
Divulgaciones Matemáticas Vol. 9 No. 1(2001), pp. 35–54

Sinai-Ruelle-Bowen Measures for

Piecewise Hyperbolic Transformations

Medidas de Sinai-Ruelle-Bowen para Transformaciones
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Abstract

In this work we give sufficient conditions for the existence of an er-
godic Sinai-Ruelle-Bowen measure preserved by transformations with
infinitely many hyperbolic branches.
Key words and phrases: invariant measures, SRB measures, equilib-
rium states, fractal dimensions, horseshoes, piecewise hyperbolic trans-
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Resumen

En este trabajo damos condiciones suficientes para que exista una
medida de Sinai-Bowen-Ruelle ergódica preservada por transformacio-
nes con infinitas ramas hiperbólicas.
Palabras y frases clave: medidas invariantes, medidas SRB, esta-
dos de equilibrio , dimensión fractal, herraduras, transformaciones hi-
perbólicas a trozos.

1 Introduction

We say that a Borel probability measure µ is a Sinai-Ruelle-Bowen (SRB)
measure if it is smooth along unstable leaves. An SRB measure preserved by a
C2 diffeomorphism of a compact riemannian manifold is physically observable
since it reflects the asymptotic behaviour of a set of positive volume, that
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is, for every continuous function φ it holds limn→+∞ 1 / n
∑n−1

k=0 φ(T k(x)) =∫
φ(z)dµ(z) for a set of points x of positive volume. It is a most interesting fact

that the relevant observable measures of mappings which are regular on their
expanding directions are smooth along unstable leaves and they are extremals
of certain variational principle. Cf. [8] and [12].

The aim of this paper is to prove the existence of SRB measures for cer-
tain generalized baker’s transformations defined by infinitely many hyperbolic
branches.

Theorem A Let R = Bu × Bs be a rectangle in Rm (m = s + u) and
T : Ω ª be a C2 horseshoe constructed in R defined by C2 hyperbolic branches
Ti : Si −→ Ui where {Si} is a countable (possibly infinite) collection of non
overlapping stable cylinders which cover R up to a subset of zero Lebesgue
measure. Suppose in addition that the non-linear expansion along invariant
manifolds is bounded from below by some λ > 1 and that the following a priori
bounded distortion condition holds:

sup
i>0

supz∈Si
supξ,η∈Ku(w),‖ξ‖≤1 ‖D2Ti(z)(ξ, η)‖

(infξ∈Ku(w),‖ξ‖=1 ‖DTi(w)ξ‖)2 < +∞ (1)

for i > 0, where Ku(w) is the unstable cone at w. Then T preserves a unique
ergodic SRB measure µ = µΩ supported on Ω whose ergodic basin covers R up
to a Lebesgue measure zero set.

We refer to next Section for definitions. Here, as for Markov piecewise
expanding endomorphisms, there is an essential difference between finite and
infinite hyperbolic branches since derivatives grow with i and a priori rela-
tions between the first and second derivatives are key if we want to get some
bounded distortion estimates.

To the best of my knowledge these type of problems were considered for the
first time by Jakobson and Newhouse in [3]. However, the present approach
not only provides a higher dimensional generalization of [3, Theorem 1] but
it also gives a new proof of that result in dimension two.

One possible source of interest in these models comes from a program out-
lined at [4] aimed at describing Hénon attractors by an inducing approach
similar to that used in one dimensional dynamics (cf. [2, Chapter 5]). In fact,
generalized baker’s transformations as described in Theorem A are natural
higher dimensional generalizations of piecewise expanding interval transforma-
tions. However, as pointed to me by Marcelo Viana, in the case of Hénon maps
we should not expect a reduction to a model like one described in Theorem
A. Instead, we would expect to induce some sort of generalized baker’s trans-
formations having a maximal invariant compact set with hyperbolic product
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structure and non trivial unstable Cantor sets of positive Lebesgue measure.
This is due to the presence of homoclinic tangencies. Unfortunely, as far as I
know, no complete exposition of these constructions seems to be yet available.
However, we can see an outline in [15].

Indeed, the objects that we shall consider are similar to the generalized
horseshoes introduced in Young’s paper [15]. Actually, under the a priori
bounded distortion condition (1) we can prove that they support an SRB
measure iff their unstable Cantor sets have positive Lebesgue measure. That
gives an independent proof and a sort of converse to [15, Theorem 1.1].

Condition (1) seems to be a natural higher dimensional analogous of
bounded distortion condition (D1) in [3] and permits to treat generalized
horseshoes with non trivial unstable Cantor sets as well, improving Jakobson-
Newhouse’s results, even in dimension two.

Horseshoes with infinitely many branches and bounded distortion also ap-
pear when inducing hyperbolicity in non uniformly hyperbolic systems. Ac-
tually, we proved in [14], using ideas and methods of Pesin theory as exposed
in [6], that given a point p in the support of an ergodic hyperbolic measure
µ with positive entropy and 0 < δ < 1, we can find a regular neighborhood
R of p and a subset Ω ⊂ R with hyperbolic product structure, such that
µ(Ω) ≥ (1 − δ)µ(R). Ω has the same structure of the generalized horseshoes
introduced in the present research. This result seems to sustain our claim
that the study of these models can give us a better understanding of some
geometrical and statistical properties of chaotical dynamical systems.

2 Generalized horseshoes: definitions and
statement of results

We shall first recall some definitions and terminology needed to state our main
results.

Definition 2.1. Let Ω ⊆ Rm be a compact subset which is invariant by a
piecewise smooth invertible transformation T : D −→ Rm from a domain
D ⊂ Rm. We say that Ω has a hyperbolic product structure if there are two
continuous laminations by discs of complementary dimension Fs and Fu such
that:

1. each W ∈ Fs is an stable invariant manifold, i.e., distances of positive
iterates of points x, y ∈ W contract exponentially; similarly for negative
iterates of points on leaves of Fu;
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2. any pair of invariant submanifolds W s ∈ Fs and Wu ∈ Fu intersect
transversally at an angle bounded from below;

3. Ω =
⋃Fs ∩ ⋃Fu.

A generalized baker’s transformation defined by countable (possibly in-
finitely many) hyperbolic branches defines a maximal invariant subset with
hyperbolic product structure. We shall refer to these sets as generalized horse-
shoes.

For this we let R = Bs × Bu ⊆ Rm, where Bs ⊆ Rs and Bu ⊆ Ru

are unit closed balls. We shall suppose that R is endowed with two cone
fields Ku = Ku(x) and Ks = Ks(x) defined at every point in x ∈ R. We
also suppose that these cones families extend continuously to a slightly larger
neighborhood R̂ containing R. We associate with these cone fields admissible
stable and unstable submanifolds Γs(R) = {γs} and Γu(R) = {γu}. Each
γs ∈ Γs(R) is the graph of a C1 map φ : Bs −→ Bu such that TxW ⊆ Ks(x)
for every x ∈ γs. Likewise for admissible unstable submanifolds. Also stable
and unstable cylinders can be defined. A compact connected subset S ⊆ R
is an admissible stable cylinder if it admits a foliation by admissible stable
submanifolds and if its unstable sections S ∩ γu are convex sets for every
γu ∈ Γu(R). Unstable cylinders are defined similarly.

Admissible manifolds γu ∈ Γu and γs ∈ Γs intersect transversally with an-
gle ∠(Txγu, Txγs) bounded from below. Admissible manifolds have bounded
geometry, that is, we can find a constant C = C(Γ) > 1 depending only
on γ and the diameter of R such that Vol (γu) and diam (γu) are bounded
in [ C−1, C ]. Further, C−1 ≤ dist γu(x, y) / ‖x − y‖ ≤ C for every x, y in
an unstable admissible submanifold γu ∈ Γu where dist γu (resp. diam γu)
is the distance (resp. diameter) on the submanifold γu defined with the in-
trinsic riemannian metric. Similarly for Vol γu . Likewise for the admissible
s-submanifolds. This fact will be used throughout.

The set Γu (resp. Γs) is endowed with an structure of Banach space
given by the identification with C1(Bu, Bs) equipped with the C1 norm. In
particular it is a complete metric space. Moreover, there is a well defined graph
transform ΓT : Γu −→ Γu defined by ΓT (γu) = T (γu) ∩ R. The following
result, due to Aleeksev and Moser, will be used elsewhere without further
comments: The graph transform is a contraction, i.e., there exists 0 < θ < 1
such that distC1(ΓT (γu

1 ), ΓT (γu
2 )) ≤ θ distC1(γu

1 , γu
2 ). In addition, (γu, γs) 7−→

γu ∩ γs is a Lipschitz map from Γu × Γs to R.
We will consider maps {Ti : Si −→ Ui} where {Si} (resp.{Ui}) are count-

able collections of non overlapping stable (resp. unstable) cylinders. Each
map has a C2 extension T̂i : Ŝi −→ Ûi to neighborhoods of Si and Ui
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which are stable and unstable cylinders in R̂ and such that T̂i maps hyper-
bolically Ŝi onto Ûi, that is, it preserves strictly the cone families Ks and
Ku: Ks(Ti(x)) ⊆ intDTi(x)Ks(x) and DTi(x)Ku(x) ⊆ intKu(Ti(x)). Each
Ti : Si −→ Ui will be called an hyperbolic branch.

We can use the hyperbolic branches Ti to define a piecewise hyperbolic
map T :

⋃
i intSi −→

⋃
i intUi, by setting T | intSi = Ti and extends T to

some well defined measurable transformation T̂ :
⋃

i Si −→
⋃

i Ui, which is C2

smooth in a dense subset of its domain and preserves the admissible manifolds.
This extensions are non unique. However, as long as their singular set is
negligible for all the purposes of ergodic theory, we can omit this arbitrariness,
so we will continue denoting extensions T̂ by T to avoid messy notations.

Now, given a family of hyperbolic branches Ti : Si −→ Ui we define nested
sequences of stable and unstable cylinders converging to two laminations of
stable and unstable admissible manifolds Fs and Fu, respectively. In fact,
given a sequence (i0, · · · , in, · · · ) = i ∈ NN we define

Ui0···in−1 =
n−1⋂

k=0

Tin−1 ◦ · · · ◦ Ti0Ui0 , Si0···in−1 =
n−1⋂

k=0

T−1
in−1

◦ · · · ◦ T−1
i0

Si0

where, by abuse of language, we omit the domain of compositions. We will
call these stable and unstable cylinders of level n. The sequence {Si0···in−1}n≥0

is a nested sequence of stable cylinders. Similarly so {Ui0···in−1}n≥0. In fact,
graph transform contraction properties imply that there is a unique admissible
manifold γs = γs(i) such that dC1(Si0···in−1 , γ

s) converges to zero as n −→
+∞ and likewise for the unstable cylinders.

We shall suppose that non linear expansion along unstable admissible man-
ifolds is bounded from below in the following sense: there is a constant C > 1
such that, for every pair of points x and y contained in γ0 = γu ∩ P (the
intersection of an admissible unstable manifold γu and an stable cylinder of
level n, P ∈ ℘n), dγk(Tn(x), Tn(y)) ≥ Cλn−kdγ0(T k(x), T k(y)) holds for
k = 0, · · · , n − 1, uniformly in x and y, where γk = T k(γ0). Due to the
bounded geometry of admissible submanifolds these conditions are equivalent
to ‖Tn(x)− Tn(y)‖ ≥ Cλn−k‖T k(x)− T k(y)‖, for a suitable constant C > 0
depending only on the bounded geometry of Γu . A similar statement holds
true for the inverse T−1.

Now we define Fs = {γs(i) : i ∈ NN} (resp. Fu = {γu(i) : i ∈ NN}). These
laminations are clearly T -invariant. Moreover, due to non-linear expansion
properties along admissible manifolds, we conclude that W s(x, R) = γs(i) and
Wu(x, R) = γu(j) are the local stable manifold of x where {x} = γs(i)∩γu(j).
Indeed, W s(x, R) = {y ∈ R : ‖Tn(x) − Tn(y)‖ ≤ Cλ−n, ∀n ≥ 0} and

Divulgaciones Matemáticas Vol. 9 No. 1 (2001), pp. 35–54



40 Fernando José Sánchez-Salas

similarly so for the unstable local manifold for backward orbits.
We also recall for further use that there are two continuous subbundles Es

(resp. Eu) of stable (resp. unstable) subspaces which are the tangent spaces
to invariant leaves. These families of subspaces satisfies a Hölder condition.
This is standard. See for example [5].

Let Ω =
⋃ Fs ∩ ⋃ Fu. Ω is a compact, perfect subset of Rm contained

in the cube R. Topologically it might be a Cantor set times an interval or
a product of two Cantor sets or even it might fill R up to a measure zero
set. Ω is the maximal invariant subset of T̂ . Therefore, Ω is endowed with a
hyperbolic product structure.

Definition 2.2. A set Ω with a hyperbolic product structure and a dynamics
T : Ω ª given by a collection of C2 hyperbolic branches Ti : Si −→ Ui as
defined above shall be called a horseshoe with infinitely many branches or,
shortly, a generalized horseshoe.

Ordinary horsehoes are simply those defined by finitely many disjoint hy-
perbolic branches. The following is our first main result

Theorem B Let T : Ω ª be a C2 generalized horseshoe with bounded distor-
tion and expansion coefficient bounded from below. Then there exists a unique
ergodic measure µ = µΩ such that:

1. dimu(Ω) = hµ(T )/
∫

log JuT (x) dµ(x), where dimu(Ω) denotes the un-
stable dynamical dimension of Ω;

2. µFu(x), the projection of µ onto the unstable leave Fu(x), is equivalent
to the dynamical measure Dα,Fu(x) in dimension α = dimu(Ω). Fur-
thermore, there is a constant C > 1 such that

C−1 ≤ µFu(x)(P )
(VolFu(x)P )dimu(Ω)

≤ C for every P ∈ ℘, (2)

where VolFu(x) is the volume defined by the intrinsic riemannian metric
of the unstable submanifold Fu(x); in particular, there is a constant
C > 1 such that

C−1 ≤ µ(P )
Vol (P )dimu(Ω)0

≤ C

for every geometrical cylinder;

3. the stable lamination Fs is absolutely continuous with respect to the
dynamical measure classes {Dα,γu}γu∈Γu and it has a continuous and
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bounded Jacobian:

dH∗Dα,γu

dDα,γu

(x) =

[
+∞∏

i=1

J(T | γu)(T i(x))
J(T | γu)(T i(H(x)))

]α

. (3)

Here H∗Dα,γu is the pullback measure under the holonomy map H.

Notation: throughout this paper we will adopt the following convention: given
two positive functions f and g we will write f ³ g if there is a constant C > 1
such that C−1 ≤ f/g ≤ C uniformly in their domain.

Here Hγu,γu is the holonomy map of the local stable lamination Fs defined
by admissible unstable sections γu, γu ∈ Γu(R): Hγu,γu(x) = Fs(x) ∩ γu, for
every x ∈ γu ∩ ⋃

x∈Ω Fs(x). J(T | γu) will denote throughout this work
the Jacobian of T restricted to γu with respect to the intrinsic riemannian
volume. JuT (x) = J(T | Fs(x))(x) is the unstable Jacobian of T with respect
to to the intrinsic riemannian volume of the local unstable manifold Fs(x).

The measure µFu(x) is defined on the unstable Cantor sets cut by a local
unstable manifold of Ω:

µFu(x)(A) = µ

( ⋃

z∈A

Fs(z)
)

, for every Borel subset A ⊂ Fu(x) ∩ Ω.

We proved the above result for ordinary horseshoes. Cf. [13].
To recall what is the dynamical measure we first introduce the dynamically

defined generating net of stable cylinders. Namely, let ℘n = {Si0···in−1 : i ∈
NN} be the stable cylinders of level n and ℘0 = {Si}i>0. Clearly ℘n =
T−n℘0. Further

∨
n∈Z T−n℘0 generates the σ-algebra of Borelian sets of Ω

and
∨

n≥0 T−n℘0 generates the σ-algebra Bs of Borel subsets which are a
reunion of stable leaves, that is, if B ∈ Bs then Fs(x) ∩ B = Fs(x), for every
x ∈ B. We denote by ℘ the reunion of all cylinders in ℘n for n ≥ 0.

Let γu ∈ Γu and define a generating net of subsets on γu taking the
intersections of γu with cylinders in ℘:

℘(γu) = {P ∩ γu : P ∈ ℘n is an stable n-cylinder for some n ≥ 0}.
Then we define an outer measure in γu, using the Carathéodory construction,
by taking coverings by ℘(γu)-sets and using a riemannian volume Vol u

γ as set
function setting Da,℘,γu (X) = limδ→0+ infU

∑+∞
i=1 Vol γu(Ui)a X ⊆ γu, where

the infimum is taken over all the δ-coverings by ℘(γu)-sets.
A main point in the proof of Theorem B is to show that this construction

defines a non-trivial measure class which shall be denoted Dα,W . Associated
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to this fractal measure there is a Carathéodory’s dimensional characteristic,
the dynamical dimension: dimD,W (X) = inf{a > 0 : Da,W (X) = 0} Cf. [13]
and [11]. Absolute continuity implies that there is a well defined unstable
dimension, dimu(Ω) = dimD,W (Ω), which does not depend on the particular
local unstable manifold W ∈ Fu.

The first statement in Theorem B follows from inequalities (2) using Billings-
ley’s [1, Theorem 14.1] and bounded distortion estimates. Indeed, (2) implies
that µ(℘n(x)) ³ Vol (℘n(x))dimu(Ω), by the definition of transversal measure
and using bounded distortion estimates (see next Section). So, it holds that

dimu(Ω) = lim
n→+∞

ln µ(℘n(x)
ln Vol (℘n(x))

.

Now bounded distortion of the volume implies that Vol (℘n(x)) ³ [JuTn(x)]−1,
uniformly bounded by some universal constant. Then, using the Pointwise Er-
godic Theorem and Shannon-McMillan-Breiman’s property we get the claimed
identity. This is exactly what Billingsley did in [1] in a simpler scenario.

For horseshoes in the plane we have the following result, which gener-
alizes [3, Theorem 1] for bidimensional generalized baker’s transformations
producing horseshoes with non trivial unstable Cantor sets.

Theorem C Let T : Ω ª be a C2 generalized horseshoe with bounded dis-
tortion and µ the equilibrium state given by Theorem A. If dimH denotes the
dimension of a set or of a measure, then :

1. the unstable dimension of Ω is the Hausdorff dimension of its unstable
Cantor sets, that is, dimu(Ω) = dimH(Ω ∩ Fu(x)) for every x ∈ Ω;

2. the stable lamination Fs of Ω is Lipschitz;

3. transversal measures µFu(x) are equivalent to the Hausdorff measure
bounded by uniform constants; indeed, there is a constant C > 1 such
that

µFu(x)(B(z, r)) ³ rdimu(Ω) (4)

for every x ∈ Ω and z ∈ Ω ∩ Fu(x), bounded in [C−1, C] In particular,
the transversal measures are dimensionally exact.

This is a consequence of the equivalence between the dynamical measure and
Hausdorff measure for conformal dynamically defined Cantor sets and it gen-
eralizes [3, Theorem 1.1]. Compare [10, Chapter 4, Proposition 3, pp. 72].
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Theorem D Let T : Ω ª be a C2 generalized horseshoe satisfying the hy-
potheses in Theorem C. The following statements are equivalent:

1. µ satisfies the Pesin entropy formula hµ(T ) =
∫

log JuT (x)dµ(x);

2. Vol W (Ω ∩W ) > 0 for some local unstable manifold W ∈ Fu;

3. the volume Vol W (Ω) of the unstable Cantor sets Ω ∩ Wu(x, R) is uni-
formly bounded away from zero and Fs is absolutely continuous with
respect to Lebesgue measure with uniformly bounded Jacobians;

4. µΩ is absolutely continuous with respect to the riemannian volume along
the local unstable manifolds.

In addition, if any of the above conditions hold the stable invariant lamination
Fs is absolutely continuous with respect to Lebesgue measure and it has a
bounded Jacobian, namely

dH∗Lγu

dLγu

(x) =
+∞∏

i=1

J(T | γu)(T i(x))
J(T | γu)(T i(H(x)))

(5)

for every pair of admissible unstable manifolds γu, γu ∈ Γu. Here Lγu is the
Lebesgue measure class of γu. Therefore, the ergodic basin of the asymptotic
measure contains a set of positive volume, so µΩ is physically observable.

Theorem A at the Introduction is simply a particular case of Theorem D.
As we can see, arguments in [13] extend straighforwardly to the present

set up once we check that the dynamical measure class is non trivial and that
τ : Ω/Fs −→ Ω/Fs satisfies an standard bounded distortion condition.

3 Bounded distortion and bounded geometry
estimates

Let T : Ω ª be a C2 hyperbolic horseshoe defined by countably (possibly
infinite) many hyperbolic branches Ti : Si −→ Ui. We suppose in addition
that the collection Ti have non-linear expansion bounded from below and
bounded distortion. We introduce for further use the following

Definition 3.1. We define the unstable infimum norm as

mu(DT (z)) = inf
ξ∈Ku(z) , ‖ξ‖=1

‖DT (z)ξ‖.
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Lemma 3.1. There is constant C > 1, only depending on the distortion, the
expansion coefficient and the bounded geometry of the admissible manifolds,
such that for every γu ∈ Γu and n ≥ 0

J(Tn | γu)(x)
J(Tn | γu)(y)

≤ exp(Cdu(Tn(x), Tn(y))) (6)

holds whenever ℘n(x) = ℘n(y) and x, y ∈ γu.

In particular, we can find C > 0 such that for every n > 0
∣∣∣∣
JuTn(x)
JuTn(y)

− 1
∣∣∣∣ ≤ C · du(Tn(x), Tn(y)),

when y ∈ ℘n(x) ∩ Wu(x, R).

Proof. Using bounded distortion condition (1) we prove that for every γu ∈ Γu

and i > 0 the following estimate holds:

supz∈γu∩Si
‖∇ log J(Ti | γu)(z)‖

infw∈γu∩Si mu(DTi(w))
≤ ∆ < +∞. (7)

This is a straightforward computation. Now, we use (7) and a standard argu-
ment to get (6). Let γu ∈ Γu an unstable admissible submanifold and denote
γ0 = γu ∩ ℘n(x), γi = T i(γ0):

log
J(Tn | γu)(x)
J(Tn | γu)(y)

≤
n−1∑

i=0

| log J(T | γi)(T i(x))− log J(T | γi)(T i(y))|

≤
n−1∑

i=0

sup
z∈γi

‖∇ log J(T | γi)(z)‖ · ‖T i(x)− T i(y)‖.

Now,

lenght (T (γ)) ≥ inf
γ′(t)

‖DT (γ(t))γ′(t)‖ lenght (γ)

≥ inf
t∈[0,1]

mu(DT (γ(t))) lenght(γ)

for every C1 smooth curve γ = γ(t), t ∈ [0, 1], contained inside an unstable
admissible submanifold, in particular,

du(T (x), T (y)) ≥ inf
w∈γi

mu(DT (w)) du(x, y), (8)

Divulgaciones Matemáticas Vol. 9 No. 1 (2001), pp. 35–54



Sinai-Ruelle-Bowen Measures for Piecewise Hyperbolic Transformations 45

so ‖T (x) − T (y)‖ ≥ C−2 infw∈γi mu(DT (w))‖x − y‖, for every x, y ∈ γi.
Therefore

log J(Tn | γu)(x)/J(Tn | γu)(y)

≤ C2
n−1∑

i=0

supz∈γi ‖∇ log J(T | γi)(z)‖ · ‖Tn(x)− Tn(y)‖
infw∈γi mu(DTn−i(w))

≤ C2
n−1∑

i=0

supz∈γi ‖∇ log J(T | γi)(z)‖ · ‖Tn(x)− Tn(y)‖
infw∈γi+1 mu(DTn−i−1(w)) infw∈γi mu(DT (w)ξ)

≤ C2∆
n−1∑

i=0

λ−(n−i−1) · ‖Tn(x)− Tn(y)‖

≤ C2∆
+∞∑
n=0

λ−n · ‖Tn(x− Tn(y)‖,

which is bounded by C3∆(1−λ−1)du(Tn(x), Tn(y)), using again the bounded
geometry of admissible manifolds and condition (7).

Corollary 3.1. There is a constant C = C(∆, λ, Γ) > 1 such that, for every
admissible unstable manifold γu ∈ Γu and every n > 0 it holds

C−1 inf
γu∈Γu

Vol (γu) ≤ J(Tn | γu)Vol γu(℘n(x)) ≤ C sup
γu∈Γu

Vol (γu).

Lemma 3.2. Let γu = γu(x) and γu = γu(y) be two admissible unstable
manifolds passing by x and y in Ω, respectively. Suppose that y ∈ W s(x, R)
and denote

h(x, y) =

[
+∞∏

i=1

J(T | γu)(T i(x))
J(T | γu)(T i(y))

]α

.

Then h(x, y) ≤ exp(Cds(x, y)) for a constant C = C(∆, λ, Γ) > 1 where
ds(x, y) = dW s(x,R)(x, y). We have also

h(x, y)
h(x′, y′)

≤ max {eCdu(x,x′)) , eCdu(y,y′))},

for every x′ ∈ γu(x) and y′ ∈ γu(y) with y′ ∈ W s(x′, R), where du(x, x′) =
dγu(x)(x, x′) and likewise du(y, y′).
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Proof. We can find a C2 foliation of R by admissible unstable leaves, say
γu = γu(z) passing by γu(x) and γu(y). Using bounded distortion condition
we get

supw∈γs(z) ‖∇ log J(Ti | γu(w))(w)‖
infw∈γs(z) mu(DTi(w))

≤ ∆ < +∞, (9)

for every leave γs(z) contained in Si, every z ∈ R and i > 0. Let us denote
Ji(z) = J(Ti | γu(z))(z). Arguing similarly as we did before we get

log
Ji(T j(x))
Ji(T j(y))

≤ sup
w∈W s(T j(x),R)

‖∇ log Ji(w)‖ · ‖T j(x)− T j(y)‖

≤ C2
supw∈W s(T j(x),R) ‖∇ log Ji(w)‖
infw∈W s(T j(x),R) mu(DTi(w))

‖T j+1(x)− T j+1(y)‖.

Thus log(Ji(T j(x)) / Ji(T j(y))) ≤ ∆ C4λ−(j+1)ds(x, y) and then

log h(x, y) ≤
+∞∑

j=1

∆ C4λ−(j+1)ds(x, y) = ∆ C4(1− λ−1)λ−2ds(x, y).

Further, h(x, y) / h(x′, y′) ≤ exp (C(ds(x, y)− ds(x′, y′)). Therefore,

h(x, y)
h(x′, y′)

≤ max {exp(Cdu(x, x′)), exp(Cdu(y, y′))} ,

for some C = C(∆, λ, Γ) > 1 as claimed.

Corollary 3.2. There is a constant C = C(∆, λ, Γ) > 1 such that, for any
two admissible manifolds γu and γu in Γu it holds Vol γu(P ) ³ Vol γu(P ) for
every P ∈ ℘.

In particular, the volume of the cylinder Vol (P ) is comparable with the
volume of its unstable sections γu ∩ P , i.e., Vol γu(P ) ³ Vol (P ), bounded by
uniform constants which do not depend on p neither γu ∈ Γu.

Proof. It follows from Corollary 3.1 and Lemma 3.2 that for every n > 0

Vol γu(℘n(x))
Vol γu(℘n(x))

≤ C
supγu∈Γu Vol (γu)
infγu∈Γu Vol (γu)

,

and similarly for the lower bound.
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Corollary 3.3. The holonomy of the stable lamination is absolutely contin-
uous with respect to the dynamical class {Dα,γu}γu∈Γu and it has a bounded
Jacobian.

This follows from Dα,γu(B) ³ Dα,γu(H(B)), which is bounded by con-
stants C = C(∆, λ, Γ) > 1, for every γu and γu, where H = Hγu,γu is the
holonomy transformation defined by these unstable admissible manifolds.

We shall prove later that h = hγu,γu below is the Jacobian of H with
respect to the dynamical measure class:

h(x) =

[
+∞∏

i=1

J(T | γu)(T i(x))
J(T | γu)(T i(H(x)))

]α

.

The following result is a straightforward consequence of Lemma 3.2.

Lemma 3.3. For every γu and γu in Γu it holds

h(x) ≤ exp(Cds(x,H(x))) (10)

for a constant C = C(∆, λ, Γ) > 1. Also, for every x and y in γu

h(x)
h(y)

≤ max {eCdu(x,y)) , eCdu(H(x),H(y)))}. (11)

As a consequence of the previous discussion we get a constant C > 1,
depending only on the distortion and the bounded geometry of admissible
manifolds, such that:

1. C−1 ≤ Vol u(P ∩ γu)J(Tn | γu)(x) ≤ C for every x ∈ P ∩ γu;

2. C−1 ≤ Vol u(P ∩ γu) / Vol u(P ∩ γu) ≤ C;

3. C−1 ≤ Vol (P ) / Vol u(P ∩ γu) ≤ C and

4. C−1 ≤ Vol (P )J(Tn | γu)(x) ≤ C, for every x ∈ P ∩ γu,

for any pair of admissible unstable sections γu, γu ∈ Γu, n > 0 and every
stable cylinder P ∈ ℘. We shall refer to all these properties as the volume
lemma.
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4 Proofs of the main results

Lemma 4.1. The dynamical measure class is non trivial.

Proof. Let T : Ω ª be a C2 hyperbolic horseshoe with infinitely many branches
and bounded distortion. We claim that there is a sequence Ωn ⊂ Ω of ordi-
nary horseshoes with finitely many branches and ergodic measures µn such
that

1. Ω =
⋃

n Ωn;

2. there is a constant C > 1 such that, for every local unstable mani-
folds W = Wu(x,R) and for every P ∈ ℘(Ωn), the family of stable
cylinders generating the stable subsets of Ωn, it holds that µn,W (P ) ³
Vol W (P )dimu(Ωn) bounded by C. Here µn,W denotes the projection of
µn the natural equilibrium state of µn onto W along the stable lamina-
tion.

Indeed, let µα the equilibrium state of the potential −α ln JuT of an or-
dinary C2 horseshoe and µW the projection of µα onto W = Wu(x, R) along
the stable leaves. We proved in [13, Theorem 2.4] that µW is equivalent to
the dynamical measure Dα,W . Moreover, we found a constant C > 1 only de-
pending on bounds of the non linear distortion of the volume along unstable
leaves, the expansion coefficient of Ω and the bounded geometry of admissible
manifolds such that

C−1 inf
W∈Fu

Vol (W ) ≤ µW (P )
(Vol W P )dimu(Ω)

≤ C sup
W∈Fu

Vol (W ), (12)

for every stable cylinder P ∈ ℘.
Now, let Ωn be the horseshoe generated by Ti : Si −→ Ui, for i = 1, · · · , n.

Ω is the topological limit of these Ωn, that is Ω =
⋃

n Ωn. By distortion
estimates in Corollary 3.1 and Lemma 3.3 we can see that the bounds for the
non linear volume distortion of Ωn are independent of n > 0. In particular
we can find d > 0 such that, for every m > 0 and n > 0 it holds that

JuTm(x)
JuTm(y)

∈ [e−d, ed] whenever ℘n
m(x) = ℘n

m(y),

where wpn
m = wpm(Ωn) are the generating stable cylinders of order m > 0 of

the horseshoe Ωn.
Let µn denotes the Gibbs measure of φ = − dimu(Ωn) ln JuT . Then it

is the equilibrium state which maximizes the unstable dimension for Ωn and
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µn,W (P ) ³ Vol W (P )dimu(Ωn) for every P ∈ ℘(Ωn), bounded in [C−1, C] by
some constant C = C(∆, λ, Γ) > 1. Notice also that ℘(Ωn) ⊂ ℘(Ωn+1).

Now let α = limn→+∞ dimD,W (Ωn). This limit exists since dimD,W (Ωn)
is monotone and bounded. Let µ∗ be a limit point of µn. µ∗ is ergodic since
it is a limit of ergodic measures and for every P ∈ ℘ it holds

µ∗(P ) ≥ lim sup
n→+∞

µn(P ) ≥ C−1 lim sup
n→+∞

Vol W (P )dimD,W (Ωn)

since P ∈ ℘ is closed. Thus µ∗(P ) ≥ C−1Vol W (P )α for every P ∈ ℘, conclud-
ing that Dα,W (Ω) < +∞, using Frostman’s lemma argument. Furthermore,
µ∗(B) ≥ C−1 · Dα,W (B) for every Borel subset B ⊆ Ω so it is absolutely
continuous respect to the dynamical measure class. Similarly so,

µ∗(intP ) ≤ lim inf
n→+∞

µn(int P ) ≤ C lim inf
n→+∞

Vol W (P )dimD,W (Ωn),

since Vol (∂ P ) = 0 for every P ∈ ℘. Then, µ∗(intP ) ≤ C Vol W (P )α and this
imply Dα,W (Ω) > 0.

Now, we recall that τ(x) = HW (T (x)),W ◦T (x), is the projection of T along
the stable leaves. Here W = Wu(x, R) and W (T (x)) = Wu(T (x), R). Now, τ
has a Jacobian with respect to Dα,W . For this we use that the dynamical mea-
sure class is conformal and the absolute continuity of the stable lamination.
Indeed, using conformality we check easily that

Jατ(x) =
dH∗Dα,W

dDα,W (T (x))
(T (x))[JuT (x)]α,

for every local unstable manifold W = Wu(x, R).

Lemma 4.2. There exists a constant C = C(∆, λ, Γ) > 1 such that
∣∣∣∣
Jατn(x)
Jατn(y)

− 1
∣∣∣∣ ≤ C d∗(τn(x), τn(y)),

whenever ℘(n, W )(x) = ℘(n,W )(y), where ℘(n,W )(x) denotes the connected
component of the intersection ℘n(x) ∩ W in W = Wu(x, R) containing x.

Proof. First notice that there is a constant C > 1, depending only on the
bounded geometry of the admissible manifolds, such that

ln

[
n−1∏

k=0

Ju(τk(x))
Ju(τk(y))

]
≤ Cd∗(τn(x), τn(y))θ.
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This follows from the Bounded Distortion Property (7) and ‖τk(x)−τk(y)‖ ³
d∗(τk(x), τk(y)) = d∗(T k(x), T k(y)).

Also, using the Bounded Distortion Property (11) we conclude that

ln
h(T (τk(x)))
h(T (τk(y)))

≤ C max {du(T (τk(x)), T (τk(y)))θ , du(τk+1(x), τk+1(y))θ},

which is in turn no greater than 2Cd∗(τk+1(x), τk+1(y)θ), for some constant
C > 1, depending only on the bounded geometry, since du is comparable with
d∗. Thus, for every n > 0 we have

ln

[
n−1∏

k=0

h(T (τk(x)))
h(T (τk(y)))

]
≤ 2C

n−1∑

k=0

λ−n−k−1d∗(τn(x), τn(y))θ

≤ C(1− λ−1)d∗(τn(x), τn(y))θ,

absorbing the various constants into some C = C(Γ) we get

Jατn(x)
Jατn(y)

≤ exp(Cd∗(τn(x), τn(y))θ).

Then, an easy argument concludes the proof.

Lemma 4.2 above shows that the endomorphism τ of the unstable Cantor
set Λ = W ∩ Ω endowed with the Borel measure Dα,W satisfies the hypotheses
of [9, Chapter III, Theorem 1.3]. Therefore, there is a unique ergodic mea-
sure µFu(x) which is equivalent to Dα,Fu(x) and which maximizes dimension.
Compare also [2, Chapter V, Theorem 2.2], [7, Chapter 6] and [16].

This defines an ergodic Borel probability µ̃ defined over the stable Borel
subsets Bs simply by setting

µW (B) = µ̃

( ⋃

z∈B

Fs(z)

)
for every Borel subset B ⊂ Fu(x) ∩ Ω.

By the absolute continuity of the stable lamination this measure µ̃ does not
depend on the unstable leave W = Wu(x, R) choosen. Now,

∨
n≥0 TnBs

generates B(Ω), the Borel subsets of Ω. This permits to extend µ̃ to a Borel
probability µ = µΩ defined over B(Ω). µW is precisely the projection of µΩ

onto W . This concludes the proof of Theorem A.
On the other hand it can be proved, using bounded distortion estimates,

that Dα,W (P ) ³ (Vol W P )α for every local unstable manifold W ∈ Fu, where
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α = dimu(Ω). Compare for example [10, Chapter IV]. As the transver-
sal measure µW is equivalent to the dynamical measure, we conclude that
µW (P ) ³ (Vol W P )dimu(Ω). This concludes the proof of Theorem B.

Now we are ready to prove Theorems C and D.

Proof of Theorem C
Using the Bounded Distortion Lemma and volume estimates we show that for
every n ≥ 0 and P ∈ ℘∗ such that Tn(P ) is an unstable cylinder (i.e., such
that Tn(P ) has full width) diam (P ∩Wu(x, R)) ³ ‖JuTn(x)‖−1 bounded by
a constant not depending on x, P or n. Now, given r > 0 and x ∈ Ω∗ we define
n = n(x, r) > 0 as the minimum positive integer satisfying (JuTn(x))−1 ≤ r
and (JuTn−1f(x))−1 > r. Therefore,

B(x,C−1 r) ∩ γu ⊆ Sn(x) ∩ γu ∩ γu ⊆ B(x,C r) ∩ γu (13)

for every 0 < r < 1 and x ∈ Ω and some universal constant C > 1, depending
only on the distortion and the bounded geometry of admissible manifolds,
where W s(x,R) =

⋂
n≥0 Sn(x) is a nested sequence of stable cylinders con-

verging to the local stable manifold, n = n(x, r) and Tn(Sn(x) ∩ γu) is an
admissible unstable manifold.

We use this to define Moran’s covers ℘r for every 0 < r < 1 associated
to ℘ according to Cf. [11, Chapter 7]. Moran’s covers satisfy the following
finite multiplicity property: there exists a universal constant M > 1 such
that B(x, r) ∩ γu intersects at most M atoms in the family ℘r(γu), for every
x ∈ Λ, 0 < r < 1 and admissible unstable manifold γu. M should depend
in principle on γu, however, by geometry of admissible manifolds shows that
this dependence can be dropped out.

By Theorem C, µFu(x)(P ) ³ diam (P∩Wu(x, R))dimu(Ω). So for every P ∈
℘, hence µFu(x)(B(x, r)) ³ diam (B(x, r) ∩ γu))dimu(Ω) which is comparable
with rdimu(Ω) for every x ∈ Ω, 0 < r < 1, using the bounded geometry of
admissible manifolds. So, dimH(Ω∩Wu(x, R) = dimu(Ω), and the dynamical
measure, the Hausdorff measure and the transversal measure are in the same
measure class and the transversal measure µFu(x) has the strong uniform
distribution property µFu(x)(B(x, r)) ³ rdimu(Ω), for every x ∈ Ω and 0 <
r < 1, bounded by a universal constant.

In particular, the holonomies have a bounded Jacobian respect to the
Hausdorff measure. Finally, by Frostman’s uniform distribution property and
the existence of a bounded Jacobian with respect to the Hausdorff measure
for the holonomies of the stable lamination Fs we see that

‖x− y‖α ³ Hα,γu([x, y]) ³ Hα,γu([H(x),H(y)]) ³ ‖H(x)−H(y)‖α,
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52 Fernando José Sánchez-Salas

where α = dimH(Ω ∩W ), Hα,γu is the restriction of the Hausdorff measure
to the admissible unstable manifold γu and H = Hγu,γu is the holonomy map
defined by γu and γu. Constants are uniform, by previous remarks and the
bounded geometry of admissible manifolds. Hence,

‖H(x)−H(y)‖
‖x− y‖ ³ 1, ∀ x, y ∈ γu ∩

⋃

z∈Ω

W s(z, R),

meaning that C−1‖x− y‖ ≤ ‖H(x)−H(y)‖ ≤ C‖x− y‖, Fs is Lipschitz. We
are done.

Proof of Theorem D
We notice that D1,γu represents the Lebesgue measure class of γu. This is a
straightforward consequence of the definitions and the fact that ℘ generates
the stable lamination. In particular, Vol γu(X) > 0 implies dimu(X) = 1.
Thus, dimu(Ω) = 1 implies that µW , the projection of µ along Fs onto the
local unstable manifolds W = Wu(x, R), is equivalent to the restriction of the
Lebesgue measure class LW to W ∩ Ω, bounded by constants not depending
on x ∈ Ω neither on W ∈ Fu. In particular, the volume Vol W (Ω) of the
unstable Cantor sets Ω ∩ Wu(x, R) is uniformly bounded away from zero, by
the absolute continuity of the lamination and since its Jacobians are uniformly
bounded. As Vol W (Ω) > 0 for some local unstable manifold W = Wu(x, R)
implies dimu(Ω) = 1, we see that all these conditions are equivalent. To finish,
we notice that the ergodic basin of µ = µΩ, defined as

W s(µ) = {x ∈ R : lim
n→+∞

1
n

n−1∑

k=0

φ(T k(x)) =
∫

φ(z)dµ(z) ∀φ ∈ C0(M)},

contains the stable set of Ω, W s(Ω) =
⋃

x∈Ω Fs(x). Now, W s(Ω) has posi-
tive volume, in view of the absolute continuity of the stable lamination with
respect to the Lebesgue measure, using a Fubini’s theorem argument, hence
Vol (W s(µ)) > 0 and we are done.
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