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Abstract

In this article a historical outline of the implicit functions theory is
presented starting from the wiewpoint of Descartes algebraic geometry
(1637) and Leibniz (1676 or 1677), Johann Bernoulli (1695) and Euler
(1748) infinitesimal calculus. The critical contribution is highlighted
due to the italian mathematician Ulisse Dini who settled the matter in
modern form inside the real functions theory. The paper supplies the
documented proof of Dini’s priority in the so called implicit functions
theorem. In the meanwhile the historical lack in attributing the theorem
to Dini can be ascribed to the fact that he published his proof only in
his Lezioni [3], written for supporting his teaching.
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Resumen

En este art́ıculo se presenta un excursus histórico de la teoŕıa de las
funciones impĺıcitas, empezando con el punto de vista de la geometŕıa
algebraica de Descartes (1637) y el análisis infinitesimal de Leibniz (1676
o 1677), Johan Bernoulli (1695) y Euler (1748). Se pone en evidencia la
contribución decisiva del matemático italiano Ulisse Dini, quien plan-
teó la cuestión en términos modernos, en el ámbito de la teoŕıa de las
funciones de variables reales, produciendo la prueba documentada de su
paternidad en lo que, hoy en d́ıa, es el teorema de las funciones impĺıci-
tas. También se evidencia que el vaćıo historiográfico en la atribución
del teorema a Dini puede depender del hecho de que él publicó una
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demostración rigurosa solamente en sus Lezioni [3], como soporte de su
actividad docente.
Palabras y frases clave: funciones impĺıcitas, historia contemporánea.

1 Introduction

This paper goes back to the implicit functions theory and to the relevant
analytical questions. All this was matter of research for Descartes and other
mathematicians since the first half of the 17th century for almost two hundred
years, but only at the end of the 1800’s the theory received a satisfactory set-
tlement by the Italian mathematician Ulisse Dini (1845-1918). Furthermore
bibliographical support is given by us about Dini’s priority often not acknowl-
edged due to a lack in historical culture of much international literature. Let
us first present, for the sake of completeness, the theorem in a modern nota-
tion.

Theorem (Ulisse Dini, 1878). Let Ω an open set in R2 and f : Ω → R a
C1 function. Suppose there exists (x̄, ȳ) ∈ Ω such that:

f(x̄, ȳ) = 0,
∂f

∂y
(x̄, ȳ) > 0,

then there must be a real interval B centered around x, a real interval I
centered around ȳ and a function ϕ : I → R such that:

• B × I ⊂ Ω,

• for any (x, y) ∈ B × I:
∂f

∂y
(x, y) 6= 0,

• if (x, y) ∈ B × I then:
f(x, y) = 0,

if and only if y = ϕ(x),

• ȳ = ϕ(x̄) ,

• ϕ ∈ C1(B) and for any x ∈ B:

ϕ′(x) = −
∂f

∂x
(x, ϕ(x))

∂f

∂y
(x, ϕ(x))

.
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Careful analysis of the theorem’s proof, reveals that the most important
fact is determining the radius of the interval B. Indeed if we choose a, b ∈
R, a, b > 0 such that if B1 = [x̄− a, x̄ + a] and I1 = [ȳ − a, ȳ + a] then
Ωa,b = B1 × I1 ⊂ Ω, we define:

m = min
Ωa,b

∂f

∂y
,

and:

M = 1 + max
Ωa,b

∣∣∣∣
∂f

∂x

∣∣∣∣ .

We observe that m > 0, M > 0. Therefore the interval B in the statement of
the theorem of implicit functions is any interval of the form:

B = [x̄− δ, x̄ + δ] , (1.1)

with δ ∈]0, a[ and δ ≤ mb
2M .

The typical nonlinearities of mechanics, population biology and economics,
are modeled by ordinary differential equations; and even if a closed form
integration of them can be performed, one will obtain an implicit solution
which seldom can be got explicit. If, for example, we consider the Cauchy
problem: {

ẏ(t) = 1 + y3(t),
y (0) = 1,

(1.2)

one will obtain the following implicit relation:

2
√

3 arctan
(

2 y(t)− 1√
3

)
+ ln




(
1 + y(t)

)2

1− y(t) + y(t)2




6
= t +

√
3 π + ln 64

18
,

which cannot anyway be solved in explicit form.

2 Historical outline of implicit functions
theory

In the previous pages we used the word implicit to describe a function which
does not operate upon a given sequence of values of the independent variable,

Divulgaciones Matemáticas Vol. 10 No. 2(2002), pp. 171–180



174 Giovanni Mingari, Daniele Ritelli

but is rather expressed as an algebraic or transcendental relationship not
solved for the dependent one.

When at long last the problem of finding the tangent to a curve - of a given
explicit equation - was solved at the end of the 17th century, the attention
was turned towards curves given by implicit relationships.

2.1 René Descartes

Implicit functions of the form F (x, y) = C were among the central themes of
R. Descartes (1596-1650) Géometrie published in 1637 [2]. For example, he
sought to find the locus for which CB · CF = CD · CH given four straight
lines and four angles, CX being the distance from C to X taken from the
sides and along the angles. In the Book II (pag. 325 of the original 1637
edition) he finds the above locus (x, y) as given by an implicit relationship of
the form:

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

Descartes had also devised an algebraic method of constructing the tangent
to an implicitly given curve, called circle method, which unfortunately led to
prohibitive computations. Swifter algorithms were discovered in the 1650’s
by J. Hudde (1633-1704) and R.F. de Sluse (1622-1685). The latter made it
possible to routinely compute the slope of that tangent. He submitted the
method without proof, to the Secretary of the Royal Society, H. Oldenburg
(1615-1677), who published the Sluse’s letter in the Philosophical Transactions
of 1672.

2.2 Gottfried Wilhelm Leibniz

G. W. Leibniz (1646 - 1716) in an undated letter (presumably of 1676 or 1677,
letter XLII vol. I Leibniz Mathematische Schriften [7]), shows how it is easier
to obtain the slope using his (as yet unpublished) calculus. Of course, he
proceeds by examples; so, given a plane curve of implicit equation:

ay2 + bxy + cx2 + fx + gy + h = 0,

he substitutes something we could call x+dx in place of x and y+dy in place
of y, thus obtaining a long expression, which, due to the preceeding equation,
and to the reasonable assumption that:

a (dy)2 + b (dx) (dy) + e (dx)2 = 0,
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becomes:

2ay(dy) + by(dx) + bx(dy) + 2cx(dx) + f(dx) + g(dy) = 0,

or, solving for m = dy/dx:

m = −by + 2cx + f

2ay + bx + g
,

Leibniz then gives the differential quotient dy/dx in terms of (x, y), even if the
expression of y to be derived with respect to x is not immediately available.
Furthermore he observes that his invention:

. . . coincidit cum regula Slusiana ostenditque eam statim occur-
rere hanc methodum intelligenti, sed methodus ipsa nostra longe
est amplior.
(... the final result, the same as the Sluse rule, is quite soon
achieved by people understanding this method; but our method is
by far more wide.)

2.3 Johann Bernoulli

Johann Bernoulli (1667-1748) is one of the founding fathers of the Calculus.
In a letter [7] sent from Basel to Leibniz, on June 8th 1695, he tackles a
geometrical question which leads him to the following first order nonlinear
and nonautonomous differential equation:

y′(x) =

√
a2 + y2

a2 + x2
,

which he writes
dx√

a2 + x2
=

dy√
a2 + y2

, (2.1)

aequatio differentialis constans duobus membris omnino inter
se similibus et non integrabilibus, quae tamen aequatio sit pro
curva algebraica.
(a differential equation consisting of two sides, almost similar each
other, whose solution nevertheless will be an algebraic curve.)

Thus, he observes that, even though each differential like those of (2.1)
could not be integrated alone (at that time), the combination of both, pre-
sented in (2.1) is astonishingly integrable.
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G. C. Fagnano (1682-1766) and later Euler, attempted to integrate a sim-
ilar expression, though with a cubic under the square root.

As a consequence, Euler and A. M. Legendre (1752-1833) came to the
elliptic integrals, and to the elliptic functions named after Jacobi (1804-1851),
from which most nineteenth century Mathematical Physics stems from.

Bernoulli writes (2.1) as:

y
xdx√

a2 + x2
= x

ydy√
a2 + y2

,

and partially integrates:

y
√

a2 + x2 − 2−
∫ √

a2 + x2 dx = x
√

a2 + y2 −
∫ √

a2 + y2 dx + C.

But from (2.1) ∫ √
a2 + x2dy =

∫ √
a2 + y2dx,

and, as a consequence, manebit aequatio algebraica (an algebraic equation will
be left):

y
√

a2 + x2 = x
√

a2 + y2 + C.

Furthermore Bernoulli analyzes the similar equation:

dx√
a2 − x2

=
dy√

a2 − y2
,

reaching the implicit solution:

y
√

a2 − x2 = x
√

a2 − y2 + C.

Therefore while Descartes managed the implicit functions as an algebraic ob-
ject inside a geometrical question, on the contrary, in Johann Bernoulli they
play a role in order to solve an ordinary differential equation and so the ex-
plicitation is equivalent to an integration method.

2.4 Leonhard Euler

What were the concepts of implicitness end explicitness at his time? Several
notions we now take for granted, such as the signs of x and y on the four quad-
rants of the Cartesian plane, were not well understood until the 18th century,
with the publication of Introductio in Analysin infinitorum [4], namely more
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than one century after the Géométrie. In this beautiful treatise, published
in 1748 by L. Euler (1706-1783) as an introduction to the differential and
integral calculus, one can read the first definition of implicit function:

Hae [functiones] commode distinguuntur in esplicitas et im-
plicitas. Explicitae sunt quae per signa radicalia sunt evolutae,
cuiusmodi exempla modo sunt data. Implicitae vero functiones ir-
rationales sunt quae ex resolutione equatione ortum habent. Sic
Z erit functio implicita ipsius z si per huiusmodi aequationem
Z7 = azZ2 − bz5 definiatur, quoniam valorem explicitum pro Z
admissis etiam signis radicalibus exhibere non licet, propterea quod
Algebra communis nondum ad hunc perfectionis gradum est erecta.
(These functions can be divided in implicit and explicit. The latter
are solved through roots, and some exempla have been provided of
them. On the contrary, the implicit functions are irrational ones
whose birth depends on the equations. So we will have an im-
plicit function Z of z, if Z is defined, e. g., through the equation
Z7 = azZ2 − bz5, as a matter of fact, even if one uses the roots,
it isn’t possible here to display any explicit value for Z, Algebra
having this perfection raised not yet.)

Furthermore in §281 of Institutiones Calculi differentialis (1755), [5], Euler
writes:

In hoc capite imprimis est propositum earum functionum ipsius
x quae non explicite, sed implicite per aequationem quae relatio
functionis istius y ad x continetur, definiuntur, differentiationem
explicare.
(In this chapter, first of all, the process will be explained for differ-
entiating those functions of x, where y and x aren’t given explicitly,
but are linked in implicit way.)

Euler seems to be unconcerned—for a given f(x, y)—about the existence
conditions for y(x) itself. There is no evidence that anyone turned on the
issue before the last quarter of the 19th century, despite the fact that implicit
functions troubled most mathematicians. It is enough to recall the J. Kepler
(1571-1630) famous implicit E-equation:

E − e sin E = M,

where E is the eccentric anomaly (and M the mean) of a body orbiting on
elliptical trajectory of (fixed) eccentricity e, as the Moon around the Earth,
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or the Earth around the Sun. The Kepler equation, which comes from an
integration, attracted J. L. Lagrange (1736-1813) and F. W. Bessel (1784-
1846), besides many others.

2.5 Ulisse Dini

In the 1870’s the mathematicians were urged to seek a proof that would guar-
antee that y = y(x) is equivalent to F (x, y) = C in the neighborhood of a
point (x0, y0) that satisfies F (x0, y0) = C. Consider, for example, the circle
x2 + y2 = 1: for each value of x we have two values of y, but this does not
constitute a problem, because having chosen for x only one value of y such
as y0 = +

√
1− x2

0, we know which branch of the curve we are dealing with.
Alas, if we start from x = 1 or x = −1, we will meet this unsurmountable
ambiguity:

for the variable x from +1 or -1, shall go: upper or lower branch?

In other words, the implicit function x2 + y2 − 1 = 0 ambiguously defines
y for x = 1. This is not due to the local derivative of y going to infinity for
x = 0. For example the curve of equation y = x1/3 also has a vertical tangent
for x = 0, too, but yet the implicit function y − x1/3 = 0 unambiguously
defines y for x = 0.

Anglo-saxon scientific and historic literature ignores the italian mathe-
matician U. Dini: even in the excellent, historically oriented textbook Analysis
and its History, [8], we find at page 309 that:

In the Weierstrass era (see Genocchi-Peano 1884) mathemati-
cians felt a need for more rigorous proof that guarantees that f(x, y)
is equivalent to y = y(x) in some neighborhood of a point (x0, y0)
satisfying f (x0, y0) = C.

If one goes to check up the Genocchi-Peano tome [6], where there is a
simple résumé of Dini’s ideas, at page XXVI, one is referred by a note to the
source:

V. Dini, Analisi inf. I, pag. 153.

Dini’s ideas span pages 180-195 of his Analisi infinitesimale [3], which is
to say, a book written six years earlier.

A modern Dini’s theorem presentation has been already supplied at this
paper’s introduction.
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3 U. Dini’s scientific profile

We deem to finish our historical paper by offering to the reader a very concise
Dini’s scientific biography.

Dini spent all his academic career at Pisa University. Even if his most
important work in Mathematics was on the theory of functions of real vari-
ables, he made many contributions to differential geometry, power series, and
analytic functions, producing 69 original papers, but none of them dealt with
implicit functions. For this it is necessary to look to the quoted Analisi infini-
tesimale and Lezioni di analisi infinitesimale, his last treatise published in
1907. Pages 197-241 of Volume I of these final Lezioni, deal with the conditions
sufficient to ensure the local explicitability of an implicit function f(x, y) = 0.
It is stated that—we are following his original notations—if the equation
f(x, y) = 0 is satisfied for a value of x = x0, let y = y0 a value such that the
point P0 = (x0, y0) belongs to a domain where f(x, y) is given; there exists a
neighborhood of P0 such that f(x, y), ∂f/∂x, ∂f/∂y are defined and contin-
uous, and (∂f/∂y)0 6= 0, then: a neighborhood N = (x0 − h, x0 + h) there
exists where f(x, y) = 0 completely defines a continuous function y = y(x)
with y(x0) = y0. If y can be differentiated, its first derivative at x0 will be
continuous and given by: dy/dx = −∂f/∂x/∂f/∂y, all to be evaluated at P0.

Furthermore, more complicated formulas can be written for the successive
derivatives y′, y′′, . . . allowing the quantities y′(x0), y′′(x0), y′′′(x0), . . . to be
computed. This in turn allows one to construct a Taylor series development
in N around x0, of the y(x) whose existence has just been proven.

Dini carried out much work at a time when those studying Real Anal-
ysis where seeking to determine precisely when the theorems earlier stated
unprecisely where valid. To achieve this aim, mathematicians tried to see
generalizations needing pathological counterexamples for seeing the bound-
aries of the generalization itself. Dini was one of the greatest masters of
generalization and constructing counterexamples.

Luigi Bianchi (1856-1928), a differential geometer, Dini’s pupil and col-
league at Pisa University, in a Dini’s commemoration held four years after his
death [1], remembers that Dini—under the Weierstrass influence—turned his
attention to the lack of rigour of the proofs in several fields of Mathematics.
In such a way he devoted himself:

all’ardua impresa di riedificare, sopra solide fondamenta, tutto
l’edificio dell’analisi. (. . .) Queste ricerche avevano riscosso, fin
da principio, il pieno consenso e il plauso del Betti; e non questo
piccolo titolo di merito pel maestro, ove si pensi che i nuovi studi
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venivano, a sconvolgere, in gran parte, l’edificio che egli, come
quasi tutti i matematici del suo tempo, aveva finora ritenuto per-
fettamente sicuro in tutte le sue parti.
(to the hard work of re-building, upon sound pillars, all the estate
of the Analysis. (. . .) All these researchs had gained, since early,
the full consent and approval by Betti; and this is not a small merit
for the master, specially if one thinks that all the new studies were
destroying most part of the building believed by himself—as by all
the mathematicians of his time—perfectly safe everywhere.)

We deem to put his words as a closure and synthesis of our profile.
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