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Abstract

Similar to the Morita theorems proved in [1] and the relative
version given by Van Oystaeyen and Verschoren in [9], we will
prove in this note a (relative) hermitian version of the Morita
theorems, i.e., we will describe which equivalences of the cate-
gory of (relative) sesquilinear, resp. hermitian, modules are de-
termined by a single object and viceversa. A first approach was
made in [5], which includes some partial version of the Morita
theorems in the hermitian context. As we will show in this note,
the techniques developed in [6] permit us to present a complete
solution to the problem of generalizing the Morita theorems to
the hermitian case.
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Resumen

En esta nota probamos una versión hermı́tica (relativa) de
los teoremas de Morita, análoga a la dada en [1] y a la versión
relativa dada por Van Oystaeyen y Verschoren en [9]. Esto es,
describimos qué equivalencias de la categoŕıa de módulos sesqui-
lineales, resp. hermı́ticos (relativos), están determinadas por un
objeto único y viceversa. Una primera aproximación a la solución
de este problema aparece ya en [5], en donde se incluye una ver-
sión parcial de los Teoremas de Morita en el contexto hermı́tico.
Como demostramos en esta nota, las técnicas desarrolladas en [6]
nos han permitido presentar una solución completa al problema
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de la generalización, al contexto hermı́tico, de los Teoremas de
Morita.
Palabras y frases clave: teoremas de Morita, formas hermı́ti-
cas.

1 Generalities.

Throughout this paper, R is a commutative ring with unit and all rings are
unitary R-algebras; the letters A,A′, . . . , will denote such R-algebras. Let us
denote the category of left (resp. right) A-modules by A-mod (resp. mod-A)
and the corresponding sets of morphisms by A[M,N ] (resp [M,N ]A). Bimod-
ules will always be defined over R.

An algebra with involution is a couple (A,α), where A is an R-algebra and
α : A→ A an R-linear map satisfying α2 = 1A and α(a1a2) = α(a2)α(a1) for
every a1, a2 ∈ A. We may define with respect to α a construction similar to
the usual “restriction of scalars”. However, since we use an involution instead
of algebra morphisms, we have to switch sides. So, if M is a left (resp. right)
A-module, then α induces a right (resp. left) A-module structure on M by
putting m · a = α(a)m (resp. a ·m = mα(a)) for every m ∈ M and a ∈ A.
We denote this module by αM (resp Mα). If (A′, α′) is a second R-algebra
with involution and if M is an (A,A′)-bimodule then the (A′, A)-bimodule
α′
Mα is defined by putting a′ ·m · a = α(a)mα′(a′) for any a ∈ A, a′ ∈ A′

and m ∈M . If M is an A-bimodule, then we write Mα = αMα.
Any left linear map f ∈ A[M,N ] yields an obvious right linear map

fα ∈ [Mα, Nα]A. Actually, (−)α and α(−) define a category equivalence
between A-mod and mod-A.

(1.1) Let us briefly recollect some definitions and properties of abstract lo-
calization. For a more detailed treatment, we refer to [2, 3, 4, 7, 8 et al]. We
restrict to left A-modules, right A-modules being treated similarly.

A left exact subfunctor λ of the identity in A-mod such that λ(M/λM) =
0 for anyM ∈ A-mod will be called a radical. Any radical is completely deter-
mined by the couple (Tλ,Fλ), where the torsion class Tλ (resp. the torsionfree
class Fλ)) consists of λ-torsion (resp. λ-torsionfree) left A-modules, i.e. left
A-modules M such that λM = 0 (resp. λM = M). On the other hand, the
radical λ is also completely determined by the set Lλ of left A-ideals L such
that A/L is λ-torsion. We call this set the Gabriel filter associated to λ. It is
easy to see that m ∈ λM if and only if there exists some L ∈ Lλ such that
Lm = 0.
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A left A-module E is said to be λ-injective, if for any λ-isomorphism f : M →
N in A-mod, i.e., a morphism with both λ-torsion kernel and cokernel, and
any morphism g : M → E there exists a morphism g : N → E extending G,
i.e., with g = g◦f . If this morphism is always unique as such, then E is said to
be λ-closed. This is also equivalent to E being λ-torsionfree and λ-injective.
The full subcategory of A-mod consisting of the λ-closed left A-modules will
be denoted by (A, λ)-mod and it is well known that the inclusion functor

iλ : (A, λ)-mod ↪→ A-mod

possesses an exact adjoint

aλ : A-mod → (A, λ)-mod

(the reflector of A-mod into (A, λ)-mod). The left exact functor

Qλ = iλ ◦ aλ : A-mod → A-mod

is called the localization functor at λ and may be described in many different
ways. For instance let E be an injective hull of M/λM , then Qλ(M) consists
of those e ∈ E such that Le ⊆ M/λM for some L ∈ Lλ. So, for any left
A-module M , there exists a canonical λ-isomorphism

jλ = jj,M : M → Qλ(M),

which is the composition of the canonical morphism M → M/λM and the
inclusion M/λM ↪→ Qλ(M). If λ is a radical in A-mod, then Qλ(A) is canon-
ically endowed with an R-algebra structure extending that of A. Moreover,
if M is a left A-module (resp. an (A,A′)-bimodule) then Qλ(M) possesses a
natural left Qλ(A)-module (resp. a (Qλ(A), A′)-bimodule) structure.

(1.2) Let us fix radicals λ and λ′) in A-mod and A′-mod respectively. Then
we say that an (A,A′)-bimodule P is (λ, λ′)-flat or relatively flat (with respect
to (λ, λ′)), if for any left A′-linear map f ′ : M ′ → N ′ with λ′-torsion kernel,
the left A-module Ker(P ⊗A′ f ′) is λ-torsion. It is easy to see that P is
(λ, λ′)-flat if and only if Qλ(P ) is relatively flat, or equivalently if it satisfies
each of the following conditions:

(1.2.1) for any injective left A′-linear map i′ : M ′ ↪→ N ′, the left A-module
Ker(P ⊗A′ i′) is λ-torsion.
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(1.2.2) for any λ′-torsion left A′-module T ′, the left A-module P ⊗A′ T ′ is
λ-torsion.

The next (technical) result will play a key-role in all that follows:

(1.3) Lemma. [6,9] Let P be an (A,A′)-bimodule and M ′ a left A′-module,
then:

(1.3.1) Qλ(P ⊗A′ M ′ = Qλ(Qλ(P ) ⊗A′ M ′;

(1.3.2) if P is relatively flat, then Qλ(P ⊗A′ M ′ = Qλ(P ⊗A′ Qλ′(M ′));

(1.3.3) if P is also relatively flat and λ-closed, then it has a canonical (Qλ(A),
Qλ′(A′))-bimodule structure and for any left Qλ′(A′)-module M ′, the left A-
modules P ⊗A′M ′, P ⊗Qλ′(A′)M

′ and P ⊗Qλ′(A′)Qλ′(M ′) sre λ-isomorphic.

Let M be an (A,A′)-bimodule, M” a left A′-module, then we will write
M ⊗̂A′M ′ for Qλ(M ⊗A′ M ′) and m ⊗̂A′m′ for jλ(m ⊗̂A′m′) for any m ∈M
and m′ ∈M ′, where jλ : M ⊗A′ M ′ →M ⊗̂A′M ′ is the canonical localization
map. So, the previous lemma allows us to write:

P ⊗̂A′M ′ ⊗̂A′′M ′′ = (P ⊗̂A′M ′) ⊗̂A′′M ′′ = P ⊗̂A′(M ′ ⊗̂A′′M ′′)

whenever P is relatively flat.

(1.4) A λ-closed and (λ, λ′)-flat (A,A′)-bimodule P is said to be (λ, λ′)-
invertible or relatively invertible (with respect to (λ, λ′)) , if there exists a
λ′-closed and (λ′, λ)-flat (A′, A)-bimodule Q together with A-bimodule (resp.
A-bimodule) isomorphisms

ϕ : P ⊗̂A′ Q→ Qλ(A) resp. ψ : Q ⊗A P → Qλ′(A′).

Moreover, cf. [9], we may always assume the above isomorphisms to fit into
the following commutative diagrams:

P ⊗̂A′ Q ⊗̂A P

ϕb⊗AP

��

P b⊗A′ψ
// P ⊗̂A′ Qλ′(A′)

��
resp.

Q ⊗̂A P ⊗̂A′ Q
Qb⊗Aϕ //

ψb⊗A′Q
��

Q ⊗̂AQλ(A)

��
Qλ(A) ⊗̂AP // P Qλ′(A′) ⊗̂A′Q // Q
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The module Q, which is obviously relatively invertible, is said to be an
inverse for P , and is, as one easily verifies, isomorphic to A[P,Qλ(A)]. More-
over, the evaluation map P ⊗̂A′ (A[P,Qλ(A)]) :→ Qλ(A), may then be used
as an isomorphism.

This leads us to the relative version of the Morita theorems, cf. [9]:

(1.5) Theorem. Let λ (resp. λ′) be a radical in A-mod (resp. A′-mod).
Then there is a bijective correspondence between bimodule isomorphism classes
of relatively invertible (A,A′)-bimodules and isomorphism classes of category
equivalences between the categories (A, λ)-mod and (A′, λ′)-mod.

Note that the above correspondence is given by associating to any category
equivalence F : (A, λ)-mod → (A′, λ′)-mod , the (λ′, λ)-invertible (A,A′)-
bimodule F (Qλ(A)). Conversely, to any relatively invertible (A,A′)-bimodule
Q with inverse P , we associate the category equivalence

Q ⊗̂A− ∼= A[P,−] : (A, λ)-mod → (A′, λ′)-mod.

Let as point out that Qλ′(A′) and A[P, P ] are isomorphic as left A′-bimodules.

(1.6) If λ is a radical in A-mod and α : A → A an R-involution, then one
easily verifies the set {α(L) : L ∈ Lλ} to be a Gabriel filter of right A-ideals.
We will write α(λ) for the associated radical (in mod-A) and Qα(λ) for the
localization functor at α(λ) in mod-A. The functors (−)α and α(−) define a
category equivalence between the categories (A, λ)-mod and mod-(A,α(λ)).
Moreover, for any left A-module M , we have Qλ(M)α = Qαλ(Mα) and if
M is an (A,A′)-bimodule, then α′

Qλ(M)α = Qαλ(α
′
Mα), where α′ is an

R-involution on A′. In particular, if M is an A-bimodule, then Qλ(M)α =
Qαλ(Mα).

(1.7) A triple (A,α, λ) is called a torsion triple, if (A,α) is an R-algebra with
involution and λ a radical in A-mod which satisfies the equivalent conditions:

(1.7.1) the R-involution α : A → A extends (uniquely) to an R-involution
α̂ : Qλ(A) → Qλ(A);

(1.7.2) the R-algebras Qλ(A) and Qα(λ)(A) are isomorphic over A;

(1.7.3) there exists a (λ, λ′)-invertible (A,A′)-bimodule P , for some algebra
with involution (A′, α′) and radical λ′ in A′-mod], with the property that
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P ∼= α
A[P,Qλ(A)]α

′
as (A,A′)-bimodules.

Note that these conditions are trivially fulfilled whenever λ is induced by
a radical in R-mod; for other examples we refer to [6,10].

2 Hermitically invertible modules.

(2.1) Let us fix a torsion triple (A,α, λ) and a λ-closed left A-module M . A
map h : M ×M → Qλ(A) which is biadditive and satisfies h(a1m1, a2m2) =
a1h(m1,m2)α(a2) for every a1, a2 ∈ A and m1,m2 ∈ M is called a λ-sesqui-
linear form. If, moreover, h(m1,m2) = α̂(h(m2,m1)), then h is called a
λ-hermitian form. For any λ-sesquilinear form h : M ×M → Qλ(A), define
ha ∈ A[M,αA [M,Qλ(A)]] by ha(m2)(m1) = h(m1,m2) for any m1,m2 ∈ M .
This correspondence defines a bijection between the λ-sesquilinear forms onM
and the left A-linear maps from M to α

A[M,Qλ(A)]. If ha is an isomorphism,
then h is called nonsingular. If M is an (A,A′)-bimodule and h : M ×M →
Qλ(A) a λ-sesquilinear form satisfying h(m1a

′,m2) = h(m1,m2α
′(a′)), for

any a′ ∈ A′ and m1,m2 ∈ M then h is said to be A′-compatible. So, an
A′-compatible λ-sesquilinear morphism h : M ×M → Qλ(A) is essentially a
bimodule morphism M⊗̂A′α

′
Mα → Qλ(A). Note also that this is equivalent

to requiring that the map ha : M → α
A[M,Qλ(A)]α

′
is (A,A′)-linear.

If M is a λ-closed left A-module and h : M×M → Qλ(A) a λ-sesquilinear
form, then the couple (M,h) is called a λ-sesquilinear module or a relative
sesquilinear module. If h is also λ=hermitian, then (M,h) is a λ-hermitian
module or relative hermitian module. It is said to be A′-compatible (resp. non-
singular) whenever h is A′-compatible (resp. nonsingular).

(2.2) A morphism f : (M,h) → (N, k) between λ-sesquilinear left A-modules
is a left A-linear map f : M → N such that h = k ◦ (f × f), or, equivalently
such that the diagram

M
ha

//

f

��

α
A[M,Qλ(A)]

N
ka

// α
A[N,Qλ(A)]

α
A[f,Qλ(A)]

OO

commutes. We thus obtain categories S(A,α, λ), resp. H(A,α, λ), with ob-
jects the λ-sesquilinear left A-modules, resp. λ-hermitian left A-modules, and
with obvious morphisms.
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(2.3) Fix some torsion triples (A,αλ) and (A,α′, λ′). A nonsingular λ-
hermitian (A,A′)-bimodule (P, h) is called hermitically (λ, λ′)-invertible or rel-
atively hermitically invertible, if P is (λ, λ′)-invertible and h is A′-compatible.
As one easily verifies, h is then also Qλ′(A′)-compatible.

As an easy example, let pQλ(A) : Qλ(A) ×Qλ(A) → Qλ(A) be defined by

pQλ(A)(a1, a2) = a1α̂(a2),

for any a1, a2 ∈ Qλ(A). Then (Qλ(A), pQλ(A)) is a hermitically (λ, λ′)-
invertible A-bimodule.

If (P, h) is a relatively hermitically invertible (A,A′)-bimodule, then we
can makeQ = A[P,Qλ(A)] into a hermitically (λ′, λ)-invertible (A′, A)-bimod-
ule by endowing it with the form k : Q×Q → Qλ′(A′) ∼= A[P, P ], defined by
putting for any q1, q2 ∈ Q:

k(q1, q2) : P → P : p 7→ k(q1, q2)(p) = h(p, (ha)−1(q1))(ha)−1(q2).

The module (Q, k) is usually referred to as an “inverse” of (P, h).

(2.4) Let (M,h) be a relatively flat A′-compatible λ-sesquilinear (resp. λ-
hermitian) (A,A′)-bimodule and (M ′, h′) a λ-sesquilinear (resp. λ-hermitian)
left A′-module. Then we may define a λ-sesquilinear (resp. λ-hermitian) form

h ⊗A′ h′ : M ⊗A′ M ′ ×M ⊗A′ M ′ → Qλ(A)

by

h ⊗A′ h′(m1 ⊗A′ m′
1,m2 ⊗A′ m′

2) = h(m1h
′(m′

1,m
′
2),m2)

= h(m1,m2h
′(m′

1,m
′
2)),

for any m1,m2 ∈M and m′
1,m

′
2 ∈M ′. One easily verifies the tensor product

thus defined to be associative, and the form h ⊗A′ h′ to be A′′-compatible,
whenever (M ′, h′) is.

Since Qλ(A) is α(λ)-closed and since jλ : M ⊗̂A′M ′×M ⊗̂A′M ′ → Qλ(A)
is a λ-isomorphism, the form h ⊗A′ h′ defines a unique λ-sesquilinear (resp.
λ-hermitian) form h ⊗̂A′h′ : M ⊗̂A′M ′ × M ⊗̂A′M ′ → Qλ(A) making the
diagram
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M ⊗̂A′M ′ ×M ⊗̂A′M ′

jλ×jλ

��

h⊗A′h′

**UUU
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U

Qλ(A)

M ⊗̂A′M ′ ×M ⊗̂A′M ′
h b⊗A′h′

44
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

commutative, cf. [5]. It thus makes sense to define the relative tensor product
(M,h) ⊗̂A′(M ′, h′) to be the λ-sesquilinear (resp. λ-hermitian) left A-module
(M ⊗̂A′M ′, h ⊗̂A′h′). An easy unicity argument shows this tensor product to
be associative, whenever it is defined.

3 Morita theorems.

(3.1) Fix torsion triples (A,α, λ) and (A′, α′, λ′). Recall from [5,6] that any
relatively hermitically invertible (A,A′)-bimodule (P, h) determines an equiv-
alence of categories

(P, h) ⊗̂A′ − : S(A′, α′, λ′) → S(A,α, λ)

and an equivalence

(P, h) ⊗̂A′ − : H(A′, α′, λ′) → H(A,α, λ)

Moreover, if (Q, k) is as in (2.3), then

(Q, k) ⊗̂A− : S(A,α, λ) → S(A′, α′, λ′)

resp.

(Q, k) ⊗̂A− : H(A,α, λ) → H(A′, α′, λ′)

is an inverse for (P, h) ⊗̂A′ −.

(3.2) In order to establish the complete Morita theorems, we need a notion of
“good” category equivalence between categories of relative sesquilinear (resp.
relative hermitian) modules: a category equivalence

F : S(A,α, λ) → S(A′, α′, λ′)
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resp.

F : H(A,α, λ) → H(A′, α′, λ′)

is said to be decent, if it factorizes through a category equivalence

F : (A, λ)-mod → (A′, λ′)-mod

note that we use the same simbol F , as no ambiguity may arise) i.e., if we
have a commutative diagram of functors

S(A,α, λ)

��

F // S(A′, α′, λ′)

��
(A, λ)-mod F // (A′, λ′)-mod

where the vertical arrows are defined by forgetting the relative sesquilinear
form (a similar condition holds for the category of relative hermitian modules)
and if there exists an isomorphism η : F (αA[(−), Qλ(A)]) ∼= α′

A′ [F (−), Qλ′(A′)]
such that for every λ-sesquilinear left A-module (M, l), we have a commutative
diagram

F (M)
F (la)

wwppp
p
p
p
p
p
p
p
p

F (l)a

''OO
O
O
O
O
O
O
O
O
O

F (αA[M,Qλ(A)])
ηM

// α′
A′ [F (M), Qλ′(A′)]

If (M, l) is a λ-sesquilinear (A,A′′)-bimodule, then, by the naturality of
η, we have that ηM is an (A′, A′′)-bimodule isomorphism. Moreover, we will
only consider category equivalences between relatively sesquilinear modules
which map relative hermitian modules to relative hermitian modules.

We will prove below that if G is an inverse for F , then G is decent as well.
Before we can show that the category equivalence induced by a relatively

hermitically invertible bimodule is decent, we need the following lemma, whose
proof is just a straightforward verification.

(3.3) Lemma. Let U be a right A′-module, V a left A-module and W an
(A,A′)-bimodule, then the morphism

µ : [U,A [V,W ]]A′ → A[V, [U,W ]A′ ]

defined by (µ(f)(v))(u) = f(u)(v), for every f ∈ [U,A [V,W ]]A′ , u ∈ U and
v ∈ V , is an isomorphism. If V is an (A,A′′)-bimodule, then µ is left A′′-
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linear and if U is an (A′′, A′)-bimodule, then µ is right A′′-linear.

(3.4) Proposition (Morita I). Fix torsion triples (A,α, λ) and (A′, α′, λ′).
Then any relatively hermitically invertible (A′, A)-bimodule (Q, k) defines a
decent equivalence between the categories S(A,α, λ) and mathhcalS(A′, α′, λ′)
and the categories H(A,α, λ) and mathcalH(A′, α′, λ′).

Proof. Let (P, h) be an inverse for (Q, k). Define for every λ-closed left
A-module M the isomorphism ηM as the composition of the following isomor-
phisms

Q ⊗̂AαA[M,Qλ(A)] ∼= A[P, αA[M,Qλ(A)]] ∼= A[P, [Mα, Qλ(A)α]A]
∼= [Mα,A[P,Qλ(A)α]]A ∼= [Mα,A[P,Qλ(A)]]A
∼= [Mα, Q]A ∼= α′

A [M,P ]
∼= α′

A′ [Q ⊗̂AM,Q ⊗̂A P ] ∼= α′
A′ [Q ⊗̂AM,Qλ′(A′)].

An easy verification shows that

ηM (q⊗̂A f)(q′⊗̂Am′) = k(q′f(m′), q)

and that η : Q ⊗̂AαA[(−), Qλ(A)] ∼= α′
A′ [Q ⊗̂A (−), Qλ′(A′)]. So, for every m ∈

M and q ∈ Q, we have that

ηM (q⊗̂A la(m)) = (k⊗̂A l)a(q⊗̂Am),

i.e., (Q, k)⊗̂A− is decent. By symmetry, P ⊗̂A′ − is decent as well. 2

Conversely,

(3.5) Proposition (Morita II). Let (A,α, λ) and (A′, α′, λ′) be torsion
triples. Then every decent category equivalence between S(A,α, λ) and S(A′,
α′, λ′) (resp. H(A,α, λ) and mathcalH(A′, α′, λ′)) is induced by a relatively
hermitically invertible (A′, A)-bimodule.

Proof. Let F : H(A,α, λ) → H(A′, α′, λ′) be a decent category equivalence,
then (Q, k) = F (Qλ(A), pQλ(A)) is a hermitically (λ′, λ)-invertible (A′, A)-
bimodule. Let us now show that F (−) = (Q, k)⊗̂A−.

As F = Q ⊗̂A− : (A, λ)-mod → (A′, λ′)-mod, we only have to verify
that F (l) = k ⊗̂A l, for every λ-sesquilinear left A-module (M, l). Let

η : F (αA[(−), Qλ(A)]) ∼→ α′
A′ [F (−), Qλ′(A′)],
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then

ηQλ(A) = ka : Q→ α′
A′ [Q,Qλ′(A′)].

Let (M, l) be a λ-sesquilinear left A-module, then for every m ∈ M we have
a commutative diagram

Q

ka

��

Qb⊗A
α
A[la(M),Qλ(A)]

// Q⊗̂AαA[M,Qλ(A)]

ηM

��
α′
A′ [Q⊗̂A, Qλ′(A′)]

α′
A′ [Qb⊗Al

a(m),Qλ′(A′)]
// α′
A′ [Q⊗̂AM,Qλ′(A′)]

after identifying

Q = Q⊗̂AαA[Qλ(A), Qλ(A)]

and

α′
A′ [Q⊗̂A, Qλ′(A′)] = α′

A′ [Q⊗̂AQλ(A), Qλ′ (A′)].

So, since F (l)a = ηM ◦ (Q ⊗̂A la), we have for every q, q′ ∈ Q and m,m′ ∈M

(F (l)a(q ⊗̂Am))(q′ ⊗̂Am′) = ((ηM ◦ (Q ⊗̂A la))(q ⊗̂Am))(q′ ⊗̂Am′)
= ηM (q ⊗̂A la(m))(q′ ⊗̂Am′)
= ((ηM ◦ (Q ⊗̂A α

A[la(m), Qλ(A)]))(q))(q′ ⊗̂Am′)

= ((α
′
A′ [Q ⊗̂A la(m), Qλ′(A′)] ◦ ka)(q))(q′ ⊗̂Am′)

= (ka(q) ◦ (Q ⊗̂A la(m))))(q′ ⊗̂Am′)
= ka(q)(q′l(m′,m))
= ((k ⊗̂A l)a(q ⊗̂Am))(q′ ⊗̂Am′),

hence F (l) = k ⊗̂A l, as claimed. 2

(3.6) Corollary. With the same notations, if G is an inverse for F , then
G = (P, h) ⊗̂A′−, where (P, h) is an inverse for (Q, k).
In particular, G is also decent, as claimed before.
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