Divulgaciones Matemáticas Vol. 11 No. 2(2003), pp. 109–113

Approximation of the Sobolev Trace Constant

Aproximación de la Constante Traza de Sobolev

Julio D. Rossi (jrossi@dm.uba.ar) Departamento de Matemática, FCEyN

UBA (1428) Buenos Aires, Argentina.

Abstract

In this paper we study the Sobolev trace immersion $W^{1,p}(\Omega) \hookrightarrow L^q(\partial\Omega)$ with $1 < q < p^* = \frac{p(N-1)}{N-p}$ if p > N. We present an approximation procedure for the determination of the Sobolev trace constant and extremals, that is the best constant that verifies $S^{1/p} ||u||_{L^q(\partial\Omega)} \leq ||u||_{W^{1,p}(\Omega)}$ and the functions where this constant is attained. Key words and phrases: numerical approximations, p-Laplacian,

Key words and phrases: numerical approximations, p-Laplacian, nonlinear boundary conditions, Sobolev trace constant.

Resumen

En este artículo se estudia the inmersión traza de Sobolev $W^{1,p}(\Omega) \hookrightarrow L^q(\partial\Omega)$ con $1 < q < p^* = \frac{p(N-1)}{N-p}$ si p > N. Se presenta un procedimiento de aproximación para la determinación de la constante traza de Sobolev y las extremales, esto es la mejor constante que verifica $S^{1/p} \|u\|_{L^q(\partial\Omega)} \leq \|u\|_{W^{1,p}(\Omega)}$ y las funciones para las cuales se alcanza esta constante.

Palabras y frases clave: aproximación numérica, p-Laplaciano, condiciones de borde no lineales, constante traza de Sobolev.

1 Introduction

Let Ω be a bounded domain in \mathbb{R}^N with smooth boundary. In this paper we deal with the Sobolev trace immersion $W^{1,p}(\Omega) \hookrightarrow L^q(\partial\Omega)$ with $1 < q < \infty$

Received 2002/11/01. Accepted 2003/07/22.

MSC (2000): 65J15, 65N15, 65N25.

Supported by ANPCyT PICT No. 5009. J. D. Rossi is a member of CONICET

Julio D. Rossi

 $p^* = \frac{p(N-1)}{N-p}$ if p < N. This immersion is a continuous, compact operator and therefore there exists a constant S such that

$$S^{1/p} \|u\|_{L^q(\partial\Omega)} \le \|u\|_{W^{1,p}(\Omega)}.$$

This Sobolev trace constant S can be characterized as

$$S = \inf_{u \in W^{1,p}(\Omega)} \left\{ \int_{\Omega} |\nabla u|^p + \int_{\Omega} |u|^p, \qquad \int_{\partial \Omega} |u|^q = 1 \right\}.$$
 (1.1)

Using the compactness of the embedding it is easy to prove that there exists extremals, that is functions where the constant is attained. The extremals are weak solutions in $W^{1,p}(\Omega)$ of the following problem

$$\begin{cases} \Delta_p u = |u|^{p-2} u & \text{in } \Omega, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = \lambda |u|^{q-2} u & \text{on } \partial \Omega. \end{cases}$$
(1.2)

Here $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the *p*-Laplacian and $\frac{\partial}{\partial \nu}$ is the outer normal derivative. See [4] for a detailled analysis of the behaviour of extremals and best Sobolev constants in expanding domains for the linear case, p = 2.

In the case p = q we have a nonlinear eigenvalue problem and the extremals are eigenfunctions of the first eigenvalue. In the linear case, that is for p = 2, this eigenvalue problem is known as the *Steklov* problem, [2]. In [5] it is proved that there exists a sequence of eigenvalues λ_n of (1.2) such that $\lambda_n \to +\infty$ as $n \to +\infty$. Also it is known that the first eigenvalue λ_1 is isolated and simple with a positive eigenfunction (see [8]). For the same type of results for the p-Laplacian with Dirichlet boundary conditions see [1], [6] and [7].

Our interest here is to approximate S. We remark that we are dealing with a nonlinear problem, (1.2), in the Banach space $W^{1,p}(\Omega)$. Let us describe a general approximation procedure. The idea is to replace the space $W^{1,p}(\Omega)$ with a subspace V_h in the minimization problem (1.1). To this end, let V_h be an increasing sequence of closed subspaces of $W^{1,p}(\Omega)$, such that

$$\begin{cases} v \in V_h: \int_{\partial\Omega} |v|^q = 1 \\ \text{and} \\ \lim_{h \to 0} \inf_{v \in V_h} \|u - v\|_{W^{1,p}(\Omega)} = 0, \quad \forall \|u\|_{W^{1,p}(\Omega)} = 1. \end{cases}$$

$$(1.3)$$

With this sequence of subspaces V_h we define our approximation of S by

$$S_h = \inf_{u_h \in V_h} \left\{ \int_{\Omega} |\nabla u_h|^p + \int_{\Omega} |u_h|^p, \qquad \int_{\partial \Omega} |u_h|^q = 1 \right\}, \tag{1.4}$$

110

Divulgaciones Matemáticas Vol. 11 No. 2(2003), pp. 109-113

Approximation of the Sobolev Trace Constant

We prove that under hypothesis (1.3) S_h approximates S,

Theorem 1.1. Let u be an extremal for (1.1). Then, there exists a constant C independent of h such that,

$$|S - S_h| \le C \inf_{v \in V_h} ||u - v||_{W^{1,p}(\Omega)},$$

for every h small enough.

Regarding the extremals we have,

Theorem 1.2. Let u_h be a function in V_h where the infimum (1.4) is achived. Then from any sequence $h \to 0$ we can extract a subsequence $h_j \to 0$ such that u_{h_j} converges strongly to an extremal in $W^{1,p}(\Omega)$. That is, there exists an extremal of (1.1), w, with

$$\lim_{h_j \to 0} \|u_{h_j} - w\|_{W^{1,p}(\Omega)} = 0.$$

We observe that the only requirement on the subspaces V_h is (1.3). This allows us, for example, to choose V_h as the usual finite elements spaces.

2 Proofs of the Theorems

Along this section we write C for a constant that does not depend on h and may vary from one line to another.

Proof of Theorem 1.1: As $V_h \subset W^{1,p}(\Omega)$ we have that

$$S \le S_h. \tag{2.1}$$

Let us choose $v \in V_h$ such that $||u - v||_{W^{1,p}(\Omega)} \leq \inf_{V_h} ||u - w||_{W^{1,p}(\Omega)} + \varepsilon$. We have that

$$S_h^{1/p} = \|u_h\|_{W^{1,p}(\Omega)} \le \frac{\|v\|_{W^{1,p}(\Omega)}}{\|v\|_{L^q(\partial\Omega)}} \le \frac{\|v-u\|_{W^{1,p}(\Omega)} + \|u\|_{W^{1,p}(\Omega)}}{\|v\|_{L^q(\partial\Omega)}}$$
$$= \left(\frac{\|v-u\|_{W^{1,p}(\Omega)} + S^{1/p}}{\|v\|_{L^q(\partial\Omega)}}\right).$$

Now we use that

 $|||v||_{L^{q}(\partial\Omega)} - 1| \le |||v||_{L^{q}(\partial\Omega)} - ||u||_{L^{q}(\partial\Omega)}| \le ||v - u||_{L^{q}(\partial\Omega)} \le C||v - u||_{W^{1,p}(\Omega)}$

Divulgaciones Matemáticas Vol. 11 No. 2(2003), pp. 109–113

Julio D. Rossi

and hypothesis (1.3) to obtain that for every h small enough,

$$S_h \le \left(\frac{\|v - u\|_{W^{1,p}(\Omega)} + S^{1/p}}{1 - C\|v - u\|_{W^{1,p}(\Omega)}}\right)^p \le S + C\|v - u_1\|_{W^{1,p}(\Omega)}.$$
(2.2)

From (2.1) and (2.2) the result follows.

Proof of Theorem 1.2: Theorem 1.1 and hypothesis (1.3) gives that

$$\lim_{h \to 0} \|u_h\|_{W^{1,p}(\Omega)}^p = \lim_{h \to 0} S_h = S.$$

Hence there exists a constant C such that for every h small enough,

$$\|u_h\|_{W^{1,p}(\Omega)} \le C$$

Therefore we can extract a subsequence, that we denote by u_{h_i} , such that

$$u_{h_j} \to w$$
 weakly in $W^{1,p}(\Omega)$,
 $u_{h_j} \to w$ strongly in $L^p(\Omega)$, (2.3)
 $u_{h_j} \to w$ strongly in $L^q(\partial\Omega)$.

Hence, from the $L^q(\partial\Omega)$ convergence we have,

$$1 = \lim_{h_j \to 0} \int_{\partial \Omega} |u_{h_j}|^q = \int_{\partial \Omega} |w|^q.$$

Therefore w is an admissible function in the minimization problem (1.1). Now we observe that,

$$\begin{aligned} \|u\|_{W^{1,p}(\Omega)}^{p} &\leq \|w\|_{W^{1,p}(\Omega)}^{p} \leq \liminf_{h_{j} \to 0} \|u_{h_{j}}\|_{W^{1,p}(\Omega)}^{p} \\ &\leq \lim_{h_{j} \to 0} \|u_{h_{j}}\|_{W^{1,p}(\Omega)}^{p} = \lim_{h_{j} \to 0} S_{h} = S = \|u\|_{W^{1,p}(\Omega)}^{p}, \end{aligned}$$

and therefore,

$$\lim_{h_j \to 0} \|u_{h_j}\|_{W^{1,p}(\Omega)} = \|w\|_{W^{1,p}(\Omega)} = S^{1/p}.$$
(2.4)

The space $W^{1,p}(\Omega)$ being uniformly convex, the weak convergence, (2.3), and the convergence of the norms, (2.4), imply the convergence in norm. Therefore $u_{h_j} \to w$ in $W^{1,p}(\Omega)$. This limit w verifies $\|w\|_{W^{1,p}(\Omega)}^p = S$ and $\|w\|_{L^q(\partial\Omega)} = 1$. Hence it is an extremal and we have that

$$\lim_{h_j \to 0} \|u_{1,h} - w\|_{W^{1,p}(\Omega)} = 0,$$

as we wanted to prove.

Divulgaciones Matemáticas Vol. 11 No. 2(2003), pp. 109–113

Approximation of the Sobolev Trace Constant

Acknowledgements

We want to thank R. Duran and A. Lombardi for several suggestions and interesting discussions.

References

- Anane, A. Simplicité et isolation de la premiere valeur propre du p-laplacien avec poids. C. R. Acad. Sci. Paris, 305 (I), (1987), 725– 728.
- [2] Babuska, I., Osborn, J. Eigenvalue Problems, Handbook of Numer. Anal., Vol. II, North-Holland, 1991.
- [3] Ciarlet, P. The finite element method for elliptic problems, North-Holland, 1980.
- [4] del Pino, M., Flores, C. Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains. Comm. Partial Differential Equations Vol. 26 (11-12) (2001), 2189–2210.
- [5] Fernández Bonder, J., Rossi, J. D. Existence results for the p-Laplacian with nonlinear boundary conditions. J. Math. Anal. Appl. Vol. 263 (2001), 195–223.
- [6] Garcia-Azorero, J., Peral, I. Existence and non-uniqueness for the p-Laplacian: nonlinear eigenvalues. Comm. Partial Differential Equations. Vol. 12 (1987), 1389–1430.
- [7] Lindqvist, P. On the equation $\Delta_p u + \lambda |u|^{p-2} u = 0$. Procc. A.M.S., 109-1, (1990), 157–164.
- [8] Martinez S., Rossi, J. D. Isolation and simplicity for the first eigenvalue of the p-Laplacian with a nonlinear boundary condition. Preprint.

Divulgaciones Matemáticas Vol. 11 No. 2
(2003), pp. 109–113