a graph that is not connected).

On the other hand, if G has a cutset C with at most k − 1 vertices, then
the virus induced by C and one of the connected components of G \ C fulfils
our description and is present in G.

We may note that Kn with n < k is not k-connected and contains no virus
for the property “k-connected”. We note also that there exist viruses that are
not in the class described above; for example (H,T, f) where H and T have
one vertex with f = 1 is a virus for “2-connected”. Some for the property “G
is k-connected” are made of a complete graph K with at least k vertices, with
a nonempty part T where f = 0 and K \ T has at most k − 1 vertices.

Theorem 8. Some viruses for the property k-edge-connected are the (H,T, f)
such that T = V (H) and

∑
T f ≤ k − 1.

Proof. If such a virus is present in a graph G, the edges between H1 and the
remaining part of G constitute an edge-cutset of G with at most k− 1 edges.
Hence G is not k-edge-connected.
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On the other hand, if G is not k-edge-connected, it has an edge-cutset
with at most k − 1 edges. One connected component of the graph obtained
by deleting this cutset induces a virus complying with our description.

These viruses characterize the property, but there are other viruses for it:
for example, if H is a path of length 2, with T = V (H) and f = 0 on the
middle vertex, then (H,T, f) is a virus for “3-edge-connected”.

5 Conclusions

As it was mentioned in the Introduction, the origin of virus theory concerns
the requirements for computational environments [8], [9] for assistance to
researchers in graph theory, developed at the ISYS research center of the Uni-
versidad Central de Venezuela. An important functionality of these systems
is a tool for automatic pseudo-random generation of digraphs, imposing given
conditions on graph properties, some of which forbid a certain property.

Moreover, this theory can be also useful in the construction of approximate
algorithms for NP-complete or polynomial problems, requiring a considerable
computational effort.

Natural consequences of this research are the following problems:

1. For given property P , decide whether or not a triple (H,T, f) or a 5-
tuple (H,T+, T−, f+, f−) is a virus for P .

Evaluate the complexity of the former problem.

2. Find viruses for properties in graphs that do not satisfy that property.
The Theorem 1, 2, 3 and 4 are related to this problem, in case of “hamil-
tonian” and “traceable” properties.

3. What properties are characterized by their viruses? For such properties,
the detection of viruses in a graph that does no have property P and
their destruction by minimal changes (addition or removal or arcs, for
example) could lead to a moderate change to the graph that gives it the
property.

4. Evaluate how close are the property P and the property “G has no virus
of order < n for P”. This evaluation is useful to design approximate
algorithms, with their asymptotical error probability.
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[11] O. Ordaz, L. González, Isabel Márquez, D. Quiroz, Hamiltonian virus-
free digraphs, Divulgaciones Matemáticas, 8(1) (2000), 1–13.
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