Divulgaciones Matemáticas Vol. 9 No. 1(2001), pp. 55-63

More on Generalized Homeomorphisms in Topological Spaces

Más Sobre Homeomorfismos Generalizados en Espacios Topológicos

Miguel Caldas (gmamccs@vm.uff.br)

Departamento de Matemática Aplicada Universidade Federal Fluminense-IMUFF Rua Mário Santos Braga s/n⁰, CEP:24020-140, Niteroi-RJ. Brasil.

Abstract

The aim of this paper is to continue the study of generalized homeomorphisms. For this we define three new classes of maps, namely generalized Λ_s -open, generalized Λ_s^c -homeomorphisms and generalized Λ_s^I -homeomorphisms, by using $g.\Lambda_s$ -sets, which are generalizations of semi-open maps and generalizations of homeomorphisms. **Key words and phrases:** Topological spaces, semi-closed sets, semi-

open sets, semi-homeomorphisms, semi-closed maps, irresolute maps.

Resumen

El objetivo de este trabajo es continuar el estudio de los homeomorfismos generalizados. Para esto definimos tres nuevas clases de aplicaciones, denominadas Λ_s -abiertas generalizadas, Λ_s^c -homeomofismos generalizados y Λ_s^I -homeomorfismos generalizados, haciendo uso de los conjuntos $g.\Lambda_s$, los cuales son generalizaciones de las funciones semiabiertas y generalizaciones de homeomorfismos.

Palabras y frases clave: Espacios topológicos, conjuntos semi-cerrados, conjuntos semi-abiertos, semi-homeomorfismos, aplicaciones semicerradas, aplicaciones irresolutas.

Recibido 2000/10/23. Revisado 2001/03/20. Aceptado 2001/03/29. MSC (2000): Primary 54C10, 54D10.

Miguel Caldas

1 Introduction

56

Recently in 1998, as an analogy of Maki [10], Caldas and Dontchev [5] introduced the Λ_s -sets (resp. V_s -sets) which are intersections of semi-open (resp. union of semi-closed) sets. In this paper we shall introduce three classes of maps called generalized Λ_s -open, generalized Λ_s^c -homeomorphisms and generalized Λ_s^I -homeomorphisms, which are generalizations of semi-open maps, generalizations of homeomorphisms, semi-homeomorphisms due to Biswas [2] and semi-homeomorphisms due to Crossley and Hildebrand [7] and we investigate some properties of generalized Λ_s^c -homeomorphisms and generalized Λ_s^I -homeomorphisms from the quotient space to other spaces.

Throughout this paper we adopt the notations and terminology of [10], [5] and [6] and the following conventions: (X, τ) , (Y, σ) and (Z, γ) (or simply X, Y and Z) will always denote topological spaces on which no separation axioms are assumed, unless explicitly stated.

2 Preliminaries

A subset A of a topological space (X, τ) is said to be semi-open [9] if for some open set $O, O \subseteq A \subseteq Cl(O)$, where Cl(O) denotes the closure of O in (X, τ) . The complement A^c or X - A of a semi-open set A is called semiclosed [3]. The family of all semi-open (resp. semi-closed) sets in (X, τ) is denoted by $SO(X, \tau)$ (resp. $SC(X, \tau)$). The intersection of all semi-closed sets containing A is called the semi-closure of A [3] and is denoted by sCl(A). A map $f : (X, \tau) \to (Y, \sigma)$ is said to be semi-continuous [9] (resp. irresolute [7]) if for every $A\epsilon\sigma$ (resp. $A\epsilon SO(Y, \sigma)$), $f^{-1}(A)\epsilon SO(X, \tau)$; equivalently, f is semi-continuous (resp. irresolute) if and only if, for every closed set A (resp. semi-closed set A) of $(Y, \sigma), f^{-1}(A)\epsilon SC(X, \tau)$. f is pre-semi-closed [7] (resp. pre-semi-open [1], resp. semi-open [11]) if $f(A)\epsilon SC(Y, \sigma)$ (resp. $f(A)\epsilon SO(Y, \sigma)$) for every $A\epsilon SC(X, \tau)$ (resp. $A\epsilon SO(X, \tau)$, resp. $A\epsilon\tau$). f is a semi-homeomorphism (B) [2] if f is bijective, continuous and semi-open. f is a semi-homeomorphism (C.H) [7] if f is bijective, irresolute and pre-semi-open.

Before entering into our work we recall the following definitions and propositions, due to Caldas and Dontchev [5].

Definition 1. Let *B* be a subset of a topological space (X, τ) . *B* is called a Λ_s -set (resp. V_s -set) [5], if $B = B^{\Lambda_s}$ (resp. $B = B^{V_s}$), where $B^{\Lambda_s} = \bigcap \{O : O \supseteq B, O \in SO(X, \tau)\}$ and $B^{V_s} = \bigcup \{F : F \subseteq B, F^c \in SO(X, \tau)\}.$

Definition 2. In a topological space (X, τ) , a subset B is called

Divulgaciones Matemáticas Vol. 9 No. 1 (2001), pp. 55-63

More on Generalized Homeomorphisms in Topological Spaces

- (i) generalized Λ_s -set (written as $g.\Lambda_s$ -set) of (X, τ) [5], if $B^{\Lambda_s} \subseteq F$ whenever $B \subseteq F$ and $F \epsilon SC(X, \tau)$.
- (ii) generalized V_s -set (written as $g.V_s$ -set) of (X, τ) [5], if B^c is a $g.\Lambda_s$ -set of (X, τ) .

Remark 2.1. From Definitions 1, 2 and [5] (Propositions 2.1, 2.2), we have the following implications, none of which is reversible:

Open sets \rightarrow Semi-open sets $\rightarrow \Lambda_s$ -sets $\rightarrow g.\Lambda_s$ -sets , and Closed sets \rightarrow Semi-closed sets $\rightarrow V_s$ -sets $\rightarrow g.V_s$ -sets

- **Definition 3.** (i) A map $f : (X, \tau) \to (Y, \sigma)$ is called generalized Λ_s continuous (written as $g.\Lambda_s$ -continuous) [6] if $f^{-1}(A)$ is a $g.\Lambda_s$ -set in (X, τ) for every open set A of (Y, σ) .
- (ii) A map f: (X, τ) → (Y, σ) is called generalized Λ_s-irresolute (written as g.Λ_s-irresolute) [6] if f⁻¹(A) is a g.Λ_s-set in (X, τ) for every g.Λ_s-set of (Y, σ).
- (iii) A map $f : (X, \tau) \to (Y, \sigma)$ is called *generalized* V_s -closed (written as $g.V_s$ -closed) [6] if for each closed set F of X, f(F) is a $g.V_s$ -set.

3 G. Λ_s -open maps and g. Λ_s -homeomorphisms

In this section we introduce the concepts of generalized Λ_s -open maps, generalized Λ_s^c -homeomorphisms and generalized Λ_s^I -homeomorphisms and we study some of their properties.

Definition 4. A map $f: (X, \tau) \to (Y, \sigma)$ is called *generalized* Λ_s -open (written as $g.\Lambda_s$ -open) if for each open set A of X, f(A) is a $g.\Lambda_s$ -set.

Obviously every semi-open map is $g.\Lambda_s$ -open. The converse is not always true, as the following example shows.

Example 3.1. Let $X = \{a, b, c\}, Y = \{a, b, c, d\}, \tau = \{\emptyset, \{b, c\}, X\}$ and $\sigma = \{\emptyset, \{c, d\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a map defined by f(a) = a, f(b) = b and f(c) = d. Then, for X which is open in $(X, \tau), f(X) = \{a, b, d\}$ is not a semi-open set of Y. Hence f is not a semi-open map. However, f is a $g.\Lambda_s$ -open map.

We consider now some composition properties in terms of $g.\Lambda_s$ -sets.

Theorem 3.2. Let $f : (X, \tau) \to (Y, \sigma), g : (Y, \sigma) \to (Z, \gamma)$ be two maps such that $g \circ f : (X, \tau) \to (Z, \gamma)$ is a $g.\Lambda_s$ -open map. Then

Divulgaciones Matemáticas Vol. 9 No. 1 (2001), pp. 55-63

(i) g is $g.\Lambda_s$ -open, if f is continuous and surjective.

58

(ii) f is g. Λ_s -open, if g is irresolute, pre-semi-closed and bijective.

Proof. (i) Let A be an open set in Y. Since $f^{-1}(A)$ is open in X, $(g \circ f)(f^{-1}(A))$ is a $g.\Lambda_s$ -set in Z and hence g(A) is $g.\Lambda_s$ -set in Z. This implies that g is a $g.\Lambda_s$ -open map.

(ii) Let A be an open set in X. Then $(g \circ f)(A)$ is a $g.\Lambda_s$ -set in (Z, γ) . Since g is irresolute, pre-semi-closed and bijective, $g^{-1}(g \circ f)(A)$ is a $g.\Lambda_s$ -set in (Y, σ) . Really, suppose that $(g \circ f)(A) = B$ and $g^{-1}(B) \subseteq F$ where F is semi-closed in (Y, σ) . Therefore $B \subseteq g(F)$ holds and g(F) is semi-closed, because g is presemi-closed. Since B is $(g \circ f)(A)$, $B^{\Lambda_s} \subseteq g(F)$ and $g^{-1}(B^{\Lambda_s}) \subseteq F$. Hence, since g is irresolute, we have $(g^{-1}(B))^{\Lambda_s} \subseteq g^{-1}(B^{\Lambda_s}) \subseteq F$. Thus $g^{-1}(B) = g^{-1}(g \circ f)(A)$ is a $g.\Lambda_s$ -set in (Y, σ) . Since g is injective, $f(A) = g^{-1}(g \circ f)(A)$ is $g.\Lambda_s$ -set in Y. Therefore f is $g.\Lambda_s$ -open.

Remark 3.3. A bijection $f: (X, \tau) \to (Y, \sigma)$ is pre-semi-open if and only if f is pre-semi-closed.

Theorem 3.4. (i) If $f : (X, \tau) \to (Y, \sigma)$ is a $g.\Lambda_s$ -open map and $g : (Y, \sigma) \to (Z, \gamma)$ is bijective, irresolute and pre-semi-closed, then $g \circ f : (X, \tau) \to (Z, \gamma)$ is a $g.\Lambda_s$ -open map.

(ii) If $f: (X, \tau) \to (Y, \sigma)$ is an open map and $g: (Y, \sigma) \to (Z, \gamma)$ is a $g.\Lambda_s$ -open map, then $g \circ f: (X, \tau) \to (Z, \gamma)$ is a $g.\Lambda_s$ -open map.

Proof. (i) Let A be an arbitrary open set in (X, τ) . Then f(A) is a $g.\Lambda_s$ -set in (Y, σ) because f is $g.\Lambda_s$ -open. Since g is bijective, irresolute and pre-semiclosed $(g \circ f)(A) = g(f(A))$ is $g.\Lambda_s$ -open. Really. Let $g(f(A) \subseteq F$ where F is any semi-closed set in (Z, γ) . Then $f(A) \subseteq g^{-1}(F)$ holds and $g^{-1}(F)$ is semi-closed because g is irresolute. Since g is pre-semi-open (Remark 3.3) $(g(f(A)))^{\Lambda_s} \subseteq g((f(A))^{\Lambda_s}) \subseteq F$. Hence g(f(A)) is $g.\Lambda_s$ -set in (Z, γ) . Thus $g \circ f$ is $g.\Lambda_s$ -open.

(ii) The proof follows immediately from the definitions.

Definition 5. A bijection $f : (X, \tau) \to (Y, \sigma)$ is called a *generalized* Λ_s^c -homeomorphism (written $g.\Lambda_s^c$ -homeomorphism) if f is both $g.\Lambda_s$ -continuous and $g.\Lambda_s$ -open.

In order to obtain an alternative description of the $g.\Lambda_s^c$ -homeomorphisms, we first prove the following three theorems which are in [6].

Theorem 3.5. Let $f : (X, \tau) \to (Y, \sigma)$ be $g.\Lambda_s$ -irresolute. Then f is $g.\Lambda_s$ -continuous, but not conversely.

Divulgaciones Matemáticas Vol. 9 No. 1 (2001), pp. 55-63

Proof. Since every open set is semi-open and every semi-open set is $g.\Lambda_s$ -set (Remark 2.1) it is proved that f is $g.\Lambda_s$ -continuous.

The converse needs not be true, as seen from the following example.

Example 3.6. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\emptyset, \{a, b\}, Y\}$. The identity map $f : (X, \tau) \to (Y, \sigma)$ is $g.\Lambda_s$ -continuous but it is not $g.\Lambda_s$ -irresolute, since for the $g.\Lambda_s$ -set $\{b, c\}$ of (Y, σ) the inverse image $f^{-1}(\{b, c\}) = \{b, c\}$ is not a $g.\Lambda_s$ -set of (X, τ) .

Theorem 3.7. A map $f : (X, \tau) \to (Y, \sigma)$ is $g.\Lambda_s$ -irresolute (resp. $g.\Lambda_s$ continuous) if and only if, for every $g.V_s$ -set A (resp. closed set A) of (Y, σ) the inverse image $f^{-1}(A)$ is a $g.V_s$ -set of (X, τ) .

Proof. Necessity: If $f : (X, \tau) \to (Y, \sigma)$ is $g.\Lambda_s$ -irresolute, then every $g.\Lambda_s$ -set B of (Y, σ) , $f^{-1}(B)$ is $g.\Lambda_s$ -set in (X, τ) . If A is any $g.V_s$ -set of (Y, σ) , then A^c is a $g.\Lambda_s$ -set (Definition 2(ii)). Thus $f^{-1}(A^c)$ is a $g.\Lambda_s$ -set, but $f^{-1}(A^c) = (f^{-1}(A))^c$ so that $f^{-1}(A)$ is a $g.V_s$ -set.

Sufficiency: If, for all $g.V_s$ -set A of $(Y, \sigma)f^{-1}(A)$ is a $g.V_s$ -set in (X, τ) , then if B is any $g.\Lambda_s$ -set of (Y, σ) then B^c is a $g.V_s$ -set. Also $f^{-1}(B^c) = (f^{-1}(B))^c$ is a $g.V_s$ -set. Thus $f^{-1}(B)$ is a $g.\Lambda_s$ -set.

In a similar way we prove the case $g.\Lambda_s$ -continuous.

Theorem 3.8. If a map $f : (X, \tau) \to (Y, \sigma)$ is bijective irresolute and presemi-closed, then

- (i) for every $g.\Lambda_s$ -set B of (Y, σ) , $f^{-1}(B)$ is a $g.\Lambda_s$ -set of (X, τ) (i.e., f is $g.\Lambda_s$ -irresolute).
- (ii) for every $g.\Lambda_s$ -set A of (X, τ) , f(A) is a $g.\Lambda_s$ -set of (Y, σ) (i.e., f is $g.\Lambda_s$ -preopen).

Proof. (i) Let B be a $g.\Lambda_s$ -set of (Y,σ) . Suppose that $f^{-1}(B) \subseteq F$ where F is semi-closed in (X,τ) . Therefore $B \subseteq f(F)$ holds and f(F) is semi-closed, because f is pre-semi-closed. Since B is a $g.\Lambda_s$ -set, $B^{\Lambda_s} \subseteq f(F)$, and hence $f^{-1}(B^{\Lambda_s}) \subseteq F$. Therefore we have $(f^{-1}(B))^{\Lambda_s} \subseteq f^{-1}(B^{\Lambda_s}) \subseteq F$. Hence $f^{-1}(B)$ is a $g.\Lambda_s$ -set in (X,τ) .

(ii) Let A be a $g.\Lambda_s$ -set of (X, τ) . Let $f(A) \subseteq F$ where F is any semi-closed set in (Y, σ) . Then $A \subseteq f^{-1}(F)$ holds and $f^{-1}(F)$ is semi-closed because f is irresolute. Since f is pre-semi-open, $(f(A))^{\Lambda_s} \subseteq f(A^{\Lambda_s}) \subseteq F$. Hence f(A) is a $g.\Lambda_s$ -set in (Y, σ) .

Miguel Caldas

Corollary 3.9. If a map $f: (X, \tau) \to (Y, \sigma)$ is bijective, irresolute and presemi-closed, then:

(i) for every $g.V_s$ -set B of (Y, σ) , $f^{-1}(B)$ is a $g.V_s$ -set of (Y, σ) , and (ii) for every $g.V_s$ -set A of (X, τ) , f(A) is a $g.V_s$ -set of (Y, σ) .

Proposition 3.10. Every semi-homeomorphism (B) and semi-homeomorphism (C.H) is a $g.\Lambda_s^c$ -homeomorphism.

Proof. It is proved from the definitions and Theorem 3.8.

The converse of Proposition 3.10 is not true as seen from the following examples.

Example 3.11.

 $g.\Lambda_s^c$ -homeomorphisms need not be semi-homeomorphisms (B).

Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b\}, \{a, b\}, Y\}$. Then the $g.\Lambda_s$ -sets of (X, τ) are $\emptyset, X, \{a\}, \{a, b\}, \{a, c\}$ and the $g.\Lambda_s$ -sets of (Y, σ) are $\emptyset, Y, \{b\}, \{a, b\}, \{b, c\}$. Let f be a map from (X, τ) to (Y, σ) defined by f(a) = b, f(b) = a and f(c) = c. Here f is a $g.\Lambda_s^c$ -homeomorphism from (X, τ) to (Y, σ) . However f is not a semi-homeomorphism (B), since f is not continuous.

Example 3.12.

 $g.\Lambda_s^c$ -homeomorphisms need not be semi-homeomorphisms (C.H).

Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$. Let $f : (X, \tau) \to (X, \tau)$ be a bijection defined by f(a) = b, f(b) = a and f(c) = c. Since f is not irresolute f is not a semi-homeomorphism (C.H). However, f is a $g.\Lambda_s^c$ -homeomorphism.

We characterize $g.\Lambda_s^c$ -homeomorphism and $g.\Lambda_s$ -open maps. The proofs are obvious and hence omitted.

Proposition 3.13. For any bijection $f : (X, \tau) \to (Y, \sigma)$ the following statements are equivalent.

(i) Its inverse map $f^{-1}: (Y, \sigma) \to (X, \tau)$ is $g.\Lambda_s$ -continuous. (ii) f is $g.\Lambda_s$ -open. (iii) f is $g.V_s$ -closed.

Proposition 3.14. Let $f : (X, \tau) \to (Y, \sigma)$ be a bijective and $g.\Lambda_s$ -continuous map. Then the following statements are equivalent.

- (ii) f is a $g.\Lambda_s^c$ -homeomorphism.
- (iii) f is a $g.V_s$ -closed map.

Now we introduce a class of maps which are included in the class of $g.\Lambda_s^c$ -homeomorphisms and includes the class de homeomorphisms. Moreover, this class of maps is closed under the composition of maps.

60

⁽i) f is a $g.\Lambda_s$ -open map.

Divulgaciones Matemáticas Vol. 9 No. 1 (2001), pp. 55-63

More on Generalized Homeomorphisms in Topological Spaces

Definition 6. A bijection $f: (X, \tau) \to (Y, \sigma)$ is said to be a generalized Λ_s^I -homeomorphism (written $g.\Lambda_s^I$ -homeomorphism) if both f and f^{-1} preserve $g.\Lambda_s$ -sets, i.e., if both f and f^{-1} are $g.\Lambda_s$ -irresolute. We say that two spaces (X, τ) and (Y, σ) are $g.\Lambda_s^I$ -homeomorphic if there exists a Λ_s^I -homeomorphism from (X, τ) in (Y, σ) .

Remark 3.15. Every semi-homeomorphism (C.H) is a $g.\Lambda_s^I$ -homeomorphism by (Theorem 3.8). Every $g.\Lambda_s^I$ -homeomorphism is a $g.\Lambda_s^c$ -homeomorphism. The converses are not true from the following examples.

Example 3.16.

 $g.\Lambda_s^I$ -homeomorphisms need not be semi-homeomorphisms (C.H). Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$. Then the $g.\Lambda_s$ -sets of (X, τ) are

 $\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\} \text{ and } X.$ Let $f: (X, \tau) \to (X, \tau)$ be a map defined by f(a) = b, f(b) = a, f(c) = c. Here f is a $g.\Lambda_s^I$ -homeomorphism. However f is not a semi-homeomorphism (CH), since it is not irresolute.

Example 3.17.

 $g.\Lambda_s^c$ -homeomorphisms need not be $g.\Lambda_s^I$ -homeomorphisms.

Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\emptyset, \{a, b\}, Y\}$. The identity map $f : (X, \tau) \to (Y, \sigma)$ is not a $g.\Lambda_s^I$ -homeomorphism since for the $g.\Lambda_s$ -set $\{b, c\}$ of (Y, σ) , the inverse image $f^{-1}(\{b, c\}) = \{b, c\}$ is not a $g.\Lambda_s$ -set of (X, τ) , i.e., f is not $g.\Lambda_s$ -irresolute (and so it is not a semihomeomorphism (C.H)). However f is a $g.\Lambda_s^c$ -homeomorphism.

Remark 3.18. From the propositions, examples and remarks above, we have the following diagram of implications.

4 Additional Properties.

Definition 7. A subset *B* of a topological space (X, τ) is said to be $g.\Lambda_s$ compact relative to *X*, if for every cover $\{A_i : i \in \Omega\}$ of *B* by $g.\Lambda_s$ -subsets of (X, τ) , i.e., $B \subset \bigcup \{A_i : i \in \Omega\}$ where A_i $(i \in \Omega)$ are $g.\Lambda_s$ -sets in (X, τ) ,

Divulgaciones Matemáticas Vol. 9 No. 1 (2001), pp. 55-63

Miguel Caldas

there exists a finite subset Ω_o of Ω such that $B \subset \bigcup \{A_i : i \in \Omega_o\}$. If X is $g.\Lambda_s$ -compact relative to X, (X, τ) is said to be a $g.\Lambda_s$ -compact space.

Proposition 4.1. Every g.V_s-set of a g. Λ_s -compact space (X, τ) is g. Λ_s compact relative to X.

Since the proof is similar to the sg-compactnees (see [4], Theorem 4.1), it is omitted.

Proposition 4.2. Let $f: (X,\tau) \to (Y,\sigma)$ be a map and let B be a $g.\Lambda_s$ compact set relative to (X, τ) . Then, (i) If f is $g.\Lambda_s$ -continuous, then f(B) is compact in (Y, σ) .

(ii) If f is $g.\Lambda_s$ -irresolute, then f(B) is $g.\Lambda_s$ -compact relative to Y.

Proof. (i) Let $\{U_i : i \in \Omega\}$ be any collection of open subsets of (Y, σ) such that $f(B) \subset \bigcup \{U_i : i \in \Omega\}$. Then $B \subset \bigcup \{f^{-1}(U_i) : i \in \Omega\}$ holds and there exists a finite subset Ω_o of Ω such that $B \subset \bigcup \{f^{-1}(U_i) : i \in \Omega_o\}$ which shows that f(B) is compact in (Y, σ) . (ii) Analogous to (i).

Acknowledgement

The author is very grateful to the referee for his observations on this paper.

References

- [1] Anderson D. R., Jensen, J. A. Semi-Continuity on Topological Spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 42(1967), 782-783.
- [2] Biswas, N. On some Mappings in Topological Spaces, Bull. Calcutta Math. Soc. **61**(1969), 127–135.
- [3] Biswas, N. On Characterization of Semi-Continuous Function, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 48(1970), 399-402.
- [4] Caldas, M. Semi-Generalized Continuous Maps in Topological Spaces, Portugaliae Math., **52**(1995), 399–407.
- [5] Caldas, M., Dontchev, J. $G.\Lambda_s$ -sets and $G.V_s$ -sets, Mem. Fac. Sci. Kochi Univ. (Math.), **21**(2000), 21–30.

62

Divulgaciones Matemáticas Vol. 9 No. 1 (2001), pp. 55-63

More on Generalized Homeomorphisms in Topological Spaces

- [6] Caldas, M. On Maps and Generalized Λ_s -sets, East-West J. Math., $\mathbf{2}(2000)$, 181–190.
- [7] Crossley, G., Hildebrand, S. K. Semi-Topological Properties, Fund. Math., 74(1972), 233–254.
- [8] Devi, R., Balachandran, K., Maki, H. Semi-Generalized Homeomorphisms and Generalized Semi-Homeomorphisms in Topological Spaces, Indian J. Pure Appl. Math., 26(1995), 275–284.
- [9] Levine, N. Semi-open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Monthly, 70(1963), 36–41.
- [10] Maki, H. Generalized Λ-sets and the Associeted Closure Operator, the Special Issue in Commemoration of Prof. Kazusada IKEDA's Retirement, (1986), 139–146.
- [11] Noiri, T. A Generalization of Closed Mapping, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 54(1973), 412–415.