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Abstract

Let (M, d) be a complete metric space, let 0 ≤ α < 1, and let S, T be
two selfmappings of M . Supposing that S belongs to the class A(T, α)
(i.e. condition (A) below is satisfied) we prove in Theorem 1.1 that
S and T have a unique common fixed point. Although we do not use
any continuity requirement neither for T nor for S, we conclude some
regularity properties. Indeed, we show that S and TS must be contin-
uous at the unique common fixed point. In Theorem 1.2, when α < 1

2
,

we provide four equivalent properties characterizing the existence and
uniqueness of the common fixed point for S, T , and give sequences which
approximate this fixed point. In particular, we show that all the Picard
sequences defined by S converge to this common fixed point.
Key words and phrases: Common fixed points in complete metric
spaces, approximations, Picard sequences.

Resumen

Sean (M, d) un espacio métrico completo, 0 ≤ α < 1, S y T dos
aplicaciones de M en śı mismo. Suponiendo que S pertenece a la clase
A(T, α) (i.e., que se satisface la condición (A) de más abajo) se prueba
en el Teorema 1.1 que S y T tienen un punto fijo común único. Aunque
no se hace ningún requeriminto de continuidad para S ni para T se
concluyen algunas propiedades de regularidad. En efecto se muestra
que S y TS deben ser continuos en el único punto fijo común. En el
Teorema 1.2, para α < 1

2
, se proveen cuatro propiedades equivalentes
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que caracterizan la existencia y unicidad del punto fijo común para S y
T , y se dan sucesiones que aproximan este punto fijo. En particular se
muestra que todas las sucesiones de Picard definidas por S convergen a
este punto fijo común.
Palabras y frases clave: puntos fijos comunes en espacios métricos
completos, aproximaciones, sucesiones de Picard.

1 Introduction and statement of the results

The study of common fixed points has started in the year 1936 by the well
known result of Markov and Kakutani. Since this year, many works were
devoted to Fixed point theory. The literature on the subject is now very rich.
Many authors have studied the existence of common fixed points. Once the
problem of existence of fixed or common fixed points is solved, a practical
problem arises. It is the problem of determining or at least approximat-
ing them. In many situations, the proofs given for the existence of fixed or
common fixed points provide effective methods of approximation and compu-
tation, but this is not the general case. The aim of this note is to contribute
to this area of investigation in metric fixed point theory and approximations.

Let (M,d) be a complete metric space. Let T be a fixed selfmapping and
let α ∈ [0, 1[. We define A(T, α) as the set of selfmappings S of M such that
for all x, y ∈ M , the following condition is satisfied:

d(Sx, TSy) ≤
α max

{
d(x, Sy), d(x, Sx), d(Sy, TSy),

1
2

[d(x, TSy) + d(Sx, Sy)]
}

. (A)

For every selfmapping S of M , we denote FS the mapping defined for all
x ∈ M , by FS(x) := d(x, Sx). For all positive number c, we denote Lc,S :=
{x ∈ M : FS(x) ≤ c}.

The first result of this paper is the following

Theorem 1. Let (M,d) be a complete metric space. Let α ∈ (0, 1[ and let
S, T be two self-mappings of M such that S ∈ A(T, α). Then the following
four assertions are true.
(1) There exists a unique point z ∈ M such that Fix(S) = Fix({S, T}) = {z}.
(2) S and TS are continuous at the point z.
(3) If Im(T ) ⊂ Im(S) then we have Fix(S) = Fix(T ) = Fix({S, T}) = {z}.
(4) If α ∈ [0, 1

2 [, then for every x0 ∈ M the Picard sequence {Sn(x0)} con-
verges to the unique common fixed point z of S and T .
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When α ∈ [0, 1
2 [, we can find some characterizations of the existence and

uniqueness of the common fixed point of S, T for all S in the class A(T, α).
These characterizations are stated in the next result.

Theorem 2. Let (M, d) be a complete metric space. Let α ∈ [0, 1
2 [ and let

S, T be two self-mappings of M such that S ∈ A(T, α). Then the following
four assertions are true and equivalent:
(1) There exists a unique point z ∈ M such that Fix(S) = Fix({S, T}) = {z}.
(2) limc→0+ diam(Lc,S) = 0, and the mapping FS is an r.g.i. on M .
(3) There exists a (unique) point z ∈ M , such that, for each sequence {xn} ⊂
M ; limn d(xn, Txn) = 0 if and only if {xn} converges to z.
(4) There exists a (unique) point z ∈ Im(S), (the range of S) such that,
for each sequence {yn} ⊂ Im(S), we have limn→∞ yn = z, if and only if,
limn→∞ FT (yn) = 0.

We recall (see [3] and [6]) that a function G : M −→ R is said to be a
regular-global-inf (r.g.i.) at x ∈ M if G(x) > infM (G) implies there exist
ε > 0 such that ε < G(x) − infM (G) and a neighborhood Nx of x such that
G(y) > G(x)− ε for each y ∈ Nx. If this condition is satisfied for each x ∈ M,
then G is said to be a r.g.i. on M . As we see, the r.g.i. condition may
be considered as a weak type of regularity. In the paper [6] this condition
has been extensively used in many problems dealing with metric fixed points.
Therefore, in Theorem 1.2 we see, when α ∈ [0, 1

2 [, that not only all the
conclusions of Theorem 4.3 (p. 149) of [6] are still valid for all selfmappings
in the class S ∈ A(T, α) but that, in addition, they are equivalent.

Remark. Let α, β, γ be three nonnegative numbers such that α+2β+2γ < 1.
Let S, T be two selmappings of M and consider the following contractive
condition:

d(Sx, TSy) ≤ αd(x, Sy)+β[d(x, Sx)+d(Sy, TSy)]+γ[d(x, TSy)+d(Sx, Sy)].
(F)

B. Fisher proved in his paper [4] that if S is continuous and S, T verify
(F) then S and T have a unique common fixed point. It is clear that if
S, T satisfy the condition (F) then S ∈ A(T, q), where q := α + 2β + 2γ.
Therefore, Theorem 1.1 improves the result obtained by B. Fisher in [4]. We
point out that L. Nova tried, in his paper [7], to improve Fisher’s result but
the assumptions used in [7] are still much stronger. So our paper solves the
problem posed in [7].

In section 2 we prove Theorem 1.1. The proof of Theorem 1.2 will be given
in section 3.
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2 Proof of Theorem 1.1.

2.1 First, we begin by proving that (1) is true.

(a) Let x0 be some point in M, and set

x2n = Sx2n−1, n = 1, 2, . . .

x2n+1 = Tx2n, n = 0, 1, 2, . . .

We put tn := d(xn, xn+1) for all integers n. Suppose that n = 2m for some
integer m. Then

tn = d(x2m, x2m+1) = d(Sx2m−1, Tx2m) = d(Sx2m−1, TSx2m−1)

≤ α max
{

d(x2m−1, x2m), d(x2m−1, x2m), d(x2m, x2m+1),
1
2
d(x2m−1, x2m+1))

}

≤ α max
{

tn−1, tn,
1
2
d(x2m−1, x2m)

}
. (2.1)

From (2.1) we deduce that tn ≤ max{tn−1,
1
2d(x2m−1, x2m)}. Indeed, if

it is not the case, we will get tn > max{tn−1,
1
2d(x2m−1, x2m)} > 0, and

tn ≤ αtn, since α ∈ [0, 1[, this inequality is impossible. Also, we must have
1
2d(x2m−1, x2m) ≤ tn−1. Otherwise, by using the triangular inequality, we
would have

tn−1 + tn < d(x2m−1, x2m) ≤ tn−1 + tn,

which is a contradiction. We conclude that for every even integer greater than
two, we have

0 ≤ tn ≤ αtn−1. (2.2)

By similar arguments, it is easy to see that the inequality (2.2) remains valid
for odd integers. Since 0 ≤ α < 1, the sequence {tn} must converge to zero.

(b) Now, we show that {xn} is a Cauchy sequence. Since limn→∞ d(xn, xn+1)
= 0 we need only to prove that {x2n} is a Cauchy sequence. To obtain
a contradiction, let us suppose that there exists a number ε > 0 and two
sequences of integers {2n(k)}, {2m(k)} with 2k ≤ 2m(k) < 2n(k), such that

d(x2n(k), x2m(k)) > ε. (2.3)

For each integer k, we shall denote 2n(k) the least even integer exceeding
2m(k) for which (2.3) holds. Then

d(x2m(k), x2n(k)−2) ≤ ε and d(x2m(k), x2n(k)) > ε.
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For each integer k, we set

pk := d(x2m(k), x2n(k)), sk := d(x2m(k), x2n(k)+1),
qk := d(x2m(k)+1, x2n(k)+1), and rk := d(x2m(k)+1, x2n(k)+2),

then by using triangular inequalities, we obtain

ε < pk ≤ ε + t2n(k)−2 + t2n(k)−1

| sk − pk | ≤ t2n(k),

| qk − sk | ≤ t2m(k),

| rk − sk | ≤ t2n(k)+1. (2.4)

Since the sequence {tn} converges to 0, we deduce from (2.4) that the
sequences: {pk}, {sk}, {qk} and {rk} have ε as a common limit. For all
integers k, we have

rk = d(x2n(k)+2, x2m(k)+1) = d(Sx2n(k)+1, TSx2m(k)−1)

≤ α max
{

d(x2n(k)+1, x2m(k)), d(x2n(k)+1, x2n(k)+2), d(x2m(k), x2m(k)+1),

1
2

[
d(x2n(k)+1, x2m(k)+1) + d(x2n(k)+2, x2m(k)

]}

≤ α max
{

sk, tk, tk,
1
2

[
qk + d(x2n(k)+2, x2m(k)

]}

≤ α max
{

sk, tk,
1
2

[qk + rk + tk]
}

. (2.5)

By letting k →∞ in (2.5), we get

ε ≤ α max {ε, 0, ε} = αε < ε,

which is a contradiction. Hence {xn} is a Cauchy sequence. Since (M, d) is
complete, this sequence must have a limit, say z, in M . Next, we shall prove
that z is a common fixed point for S and T .

(c) For all positive integers n, we have

d(Sz, x2n+1) = d(Sz, Tx2n) = d(Sz, TSx2n−1)

≤ α max
{
d(z, x2n), d(z, Sz), d(x2n, x2n+1),

1
2

[d(z, x2n+1) + d(Sz, x2n)]
}

(2.6)
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By taking the limits in both sides of (2.6), we obtain

d(Sz, z) ≤ αd(Sz, z) < d(Sz, z),

which is a contradiction. Thus z is fixed by S. Let us show that Tz = z. By
use of the property (A), we have

d(z, Tz) = d(Sz, TSz)

≤ α max
{
d(z, z), d(z, z), d(z, Tz),

1
2

[d(z, Tz) + d(z, z)]
}
. (2.7)

(2.7) implies that (1 − α)d(z, Tz) = 0. Since α < 1, we conclude that
d(z, Tz) = 0 and then z ∈ Fix({S, T}). We deduce also that Fix(S) ⊂
Fix(T ).

(d) Suppose that there exists another point w fixed by S. Then by using the
property (F), we have

d(w, z)) = d(Sw, TSz))

≤ α max
{
d(w, z), d(w, w), d(z, z), d(w, z)

}

≤ αd(w, z) (2.8)

(2.8) implies that w = z. We conclude that Fix(S) = Fix({S, T}) = {z}.
This completes the proof of (1).

2.2 Let z be the unique common fixed point of S and T, and let x ∈ M . Then
by using the property (A) and the triangular property, we have

d(Sx, z) = d(Sx, TSz)

≤ α max
{
d(x, z), d(x, z) + d(Sx, z),

1
2

[d(x, z) + d(Sx, z)]
}

= α[d(x, z) + d(Sx, z)].

We deduce that
d(Sx, z) ≤ α

1− α
d(x, z). (2.9)

Therefore, S is continuous at z. Again, by using the property (A) and the
triangular property, for every point x in M , we have

d(z, TSx) = d(Sz, TSx)

≤ α max
{
d(z, Sx), d(Sx, z) + d(z, TSx),

1
2

[d(z, TSx) + d(Sx, z)]
}

= α[d(Sx, z) + d(z, TSx)] (2.10)
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(2.10) implies that

d(z, TSx) ≤ α

1− α
d(Sx, z). (2.11)

According to (2.9), the last inequality reduces to d(z, TSx) ≤ α2

(1−α)2 d(x, z).
Therefore, TS is continuous at z.

2.3 Suppose that Im(T ) ⊂ Im(S). Then, from the subsection (c) in 2.1,
we already know that Fix(S) ⊂ Fix(T ). It remains to prove the inverse
inclusion. Let w ∈ Fix(T ). Then w ∈ Im(S) and we can find an u ∈ M, such
that w = Tw = Su. By using the property (A), we obtain

d(Sw,w) = d(Sw, Tw) = d(Sw, TSu)

≤ α max
{
d(w, w), d(w, Sw), d(w, w),

1
2
[d(w, w) + d(Sw, w)]

}
.

(2.12)

(2.12) implies that [1− α]d(Sw, w) = 0, which implies that Sw = w.

2.4 Suppose that α ∈ [0, 1
2 [. Let z be the unique common fixed point of S and

T . Let y0 be some point in M . We consider the Picard sequence defined for
every integer n, by yn := Sny0, where Sn is the n−th iterate of S. For each
integer n, we put un := d(yn, z). Then by using the property (A), we have

un+1 = d(yn+1, z) = d(Syn, TSz))

≤ α max
{
un, d(yn, yn+1), 0,

1
2
[un + un+1]

}

≤ α max
{
un, d(yn, yn+1)

1
2
[un + un+1]

}
. (2.13)

From (2.13) we deduce that un+1 ≤ un for each integer n. Let l be the limit of
un. By (17) we get l ≤ 2αl. Suppose that l > 0. Then we must have α ≥ 1

2 ,
which is a contradiction. Therefore, limn→∞ Sny0 = z, for every y0 ∈ M .
This completes the proof of Theorem 1.1.

3 Proof of Thorem 1.2

3.1 Let us show that (1) implies (2). Suppose that (1) is satisfied, and let z
be the unique common fixed point of S and T . Let x be some point in M . we
shall prove that the following inequality is satisfaied

d(x, z) ≤ 1− α

1− 2α
d(x, Sx). (3.1)
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Indeed, by using the triangular inequality and (2.9), we have

d(x, z) = d(x, Sx) + d(Sx, z) ≤ d(x, Sx) +
α

1− α
d(x, z). (3.2)

(3.2) reduces to (3.1). For each positive number, we deduce from (3.2) that
Lc,S is bounded. It is nonvoid since it contains z. Now, let x, y ∈ Lc,S , then
we have

d(x, y) ≤ d(x, z) + d(y, z) ≤ 2(1− α)c
1− 2α

. (3.3)

(3.3) shows that diam(Lc,S) tends to zero when c tends to zero. In order to
show that FS is r.g.i., we use Proposition 1.2 of [K-S] and the inequality (3.1).

3.2 Suppose that (2) is satisfied. Let x0 be some point in M, and consider
the associated sequence {xn} given by

x2n = Sx2n−1, n = 1, 2, . . .

x2n+1 = Tx2n, n = 0, 1, 2, . . .

We recall from a) of 2.1, that the sequence {tn := d(xn, xn+1)} verifies tn ≤
αtn−1 for all integers n ≥ 2. Therefore limn→∞ FS(xn) = 0. This shows that
every Lc,S is nonempty and that infM FS = 0. Consider {cn, S} a decreasing
sequence of positive numbers converging to zero, and set A := ∩nLcn,S , (where
Lcn,S designates the closure of Lcn,S). By applying Cantor’s intersection
theorem we ensure the existence of a unique element z ∈ A. For every nonzero
integer n, since z ∈ Lcn,S , we can find yn ∈ Lcn,S such that d(yn, z) ≤ 1

n .
Therefore {yn} converges to z. For each integer n, we have 0 ≤ F (yn) ≤ cn.
Hence limn FS(yn) = 0. Since FS is supposed to be regular, then FS(z) =
infM FS = 0. Thus z is a fixed point of T . Since S ∈ A(T, α), z must be the
unique common fixed point of S and T .

Now, let {xn} be a sequence in M such that limn FS(xn) = 0. Then by
using the inequality (3.1), we deduce that limn xn = z. Conversely, according
to (2.9), for every x ∈ M, we have

d(x, Sx) ≤ d(x, z) + d(z, Sx) ≤ 1
1− α

d(x, z).

Thus, if limn→∞ xn = z then limn→∞ FS(xn) = 0. Thus, (2) implies (3).

3.3 Suppose that (3) is satisfied. Let w = Sx be an element of the range
Im(S). Then according to the triangular inequality and (2.11), we have

FT (w) = d(Sx, TSx) ≤ d(Sx, z)+d(z, TSx) ≤ 1
1− α

d(Sx, z) =
1

1− α
d(w, z).

(3.4)
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From (3.4) we obtain the first implication in (4). To prove the converse, let
again w = Sx be an element of Im(S). According to (2.11), we have

d(w, z) = d(Sx, z) ≤ d(Sx, TSx) + d(TSx, z)

≤ d(Sx, TSx) +
α

1− α
d(Sx, z) = FT (w) +

α

1− α
d(w, z). (3.5)

From (3.5), we obtain

d(w, z) ≤ 1− α

1− 2α
FT (w).

Thus, for every sequence {wn} of points in Im(S), if limn→∞ FT (wn) = 0,
then we must have limn→∞ wn = z. Thus (3) implies (4).

3.4 We observe that if (4) is satisfied then the point z involved in (4) must
be fixed by T . It remains to show that z is fixed by S. Let w ∈ M such that
z = Sw. According to Property (A), we have

d(Sz, z) = d(Sz, TSw)

≤ α max
{
d(z, z), d(z, Sz) + d(z, z),

1
2

[d(z, z) + d(Sz, z)]
}

= α d(Sz, z) (3.6)

(3.6) shows that necessarily Sz = z. Thus, (4) implies (1), and this completes
the proof of Theorem 1.2.
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Divulgaciones Matemáticas Vol. 11 No. 1(2003), pp. 39–48


