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Abstract

In this paper we study the instability of the semilinear ordinary
differential equation x′(t) = Ax(t) + f(t, x), where f(t, 0) = 0 and
|f(t, x)| ≤ γ(t)|x|α, 0 ≤ α ≤ 1. In the case 0 ≤ α < 1, we show that
the existence of an eigenvalue λ of the constant matrix A satisfying
Re λ > 0 implies the instability of the null solution, for a function γ(t)
satisfying lim sup

t→∞
eβtγ(t) > 0, β < 0.
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Resumen

En este art́ıculo se estudia la inestabilidad de la ecuación diferencial
ordinaria semilineal x′(t) = Ax(t) + f(t, x), en donde f(t, 0) = 0 y
|f(t, x)| ≤ γ(t)|x|α, 0 ≤ α ≤ 1. En el caso 0 ≤ α < 1, se muestra que la
existencia de un autovalor λ de la matriz A tal que Re λ > 0 implica
la inestabilidad de la solución nula para una función γ(t) que cumple
con lim sup

t→∞
eβtγ(t) > 0, β < 0.
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dicotomı́as.
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1 Introduction

A classical result on the Liapounov instability [1] for the ordinary equation

y′(t) = Ay(t) + f(t, y(t)), f(t, 0) = 0, t ≥ 0, A = constant, (1)

states the instability of the solution y = 0 , if the matrix A has an eigenvalue
with positive real part and the continuous function f(t, y), uniformly respect
to t, satisfies

lim
|y|→0

f(t, y)|y|−1 = 0. (2)

This assertion is known as the Perron’s theorem on instability [6]. It has
played an important role in the applications of differential equations. In this
paper we discuss the following question: is the Perron’s result still valid for a
more general condition than (2)? We will assume that the continuous function
f(t, y) satisfies the condition

(F)There exists a positive function γ such that

|f(t, y)| ≤ γ(t)|y|α, 0 ≤ α ≤ 1.

We will show that the existence of an eigenvalue of the matrix A satisfying
Reλ > 0 and condition (F) with 0 ≤ α < 1 imply the instability of the trivial
solution y = 0 of Eq. (1), for a function γ with the property

lim sup
t→∞

eβt|γ(t)| > 0, β < 0. (3)

The main ideas of this paper arise from the Coppel result on instability [2].
The additional ingredient to treat Eq. (1) is the notion of (h, k)-dichotomies
[5], instead of the the exponential dichotomies used in [2].

2 Preliminaries

V denotes the space Rn or Cn. |x| denotes a fixed norm of the vector x
and |A| is the corresponding matrix norm. The interval [t0,∞), t0 ≥ 0, will
be denoted by J(t0). Φ(t) will denote the fundamental matrix of the linear
equation

x′(t) = A(t)x(t) (4)
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From now on, the notations y(t, t0, ξ), x(t, t0, ξ) respectively stand for the
solutions of Eqs. (1) and (4) with initial condition ξ at t0. Throughout, h(t),
k(t) will denote positive continuous functions on J(0), such that h(0) = k(0) =
1. We will use the norms |f |∞ = sup {|f(t)| : t ∈ J(0)} and |f |h = |h−1f |∞.
Besides Ch(J(t0)) will denote the space of continuous functions satisfying
|f |h < ∞ and Bh[0, ρ] = {f ∈ C(J(t0)) : |f |h ≤ ρ}. Finally, we will use the
following subspace of initial conditions:

Vh = {ξ ∈ V : x(t, t0, ξ) ∈ Ch(J(0))} .

Definition 1. We shall say that on the interval J(t0) the null solution of
Eq.(1) is h-stable if for each positive ε there exists a δ > 0 such that for any
initial condition y0 satisfying |h(t0)−1y0| < δ, the solution y(t, t0, y0) satisfies
|y(·, t0, y0)|h < ε.

We will assume that Eq. (4) possesses an (h, k)-dichotomy:

Definition 2. Eq. (4) has an (h, k)-dichotomy on J(t0), iff there exist a
projection matrix P and constants K, C such that

(A)
|Φ(t)PΦ−1(s)| ≤ Kh(t)h(s)−1, 0 ≤ s ≤ t,

|Φ(t)(I − P )Φ−1(s)| ≤ Kk(t)k(s)−1, 0 ≤ t ≤ s.

(B) h(t)h(s)−1 ≤ Ck(t)k(s)−1, t ≥ s.

For a further use we define

T (y)(t) =
∫ t

t0

Φ(t)PΦ−1(s)f(s, y(s))ds−
∫ ∞
t

Φ(t)(I − P )Φ−1(s)f(s, y(s))ds.

3 A theorem on instability

The following instability theorem is valid for the nonautonomous system

y′(t) = A(t)y(t) + f(t, y(t)). (5)

Theorem 1. Assume that (4) has an (h, k)-dichotomy and the condition (F)
is fulfilled. Moreover, assume that there exists ρ0 such that for 0 < ρ < ρ0,

KCρα
∫ ∞
t0

h(s)−1γ(s)k(s)αds < ρ. (6)

Then, if Vh 6= Vk, the null solution of Eq. (5) is h-unstable on J(t0).
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Proof. By contradiction, assume that the null solution of Eq.(5) is h-stable.
Then for ε > 0, there exists a δ > 0 such that |y(·, t0, y0)|h < ε if
|h(t0)−1y0| < δ. Let

ρ < min{δh(t0)k(t0)−1, ρ0}. (7)

Choose a positive σ satisfying

σ +KCρα
∫ ∞
t0

h(s)−1γ(s)k(s)αds ≤ ρ,

and fix an initial value x0 ∈ Φ(t0)[Vk] \Φ(t0)[Vh] such that |x(·, t0, x0)|k ≤ σ.
Let us consider the integral equation y = U(y), where

U(y)(t) = x(t, t0, x0) + T (y)(t).

Step 1: Show that U : Bk[0, ρ]→ Bk[0, ρ]. From (A), (B) and (6), we obtain

|k(t)−1U(y)(t)| ≤ |k(t)−1x(t, t0, x0)|+ k(t)−1|T (y)(t)|

≤ |k(t)−1x(t, t0, x0)|+KCρα
∫∞
t0
h(s)−1γ(s)k(s)αds ≤ ρ.

Step 2: The operator T is continuous in the following sense: If {yn} is a
sequence of continuous functions contained in Bk[0, ρ], uniformly converging
on each interval [t0, t1] to a function y∞, then the sequence {U(yn)} converges
uniformly on [t0, t1] to the function {U(y∞)}. Let µ > 0, choose T > t1 large
enough such that

KCρα
∫ ∞
T

h(s)−1γ(s)k(s)αds ≤ µ/3.

Therefore for all n = 0, 1, . . . , and all t ≥ T we have:

|k(t)−1
∫ ∞
T

Φ(t)(I − P )Φ−1(s)f(s, yn(s))ds| ≤ µ/3.

From this estimate we obtain

U(yn)(t) =
∫ t

t0

Φ(t)PΦ−1(s)f(s, yn(s))ds −

∫ T

t

Φ(t)(I − P )Φ−1f(s, yn(s))ds+ k(t)O(µ/3).
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where O(µ/3) is the Landau asymptotic symbol: |O(µ/3)(t)| ≤ Mµ/3 for
some constant M . From this asymptotic formula, we observe that the uni-
form convergence of {yn} to y∞ on the interval [t0, T ], implies the uniform
convergence of U(yn) to U(y∞) on the interval [t0, t1].

Step 3: The sequence {k(t)−1U(yn)} is equicontinuous for each sequence
{yn} contained in Bk[t0, ρ]. This assertion follows from the boundedness
{U(yn)} and { ddtU(yn)}, on the interval [t0, T ].

Step 1-Step 3 imply that the conditions of the Schauder-Tychonoff theorem
[3] are fulfilled, and therefore the operator U has a fixed point y(t) in the ball
Bk[0, ρ]. This function y(t) is a solution of Eq. (5). Since |k(t0)−1y(t0)| < ρ,
from (7) we obtain that |h(t0)−1y(t0)| < δ, implying that h(t)−1y(t) is a
bounded function. But condition (6) and the property (B) of the (h, k)-
dichotomy imply the boundedness of the function h(t)−1T (y)(t). Since

y(t) = x(t, t0, x0) + T (y)(t),

we obtain that the function h(t)−1x(t, t0, x0) must be bounded. But this
contradicts the choise of x0.

4 The Perron instability theorem

σ(A) will denote the set of eigenvalues of the constant matrix A; further, we
denote σ−(A) = {λ ∈ σ(A) : Reλ < 0}, σ+(A) = {λ ∈ σ(A) : Reλ > 0},
σ0(A) = {λ ∈ σ(A) : Reλ = 0}.

Regarding Eq. (1) we assume condition (F) and σ+(A) 6= ∅. Consequently
we define µ = min{Reλ : λ ∈ σ+(A)}. We will distinguish two cases:

0 ≤ α < 1: In this case, for a number r, 0 < r < min{1, µ}, we have
#σ+(A− rI) = #σ+(A) (#D =number of elements contained in the set D),
and σ0(A− rI) = ∅.

Introducing the change of variable y(t) = ertz(t) in Eq. (1), one obtains

z′(t) = (A− rI)z(t) + e−rtf(t, ertz(t)), f(t, 0) = 0. (8)

We observe that

µ− r = min{Reλ : λ ∈ σ+(A− rI)},

Let Φr(t) denote the fundamental matrix of the equation x′(t) = (A−rI)x(t).
Let R be a positive number satisfying α(µ − r) < R < µ − r. It is easy to
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prove the existence of a projection matrix P and a constant K ≥ 1, such that

|Φr(t)PΦ−1
r (s)| ≤ KeR(t−s), 0 ≤ s ≤ t,

|Φr(t)(I − P )Φ−1
r (s)| ≤ Ke(µ−r)(t−s), 0 ≤ t ≤ s.

This implies that equation x′(t) = (A−rI)x(t) has an (eRt, e(µ−r)t)-dichotomy
(we emphasize that this is not an exponential dichotomy). The condition
Vh 6= Vk of Theorem 1 is clearly satisfied as well as the condition (6) if∫ ∞

t0

e(−R−r(1−α)+α(µ−r))sγ(s)ds <∞. (9)

According to Theorem 1 the null solution of Eq. (8) is eRt-unstable. This
implies the Liapunov instability of the null solution of Eq. (1) for a function
γ(t) satisfying (9).

The following result is a consequence of the above analysis:

Theorem 2. If σ+(A) 6= ∅, |f(t, x)| ≤ γ(t) , t ≥ t0, f(t, 0) = 0, and∫ ∞
t0

e(−R−r)sγ(s)ds <∞, (10)

then the null solution of Eq. (1) is unstable.

From this theorem it follows the instability of the null solution of the scalar
equation

x′(t) = µx(t) +
γ(t)

√
|x|

1 + |x|
, µ > 0

if condition (10) if fulfilled.
The instability of this example cannot be obtained from the Perron’s the-

orem.

α = 1: Let Φc(t) denote the fundamental matrix of the equation x′(t) = Ax(t).
Let us assume the existence of a projection matrix P and a constant K ≥ 1,
such that

|Φc(t)PΦ−1
c (s)| ≤ Keµ(t−s), 0 ≤ s ≤ t,

|Φc(t)(I − P )Φ−1
c (s)| ≤ Keµ(t−s), 0 ≤ t ≤ s,

and

lim
t→∞

e−µteAtP = 0. (11)
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Hence equation x′(t) = Ax(t) has an (eµt, eµt)-dichotomy. In this case condi-
tion Vh 6= Vk is not satisfied and therefore Theorem 1 does not apply. Nev-
ertheless, we emphasize the existence of eµt-bounded solutions of equation
x′(t) = Ax(t) such that

lim sup
t→∞

e−µt|x(t)| > 0. (12)

Let x(t) be such a solution. Then following the proof of Theorem 1 we may
prove that the integral equation U(y)(t) = x(t) + T (y)(t) has an eµt-bounded
solution y(t), if

K

∫ ∞
t0

γ(s)ds < 1.

This solution y(t) satisfies (1). Since

|y(t0)| ≤ |x(t0)|
1−K

∫∞
t0
γ(s)ds

,

then the norm of the initial condition y(t0) is small if |x(t0)| is small. From
(11) it follows

lim
t→∞

T (y)(t) = 0.

This property and (12) give

lim sup
t→∞

e−µt|y(t)| > 0.

implying the instability of the null solution of Eq. (1).
In this case, we recall the result of Coppel [2] asserting that the null

solution of Eq. (1) is unstable if |f(t, x)| ≤ γ|x|, where γ is a constant
sufficiently small. Such a result, obtained by using an exponential dichotomy
for the equation x′(t) = Ax(t), clearly can be obtained by the ideas of this
paper. Thus, this paper complements the results on instability obtained in
[2] for the class of systems satisfying condition (F).
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