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Abstract

In [2] Finizio reports some new results about k-SOLSSOMs. One of
these results states that there exist 2−SOLSSOM(n), for all n > 4308
and if n > 135 is an odd integer, a 2−SOLSSOM(n) exists. In addition,
when n ≡ 0 (Mod 8), and n 6∈ {24, 40, 48}, a 2−SOLSSOM(n) exists.
These results were proved by Lee in [4].

In this paper we prove that if p ≥ 5 is the least prime factor of n, then
a p−3

2 −SOLSSOM(n) exists. In particular, if n ∈ {49, 77, 91, 119, 133},
a 2−SOLSSOM(n) exists, thus extending Lee’s results.
Key words and phrases: Latin square, orthogonal latin square, self-
orthogonal latin square, SOLSSOM.

Resumen

En [2] Finizio reporta algunos nuevos resultados acerca de k-SOLS-
SOMs. Uno de estos resultados afirma que para todo n > 4308 exis-
te un 2−SOLSSOM(n), y si n > 135 es un entero impar, existe un
2−SOLSSOM(n). Adicionalmente, cuando n ≡ 0 (Mod 8) y n 6∈
{24, 40, 48}, existe un 2−SOLSSOM(n). Estos resultados fueron pro-
bados por Lee en [4].

En este art́ıculo probamos que si p ≥ 5 es el menor factor primo
de n, entonces existe un p−3

2 −SOLSSOM(n) . En particular, si n ∈
{49, 77, 91, 119, 133}, existe un 2−SOLSSOM(n), extendiendo aśı los
resultados de Lee.
Palabras y frases clave: Cuadrado latino, cuadrado latino ortogonal,
cuadrado latino auto-ortogonal, SOLSSOM.
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1 Introduction

In this section we describe some definitions. If A = [aij ] and B = [bij ] are two
n×n matrices, the join (A,B) of A and B is the n×n matrix whose (i, j)-th
entry is the pair (aij , bij). The latin squares A,B of order n are orthogonal if
all the entries in the join of A and B are distinct. Latin squares A1, . . . , Ar
are mutually orthogonal if they are orthogonal in pairs. The abbreviation
MOLS will be used for mutually orthogonal latin squares.

A self-orthogonal latin square (SOLS) is a latin square that is orthogonal
to its transpose. Finally, a k-SOLSSOM(n) is a set {S1, S2, . . . , Sk} of self-
orthogonal latin squares, together with a symmetric latin square M , for which
{Si, STi | 1 ≤ i ≤ k} ∪ {M} is a set of 2k + 1 MOLS(n).

The objective of this paper is to prove:

Theorem 1. If p ≤ 5 is the least prime factor of n, then a p−3
2 -SOLSSOM(n)

exists. In particular, if n ∈ {49, 77, 91, 119, 133}, a 2−SOLSSOM(n) exists.

In this paper, as usual, Zn denotes the cyclic group of order n. Our
notations are standard and taken mainly from [1] and [2].

2 Proof of the Theorem

For any odd prime power q there exist q−3
2 -SOLSSOM(q) and, for n ≥ 1, there

is a (2n−1 − 1)-SOLSSOM(2n) (see [2, 41.21]). In [4], Lee shows that there
exist 2-SOLSSOM(n) for all n > 4308 and, if n > 135 is an odd integer, a 2-
SOLSSOM(n) exists. In addition, when n ≡ 0 (Mod 8), and n 6∈ {24, 40, 48},
a 2-SOLSSOM(n) exists.

In this section we use a group theoretical approach to the problem of
existence of k-SOLSSOMs. We first assume that A = [aij ] is an arbitrary
latin square of order n. We define Ri = [ai1 . . . ain] and Ci = [a1i . . . ani]T ,
for all 1 ≤ i ≤ n, then it is easy to see that Ri is the i-th row and Ci is the
i-th column of the latin square A and we can write

A = [C1C2 . . . Cn] = [R1R2 . . . Rn]T

Next we assume that σ ∈ Sn, the symmetric group on n letters, then σ
induces a permutation on rows, columns and elements of the latin square A
which we denote by the same symbol. Set Ar(σ) = [Rσ(1)Rσ(2) . . . Rσ(n)]T

and Ac(σ) = [Cσ(1)Cσ(2) . . . Cσ(n)]T , then it is obvious that Ar(σ) and Ac(σ)
are latin squares and so for all σ, τ ∈ Sn, A(σ, τ) = (Ar(σ))c(τ) is a latin
square.
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Now we assume that G is a group of order n and σ and τ are permutations
of G which can be identified with the permutations of Sn. It is obvious that
the multiplication Cayley table A of the group G is a latin square and we can
use the above argument to obtain the latin square A(σ, τ).

We begin with an elementary lemma which will be of use later.

Lemma 1. Let G = {x1, . . . , xn} be a group of order n, A be the Cayley
table of G and α, β, τ, σ ∈ Sn. The latin squares A(α, β) and A(τ, σ) are
orthogonal if and only if, for all 1 ≤ i, j, r, s ≤ n , where (i, j) 6= (r, s), the
following condition is satisfied:

α(xi)β(xj) = α(xr)β(xs) =⇒ τ(xi)σ(xj) 6= τ(xr)σ(xs).

Proof. Let A = [aij ] be the Cayley table of G, A(α, β) = [bij ] and A(τ, σ) =
[cij ]. Then it is easy to see that bij = aα(i)β(j) = xα(i)xβ(j) and cij =
aτ(i)σ(j) = xτ(i)xσ(j). Suppose A(α, β) and A(τ, σ) are orthogonal, (i, j) 6=
(r, s) and α(xi)β(xj) = α(xr)β(xs). If τ(xi)σ(xj) = τ(xr)σ(xs) then bij = brs
and cij = crs, hence (bij , cij) = (brs, crs) and by orthogonality we must have
i = r and j = s, a contradiction. Therefore the above condition is satisfied.
We can repeat this argument to yield the converse of the theorem.

Corollary 1. Suppose α, β ∈ Sn and let A be the multiplication table of the
group G. Then the latin squares A(i, α) and A(i, β), where i is the identity
element of Sn, are orthogonal if and only if the map α−1β, where α−1β(x) =
α(x)−1β(x), is bijective.

Proof. Suppose that α−1β(xj) = α−1β(xs), so α(xs)α(x−1
j ) = β(xs)β(x−1

j ).
If α(xs)α(x−1

j ) = x−1
r xi, then xrα(xs) = xiα(xj) and xrβ(xs) = xiβ(xj) and

by orthogonality (i, j) = (r, s), i.e. xj = xs. Conversely, assume that α−1β
is bijective, (i, j) 6= (r, s), xiα(xj) = xrα(xs) and xiβ(xj) = xrβ(xs). Then
α−1β(xj) = α−1β(xs) and, since α−1β is bijective, xj = xs. This implies that
xi = xr, which is a contradiction.

Corollary 2. Let G be a group and fi ∈ Aut(G), 1 ≤ i ≤ 4. The latin
squares A(f1, f2) and A(f3, f4) are orthogonal if and only if for all x, y ∈ G
with x 6= e, y 6= e the following condition holds:

f1(x) = f2(y) =⇒ f3(x) 6= f4(y)

Proof. We assume that f1(x) = f2(y), so f1(x)f2(e) = f1(e)f2(y), and by
Lemma 1, f3(x)f4(e) 6= f3(e)f4(y), i.e. f3(x) 6= f4(y). Conversely, suppose
f1(xi)f2(xj) = f1(xr)f2(xs), so f1(x−1

r xi) = f2(xsx−1
j ), which yields the

required result.
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Corollary 3. Let G be the cyclic group of order n, p the least prime factor
of n and A the Cayley table of G. Then for all 1 ≤ r < p the latin squares
A(i, fr), where fr(x) = rx, are orthogonal.

Proof. It is well known that fr ∈ Aut(Zn) if and only if (r, n) = 1, hence for
all 1 ≤ i ≤ p − 1, fi ∈ Aut(Zn). We show now that if 1 < i, j ≤ p − 1, then
fi − fj is bijective. To do this, suppose (fi − fj)(x) = (fi − fj)(y). Then
(i − j)(x − y) = 0 and since (n, i − j) = 1, x = y. Now by Corollary 1, the
proof is complete.

Remark 1. Let G be a group of order n and let A be the Cayley table of G.
It is easy to see that the latin square A(α, β) is self-orthogonal if and only if
A(α, β) and A(β, α) are orthogonal latin squares. Therefore by Lemma 1, the
latin square A(α, β) is self-orthogonal if and only if for any elements x, y, z, t
of G, the following condition holds,

α(x)β(y) = α(z)β(t) =⇒ β(x)α(y) 6= β(t)α(z).

Remark 2. Assume that f, g ∈ Aut(G). By Corollary 2, the latin square
A(f, g) is self-orthogonal if and only if for any non-identity elements x, y ∈ G,
f(x) = g(y) implies that f(y) 6= g(x).

Remark 3. Let G be the cyclic group of order n and A be the Cayley table of
G. If p is the least prime factor of n then all of the latin squares A(i, fr), 1 <
r < p− 1, are mutually and self-orthogonal.

Proof of Theorem 1. Assume that there exists a 2× k matrix M = (aij) with
the following conditions :

(a) For all i = 1, 2 and 1 ≤ j ≤ n, aij < n, (aij , n) = 1 and a1j 6= a2j ,
(b) For all 1 ≤ j′ ≤ j ≤ k, ((a1ja1j′ − a2ja2j′), n) = 1,
(c) For all 1 ≤ j′ ≤ j ≤ k, ((a1ja2j′ − a2ja1j′), n) = 1.
We now show that with these conditions, a k−SOLSSOM(n) exists. To

do this, let i = 1, 2, 1 ≤ j ≤ k and gij be the map x 7→ aijx. Then it is
easy to see that gij ∈ Aut(Zn). Set Aj = A(g1j , g2j), in which A is the latin
square obtained from the Cayley table for Zn. Then we can see that the set
{Aj , Atj | 1 ≤ j ≤ k} ∪ {A} form a k−SOLSSOM(n). Suppose that p ≥ 5 is
the least prime factor of n. We now define a 2 × p−3

2 matrix M = (aij) as
follows:

a1j = j and a2j = j + 1.

Now we can see that the matrix M satisfies the conditions (a), (b) and (c).
Therefore a p−3

2 −SOLSSOM(n) exists.
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