Divulgaciones Matemáticas v. 6, No. 1 (1998), 3-14

The Hermitian Morita Theorems

Los Teoremas Hermíticos de Morita

P. Verhaege, A. Verschoren University of Antwerp, RUCA Department of Mathematics and Computer Science Antwerp, Belgium

Abstract

Similar to the Morita theorems proved in [1] and the relative version given by Van Oystaeyen and Verschoren in [9], we will prove in this note a (relative) hermitian version of the Morita theorems, i.e., we will describe which equivalences of the category of (relative) sesquilinear, resp. hermitian, modules are determined by a single object and viceversa. A first approach was made in [5], which includes some partial version of the Morita theorems in the hermitian context. As we will show in this note, the techniques developed in [6] permit us to present a complete solution to the problem of generalizing the Morita theorems to the hermitian case.

Key words and phrases: Morita theorems, hermitian forms.

Resumen

En esta nota probamos una versión hermítica (relativa) de los teoremas de Morita, análoga a la dada en [1] y a la versión relativa dada por Van Oystaeyen y Verschoren en [9]. Esto es, describimos qué equivalencias de la categoría de módulos sesquilineales, resp. hermíticos (relativos), están determinadas por un objeto único y viceversa. Una primera aproximación a la solución de este problema aparece ya en [5], en donde se incluye una versión parcial de los Teoremas de Morita en el contexto hermítico. Como demostramos en esta nota, las técnicas desarrolladas en [6] nos han permitido presentar una solución completa al problema de la generalización, al contexto hermítico, de los Teoremas de Morita.

Palabras y frases clave: teoremas de Morita, formas hermíticas.

1 Generalities.

Throughout this paper, R is a commutative ring with unit and all rings are unitary R-algebras; the letters A, A', \ldots , will denote such R-algebras. Let us denote the category of left (resp. right) A-modules by A-mod (resp. mod-A) and the corresponding sets of morphisms by $_A[M, N]$ (resp $[M, N]_A$). Bimodules will always be defined over R.

An algebra with involution is a couple (A, α) , where A is an R-algebra and $\alpha : A \to A$ an R-linear map satisfying $\alpha^2 = 1_A$ and $\alpha(a_1a_2) = \alpha(a_2)\alpha(a_1)$ for every $a_1, a_2 \in A$. We may define with respect to α a construction similar to the usual "restriction of scalars". However, since we use an involution instead of algebra morphisms, we have to switch sides. So, if M is a left (resp. right) A-module, then α induces a right (resp. left) A-module structure on M by putting $m \cdot a = \alpha(a)m$ (resp. $a \cdot m = m\alpha(a)$) for every $m \in M$ and $a \in A$. We denote this module by $^{\alpha}M$ (resp M^{α}). If (A', α') is a second R-algebra with involution and if M is an (A, A')-bimodule then the (A', A)-bimodule $^{\alpha'}M^{\alpha}$ is defined by putting $a' \cdot m \cdot a = \alpha(a)m\alpha'(a')$ for any $a \in A, a' \in A'$ and $m \in M$. If M is an A-bimodule, then we write $M_{\alpha} = ^{\alpha}M^{\alpha}$.

Any left linear map $f \in {}_{A}[M,N]$ yields an obvious right linear map $f^{\alpha} \in [M^{\alpha}, N^{\alpha}]_{A}$. Actually, $(-)^{\alpha}$ and ${}^{\alpha}(-)$ define a category equivalence between A-mod and mod-A.

(1.1) Let us briefly recollect some definitions and properties of abstract localization. For a more detailed treatment, we refer to [2, 3, 4, 7, 8 et al]. We restrict to left A-modules, right A-modules being treated similarly.

A left exact subfunctor λ of the identity in A-mod such that $\lambda(M/\lambda M) = 0$ for any $M \in A$ -mod will be called a *radical*. Any radical is completely determined by the couple $(\mathcal{T}_{\lambda}, \mathcal{F}_{\lambda})$, where the *torsion class* \mathcal{T}_{λ} (resp. the *torsionfree class* \mathcal{F}_{λ})) consists of λ -torsion (resp. λ -torsionfree) left A-modules, i.e. left A-modules M such that $\lambda M = 0$ (resp. $\lambda M = M$). On the other hand, the radical λ is also completely determined by the set \mathcal{L}_{λ} of left A-ideals L such that A/L is λ -torsion. We call this set the Gabriel filter associated to λ . It is easy to see that $m \in \lambda M$ if and only if there exists some $L \in \mathcal{L}_{\lambda}$ such that Lm = 0.

The Hermitian Morita Theorems

A left A-module E is said to be λ -injective, if for any λ -isomorphism $f: M \to N$ in A-mod, i.e., a morphism with both λ -torsion kernel and cokernel, and any morphism $g: M \to E$ there exists a morphism $\overline{g}: N \to E$ extending G, i.e., with $g = \overline{g} \circ f$. If this morphism is always unique as such, then E is said to be λ -closed. This is also equivalent to E being λ -torsionfree and λ -injective. The full subcategory of A-mod consisting of the λ -closed left A-modules will be denoted by (A, λ) -mod and it is well known that the inclusion functor

$$i_{\lambda} : (A, \lambda)$$
-mod $\hookrightarrow A$ -mod

possesses an exact adjoint

$$a_{\lambda} : A \operatorname{-mod} \to (A, \lambda) \operatorname{-mod}$$

(the *reflector* of A-mod into (A, λ) -mod). The left exact functor

$$Q_{\lambda} = i_{\lambda} \circ a_{\lambda} : A\text{-mod} \to A\text{-mod}$$

is called the *localization functor at* λ and may be described in many different ways. For instance let E be an injective hull of $M/\lambda M$, then $Q_{\lambda}(M)$ consists of those $e \in E$ such that $Le \subseteq M/\lambda M$ for some $L \in \mathcal{L}_{\lambda}$. So, for any left A-module M, there exists a canonical λ -isomorphism

$$j_{\lambda} = j_{j,M} : M \to Q_{\lambda}(M)$$

which is the composition of the canonical morphism $M \to M/\lambda M$ and the inclusion $M/\lambda M \hookrightarrow Q_{\lambda}(M)$. If λ is a radical in A-mod, then $Q_{\lambda}(A)$ is canonically endowed with an R-algebra structure extending that of A. Moreover, if M is a left A-module (resp. an (A, A')-bimodule) then $Q_{\lambda}(M)$ possesses a natural left $Q_{\lambda}(A)$ -module (resp. a $(Q_{\lambda}(A), A')$ -bimodule) structure.

(1.2) Let us fix radicals λ and λ') in A-mod and A'-mod respectively. Then we say that an (A, A')-bimodule P is (λ, λ') -flat or relatively flat (with respect to (λ, λ')), if for any left A'-linear map $f' : M' \to N'$ with λ' -torsion kernel, the left A-module Ker $(P \otimes_{A'} f')$ is λ -torsion. It is easy to see that P is (λ, λ') -flat if and only if $Q_{\lambda}(P)$ is relatively flat, or equivalently if it satisfies each of the following conditions:

(1.2.1) for any injective left A'-linear map $i' : M' \hookrightarrow N'$, the left A-module $\operatorname{Ker}(P \otimes_{A'} i')$ is λ -torsion.

(1.2.2) for any λ' -torsion left A'-module T', the left A-module $P \otimes_{A'} T'$ is λ -torsion.

The next (technical) result will play a key-role in all that follows:

(1.3) Lemma. [6,9] Let P be an (A, A')-bimodule and M' a left A'-module, then:

(1.3.1) $Q\lambda(P \otimes_{A'} M' = Q\lambda(Q\lambda(P) \otimes_{A'} M';$

(1.3.2) if P is relatively flat, then $Q\lambda(P \otimes_{A'} M' = Q\lambda(P \otimes_{A'} Q_{\lambda'}(M'));$

(1.3.3) if P is also relatively flat and λ -closed, then it has a canonical $(Q_{\lambda}(A), Q_{\lambda'}(A'))$ -bimodule structure and for any left $Q_{\lambda'}(A')$ -module M', the left A-modules $P \otimes_{A'} M'$, $P \otimes_{Q_{\lambda'}(A')} M'$ and $P \otimes_{Q_{\lambda'}(A')} Q_{\lambda'}(M')$ sre λ -isomorphic.

Let M be an (A, A')-bimodule, M" a left A'-module, then we will write $M \widehat{\otimes}_{A'}M'$ for $Q_{\lambda}(M \otimes_{A'}M')$ and $m \widehat{\otimes}_{A'}m'$ for $j_{\lambda}(m \widehat{\otimes}_{A'}m')$ for any $m \in M$ and $m' \in M'$, where $j_{\lambda} : M \otimes_{A'}M' \to M \widehat{\otimes}_{A'}M'$ is the canonical localization map. So, the previous lemma allows us to write:

$$P\widehat{\otimes}_{A'}M'\widehat{\otimes}_{A''}M'' = (P\widehat{\otimes}_{A'}M')\widehat{\otimes}_{A''}M'' = P\widehat{\otimes}_{A'}(M'\widehat{\otimes}_{A''}M'')$$

whenever P is relatively flat.

(1.4) A λ -closed and (λ, λ') -flat (A, A')-bimodule P is said to be (λ, λ') invertible or relatively invertible (with respect to (λ, λ')), if there exists a λ' -closed and (λ', λ) -flat (A', A)-bimodule Q together with A-bimodule (resp. A-bimodule) isomorphisms

$$\varphi: P \widehat{\otimes}_{A'} Q \to Q_{\lambda}(A) \quad \text{resp.} \quad \psi: Q \otimes_A P \to Q_{\lambda'}(A').$$

Moreover, cf. [9], we may always assume the above isomorphisms to fit into the following commutative diagrams:

$$\begin{array}{cccc} P \widehat{\otimes}_{A'} Q \widehat{\otimes}_{A} P \xrightarrow{P \otimes_{A'} \psi} P \widehat{\otimes}_{A'} Q_{\lambda'}(A') & Q \widehat{\otimes}_{A} P \widehat{\otimes}_{A'} Q \xrightarrow{Q \otimes_{A} \varphi} Q \widehat{\otimes}_{A} Q_{\lambda}(A) \\ \varphi \widehat{\otimes}_{A} P & & \downarrow & \text{resp. } \psi \widehat{\otimes}_{A'} Q & & \downarrow \\ Q_{\lambda}(A) \widehat{\otimes}_{A} P \xrightarrow{\longrightarrow} P & & Q_{\lambda'}(A') \widehat{\otimes}_{A'} Q \xrightarrow{\longrightarrow} Q \end{array}$$

The module Q, which is obviously relatively invertible, is said to be an *inverse* for P, and is, as one easily verifies, isomorphic to $_A[P, Q_\lambda(A)]$. Moreover, the evaluation map $P \widehat{\otimes}_{A'} (_A[P, Q_\lambda(A)]) :\to Q_\lambda(A)$, may then be used as an isomorphism.

This leads us to the relative version of the Morita theorems, cf. [9]:

(1.5) Theorem. Let λ (resp. λ') be a radical in A-mod (resp. A'-mod). Then there is a bijective correspondence between bimodule isomorphism classes of relatively invertible (A, A')-bimodules and isomorphism classes of category equivalences between the categories (A, λ) -mod and (A', λ') -mod.

Note that the above correspondence is given by associating to any category equivalence $F : (A, \lambda)$ -mod $\rightarrow (A', \lambda')$ -mod , the (λ', λ) -invertible (A, A')-bimodule $F(Q_{\lambda}(A))$. Conversely, to any relatively invertible (A, A')-bimodule Q with inverse P, we associate the category equivalence

$$Q \widehat{\otimes}_A - \cong {}_A[P, -] : (A, \lambda) \operatorname{-\mathbf{mod}} \to (A', \lambda') \operatorname{-\mathbf{mod}}.$$

Let as point out that $Q_{\lambda'}(A')$ and $_A[P, P]$ are isomorphic as left A'-bimodules.

(1.6) If λ is a radical in A-mod and $\alpha : A \to A$ an R-involution, then one easily verifies the set $\{\alpha(L) : L \in \mathcal{L}_{\lambda}\}$ to be a Gabriel filter of right A-ideals. We will write $\alpha(\lambda)$ for the associated radical (in mod-A) and $Q_{\alpha(\lambda)}$ for the localization functor at $\alpha(\lambda)$ in mod-A. The functors $(-)^{\alpha}$ and $^{\alpha}(-)$ define a category equivalence between the categories (A, λ) -mod and mod- $(A, \alpha(\lambda))$. Moreover, for any left A-module M, we have $Q_{\lambda}(M)^{\alpha} = Q_{\alpha\lambda}(M^{\alpha})$ and if M is an (A, A')-bimodule, then $^{\alpha'}Q_{\lambda}(M)^{\alpha} = Q_{\alpha\lambda}(^{\alpha'}M^{\alpha})$, where α' is an R-involution on A'. In particular, if M is an A-bimodule, then $Q_{\lambda}(M)_{\alpha} = Q_{\alpha\lambda}(M_{\alpha})$.

(1.7) A triple (A, α, λ) is called a *torsion triple*, if (A, α) is an *R*-algebra with involution and λ a radical in *A*-mod which satisfies the equivalent conditions:

(1.7.1) the *R*-involution $\alpha : A \to A$ extends (uniquely) to an *R*-involution $\widehat{\alpha} : Q_{\lambda}(A) \to Q\lambda(A)$;

(1.7.2) the *R*-algebras $Q_{\lambda}(A)$ and $Q_{\alpha(\lambda)}(A)$ are isomorphic over *A*;

(1.7.3) there exists a (λ, λ') -invertible (A, A')-bimodule P, for some algebra with involution (A', α') and radical λ' in A'-mod], with the property that

 $P \cong {}^{\alpha}_{A}[P,Q_{\lambda}(A)]^{\alpha'}$ as (A,A')-bimodules.

Note that these conditions are trivially fulfilled whenever λ is induced by a radical in *R*-mod; for other examples we refer to [6,10].

2 Hermitically invertible modules.

(2.1) Let us fix a torsion triple (A, α, λ) and a λ -closed left A-module M. A map $h: M \times M \to Q_{\lambda}(A)$ which is biadditive and satisfies $h(a_1m_1, a_2m_2) = a_1h(m_1, m_2)\alpha(a_2)$ for every $a_1, a_2 \in A$ and $m_1, m_2 \in M$ is called a λ -sesquilinear form. If, moreover, $h(m_1, m_2) = \widehat{\alpha}(h(m_2, m_1))$, then h is called a λ -hermitian form. For any λ -sesquilinear form $h: M \times M \to Q_{\lambda}(A)$, define $h^a \in {}_A[M, {}^{\alpha}_A[M, Q_{\lambda}(A)]]$ by $h^a(m_2)(m_1) = h(m_1, m_2)$ for any $m_1, m_2 \in M$. This correspondence defines a bijection between the λ -sesquilinear forms on M and the left A-linear maps from M to ${}^{\alpha}_A[M, Q_{\lambda}(A)]$. If h^a is an isomorphism, then h is called nonsingular. If M is an (A, A')-bimodule and $h: M \times M \to Q_{\lambda}(A)$ a λ -sesquilinear form satisfying $h(m_1a', m_2) = h(m_1, m_2\alpha'(a'))$, for any $a' \in A'$ and $m_1, m_2 \in M$ then h is said to be A'-compatible. So, an A'-compatible λ -sesquilinear morphism $h: M \times M \to Q_{\lambda}(A)$ is essentially a bimodule morphism $M \widehat{\otimes}_{A'} {}^{\alpha'} M^{\alpha} \to Q_{\lambda}(A)$. Note also that this is equivalent to requiring that the map $h^a: M \to {}^{\alpha}_A[M, Q_{\lambda}(A)]{}^{\alpha'}$ is (A, A')-linear.

If M is a λ -closed left A-module and $h: M \times M \to Q_{\lambda}(A)$ a λ -sesquilinear form, then the couple (M, h) is called a λ -sesquilinear module or a relative sesquilinear module. If h is also λ =hermitian, then (M, h) is a λ -hermitian module or relative hermitian module. It is said to be A'-compatible (resp. nonsingular) whenever h is A'-compatible (resp. nonsingular).

(2.2) A morphism $f : (M, h) \to (N, k)$ between λ -sesquilinear left A-modules is a left A-linear map $f : M \to N$ such that $h = k \circ (f \times f)$, or, equivalently such that the diagram

$$M \xrightarrow{h^{a}} {}^{\alpha}_{A}[M, Q_{\lambda}(A)]$$

$$f \downarrow \qquad \qquad \uparrow^{\alpha}_{A}[f, Q_{\lambda}(A)]$$

$$N \xrightarrow{k^{a}} {}^{\alpha}_{A}[N, Q_{\lambda}(A)]$$

commutes. We thus obtain categories $S(A, \alpha, \lambda)$, resp. $\mathcal{H}(A, \alpha, \lambda)$, with objects the λ -sesquilinear left A-modules, resp. λ -hermitian left A-modules, and with obvious morphisms.

The Hermitian Morita Theorems

(2.3) Fix some torsion triples $(A, \alpha\lambda)$ and (A, α', λ') . A nonsingular λ -hermitian (A, A')-bimodule (P, h) is called hermitically (λ, λ') -invertible or relatively hermitically invertible, if P is (λ, λ') -invertible and h is A'-compatible. As one easily verifies, h is then also $Q_{\lambda'}(A')$ -compatible.

As an easy example, let $p_{Q_{\lambda}(A)}: Q_{\lambda}(A) \times Q_{\lambda}(A) \to Q_{\lambda}(A)$ be defined by

$$p_{Q_{\lambda}(A)}(a_1, a_2) = a_1 \widehat{\alpha}(a_2),$$

for any $a_1, a_2 \in Q_{\lambda}(A)$. Then $(Q_{\lambda}(A), p_{Q_{\lambda}(A)})$ is a hermitically (λ, λ') -invertible A-bimodule.

If (P, h) is a relatively hermitically invertible (A, A')-bimodule, then we can make $Q = {}_{A}[P, Q_{\lambda}(A)]$ into a hermitically (λ', λ) -invertible (A', A)-bimodule by endowing it with the form $k : Q \times Q \to Q_{\lambda'}(A') \cong {}_{A}[P, P]$, defined by putting for any $q_1, q_2 \in Q$:

$$k(q_1, q_2): P \to P: p \mapsto k(q_1, q_2)(p) = h(p, (h^a)^{-1}(q_1))(h^a)^{-1}(q_2).$$

The module (Q, k) is usually referred to as an "inverse" of (P, h).

(2.4) Let (M, h) be a relatively flat A'-compatible λ -sesquilinear (resp. λ -hermitian) (A, A')-bimodule and (M', h') a λ -sesquilinear (resp. λ -hermitian) left A'-module. Then we may define a λ -sesquilinear (resp. λ -hermitian) form

$$h \otimes_{A'} h' : M \otimes_{A'} M' \times M \otimes_{A'} M' \to Q_{\lambda}(A)$$

by

$$h \otimes_{A'} h'(m_1 \otimes_{A'} m'_1, m_2 \otimes_{A'} m'_2) = h(m_1 h'(m'_1, m'_2), m_2)$$

= $h(m_1, m_2 h'(m'_1, m'_2)),$

for any $m_1, m_2 \in M$ and $m'_1, m'_2 \in M'$. One easily verifies the tensor product thus defined to be associative, and the form $h \otimes_{A'} h'$ to be A''-compatible, whenever (M', h') is.

Since $Q_{\lambda}(A)$ is $\alpha(\lambda)$ -closed and since $j_{\lambda}: M \widehat{\otimes}_{A'} M' \times M \widehat{\otimes}_{A'} M' \to Q_{\lambda}(A)$ is a λ -isomorphism, the form $h \otimes_{A'} h'$ defines a unique λ -sesquilinear (resp. λ -hermitian) form $h \widehat{\otimes}_{A'} h' : M \widehat{\otimes}_{A'} M' \times M \widehat{\otimes}_{A'} M' \to Q_{\lambda}(A)$ making the diagram

commutative, cf. [5]. It thus makes sense to define the *relative tensor product* $(M,h) \widehat{\otimes}_{A'}(M',h')$ to be the λ -sesquilinear (resp. λ -hermitian) left A-module $(M \widehat{\otimes}_{A'}M',h \widehat{\otimes}_{A'}h')$. An easy unicity argument shows this tensor product to be associative, whenever it is defined.

3 Morita theorems.

(3.1) Fix torsion triples (A, α, λ) and (A', α', λ') . Recall from [5,6] that any relatively hermitically invertible (A, A')-bimodule (P, h) determines an equivalence of categories

$$(P,h)\widehat{\otimes}_{A'} - : \mathcal{S}(A',\alpha',\lambda') \to \mathcal{S}(A,\alpha,\lambda)$$

and an equivalence

$$(P,h)\widehat{\otimes}_{A'} - : \mathcal{H}(A',\alpha',\lambda') \to \mathcal{H}(A,\alpha,\lambda)$$

Moreover, if (Q, k) is as in (2.3), then

$$(Q,k)\widehat{\otimes}_A - : \mathcal{S}(A,\alpha,\lambda) \to \mathcal{S}(A',\alpha',\lambda')$$

resp.

$$(Q,k)\widehat{\otimes}_A - : \mathcal{H}(A,\alpha,\lambda) \to \mathcal{H}(A',\alpha',\lambda')$$

is an inverse for $(P,h)\widehat{\otimes}_{A'}$ –.

(3.2) In order to establish the complete Morita theorems, we need a notion of "good" category equivalence between categories of relative sesquilinear (resp. relative hermitian) modules: a category equivalence

$$F: \mathcal{S}(A, \alpha, \lambda) \to \mathcal{S}(A', \alpha', \lambda')$$

resp.

$$F: \mathcal{H}(A, \alpha, \lambda) \to \mathcal{H}(A', \alpha', \lambda')$$

is said to be *decent*, if it factorizes through a category equivalence

$$F: (A, \lambda)\operatorname{-\mathbf{mod}} \to (A', \lambda')\operatorname{-\mathbf{mod}}$$

note that we use the same simbol F, as no ambiguity may arise) i.e., if we have a commutative diagram of functors

$$\begin{array}{c} \mathcal{S}(A,\alpha,\lambda) \xrightarrow{F} \mathcal{S}(A',\alpha',\lambda') \\ \downarrow & \downarrow \\ (A,\lambda)\text{-mod} \xrightarrow{F} (A',\lambda')\text{-mod} \end{array}$$

where the vertical arrows are defined by forgetting the relative sesquilinear form (a similar condition holds for the category of relative hermitian modules) and if there exists an isomorphism $\eta : F(^{\alpha}_{A}[(-), Q_{\lambda}(A)]) \cong ^{\alpha'}_{A'}[F(-), Q_{\lambda'}(A')]$ such that for every λ -sesquilinear left A-module (M, l), we have a commutative diagram

If (M, l) is a λ -sesquilinear (A, A'')-bimodule, then, by the naturality of η , we have that η_M is an (A', A'')-bimodule isomorphism. Moreover, we will only consider category equivalences between relatively sesquilinear modules which map relative hermitian modules to relative hermitian modules.

We will prove below that if G is an inverse for F, then G is decent as well. Before we can show that the category equivalence induced by a relatively hermitically invertible bimodule is decent, we need the following lemma, whose proof is just a straightforward verification.

(3.3) Lemma. Let U be a right A'-module, V a left A-module and W an (A, A')-bimodule, then the morphism

$$\mu : [U_{A} [V, W]]_{A'} \to {}_{A} [V, [U, W]_{A'}]$$

defined by $(\mu(f)(v))(u) = f(u)(v)$, for every $f \in [U, A[V, W]]_{A'}$, $u \in U$ and $v \in V$, is an isomorphism. If V is an (A, A'')-bimodule, then μ is left A''-

linear and if U is an (A'', A')-bimodule, then μ is right A''-linear.

(3.4) Proposition (Morita I). Fix torsion triples (A, α, λ) and (A', α', λ') . Then any relatively hermitically invertible (A', A)-bimodule (Q, k) defines a decent equivalence between the categories $S(A, \alpha, \lambda)$ and mathhcal $S(A', \alpha', \lambda')$ and the categories $\mathcal{H}(A, \alpha, \lambda)$ and mathcal $H(A', \alpha', \lambda')$.

Proof. Let (P,h) be an inverse for (Q,k). Define for every λ -closed left A-module M the isomorphism η_M as the composition of the following isomorphisms

$$Q \bigotimes_{A_{A}}^{\alpha}[M, Q_{\lambda}(A)] \cong {}_{A}[P, {}_{A}^{\alpha}[M, Q_{\lambda}(A)]] \cong {}_{A}[P, [M^{\alpha}, Q_{\lambda}(A)_{\alpha}]_{A}]$$
$$\cong [M^{\alpha}, {}_{A}[P, Q_{\lambda}(A)_{\alpha}]]_{A} \cong [M^{\alpha}, {}_{A}[P, Q_{\lambda}(A)]]_{A}$$
$$\cong [M^{\alpha}, Q]_{A} \cong {}_{A'}^{\alpha'}[M, P]$$
$$\cong {}_{A'}^{\alpha'}[Q \widehat{\otimes}_{A} M, Q \widehat{\otimes}_{A} P] \cong {}_{A'}^{\alpha'}[Q \widehat{\otimes}_{A} M, Q_{\lambda'}(A')].$$

An easy verification shows that

$$\eta_M(q\widehat{\otimes}_A f)(q'\widehat{\otimes}_A m') = k(q'f(m'),q)$$

and that $\eta: Q \widehat{\otimes}_{A_{A}}^{\alpha}[(-), Q_{\lambda}(A)] \cong {}_{A'}^{\alpha'}[Q \widehat{\otimes}_{A}(-), Q_{\lambda'}(A')]$. So, for every $m \in M$ and $q \in Q$, we have that

$$\eta_M(q\widehat{\otimes}_A l^a(m)) = (k\widehat{\otimes}_A l)^a(q\widehat{\otimes}_A m)$$

i.e., $(Q, k)\widehat{\otimes}_A$ – is decent. By symmetry, $P\widehat{\otimes}_{A'}$ – is decent as well.

Conversely,

(3.5) Proposition (Morita II). Let (A, α, λ) and (A', α', λ') be torsion triples. Then every decent category equivalence between $S(A, \alpha, \lambda)$ and $S(A', \alpha', \lambda')$ (resp. $\mathcal{H}(A, \alpha, \lambda)$ and mathcal $H(A', \alpha', \lambda')$) is induced by a relatively hermitically invertible (A', A)-bimodule.

Proof. Let $F : \mathcal{H}(A, \alpha, \lambda) \to \mathcal{H}(A', \alpha', \lambda')$ be a decent category equivalence, then $(Q, k) = F(Q_{\lambda}(A), p_{Q_{\lambda}(A)})$ is a hermitically (λ', λ) -invertible (A', A)bimodule. Let us now show that $F(-) = (Q, k)\widehat{\otimes}_A - .$

As $F = Q \widehat{\otimes}_A - : (A, \lambda)$ -mod $\rightarrow (A', \lambda')$ -mod, we only have to verify that $F(l) = k \widehat{\otimes}_A l$, for every λ -sesquilinear left A-module (M, l). Let

$$\eta: F(^{\alpha}_{A}[(-), Q_{\lambda}(A)]) \xrightarrow{\sim} ^{\alpha'}_{A'}[F(-), Q_{\lambda'}(A')],$$

The Hermitian Morita Theorems

then

$$\eta_{Q_{\lambda}(A)} = k^{a} : Q \to {\alpha'_{A'}[Q, Q_{\lambda'}(A')]}.$$

Let (M, l) be a λ -sesquilinear left A-module, then for every $m \in M$ we have a commutative diagram

after identifying

$$Q = Q\widehat{\otimes}_{A_A}{}^{\alpha}[Q_{\lambda}(A), Q_{\lambda}(A)]$$

and

$${}^{\alpha'}_{A'}[Q\widehat{\otimes}_A, Q_{\lambda'}(A')] = {}^{\alpha'}_{A'}[Q\widehat{\otimes}_A Q_{\lambda}(A), Q_{\lambda'}(A')].$$

So, since $F(l)^a = \eta_M \circ (Q \widehat{\otimes}_A l^a)$, we have for every $q, q' \in Q$ and $m, m' \in M$

$$(F(l)^{a}(q \widehat{\otimes}_{A} m))(q' \widehat{\otimes}_{A} m') = ((\eta_{M} \circ (Q \widehat{\otimes}_{A} l^{a}))(q \widehat{\otimes}_{A} m))(q' \widehat{\otimes}_{A} m')$$

$$= \eta_{M}(q \widehat{\otimes}_{A} l^{a}(m))(q' \widehat{\otimes}_{A} m')$$

$$= ((\eta_{M} \circ (Q \widehat{\otimes}_{A} a^{\alpha}_{A}[l^{a}(m), Q_{\lambda}(A)]))(q))(q' \widehat{\otimes}_{A} m')$$

$$= ((a'_{A'}[Q \widehat{\otimes}_{A} l^{a}(m), Q_{\lambda'}(A')] \circ k^{a})(q))(q' \widehat{\otimes}_{A} m')$$

$$= (k^{a}(q) \circ (Q \widehat{\otimes}_{A} l^{a}(m)))(q' \widehat{\otimes}_{A} m')$$

$$= k^{a}(q)(q'l(m', m))$$

$$= ((k \widehat{\otimes}_{A} l)^{a}(q \widehat{\otimes}_{A} m))(q' \widehat{\otimes}_{A} m'),$$
hence $F(l) = k \widehat{\otimes}_{A} l$, as claimed.

hence $F(l) = k \widehat{\otimes}_A l$, as claimed.

(3.6) Corollary. With the same notations, if G is an inverse for F, then $G = (P, h) \widehat{\otimes}_{A'}$, where (P, h) is an inverse for (Q, k). In particular, G is also decent, as claimed before.

References

[1] Bass, H., The Morita Theorems, University of Oregon, Lecture Notes, Benjamin, 1968.

- [2] Gabriel, P., Des Catégories Abeliannes, Bull. Soc. Math. France, 90 (1962), 323-448.
- [3] Golan, J. Localization in Noncommutative Rings, M. Dekker, New York, 1975.
- [4] Goldman, J. Rings and Modules of Quotients, J. Algebra, 13 (1969), 10-49.
- [5] Marquez Hernandez, C. M., Reyes Sanchez, M. V., Verschoren, A. Relatively Hermitian Morita Theory, Part I: Morita Equivalences of Algebras with Involution, J. Algebra, 162 (1993), 146–147.
- [6] Reyes S., M. V., Verhaeghe, P., Verschoren, A. The Relatively Hermitian Picard Group, Comm. Algebra, 23 (1995), 3915–3941.
- [7] Stenström, B. Rings of Quotients, Springer-Verlag, Berlin, 1975.
- [8] Van Oystaeyen, F., Verschoren, A. Reflectors and Localizations, M. Dekker, New York, 1979.
- [9] Van Oystaeyen, F., Verschoren, A. Relative Invariants of Rings: The Noncommutative Theory, M. Dekker, New York, 1984.
- [10] Verhaeghe, P., Hermitian Morita Theory, Ph.D. Thesis, University of Antwerp, 1996.