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Abstract. For A a central simple algebra of degree 2n, the nth
exterior power algebra λnA is endowed with an involution which pro-
vides an interesting invariant of A. In the case where A is isomorphic
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quite explicitly in terms of the norm form for Q and the corresponding
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The classification of irreducible representations of a split semisimple simply
connected algebraic group G over an arbitrary field F is well-known: they are
in one-to-one correspondence with the cone of dominant weights of G. Further-
more, one can tell whether or not an irreducible representation is orthogonal or
symplectic (= supports a G-invariant bilinear form which is respectively sym-
metric or skew-symmetric) by inspecting the corresponding dominant weight
[11, §3.11]. (Throughout this paper, we only consider fields of characteristic
6= 2, cf. 1.8.) A G-invariant bilinear form on an irreducible representation is
necessarily unique up to a scalar multiple.
If the assumption that G is split is dropped, then the Galois group Γ of a
separable closure Fs of F over F acts on the cone of dominant weights (via
the so-called “∗-action”), and this action may be nontrivial. Those irreducible
representations corresponding to dominant weights which are not fixed by Γ are
not defined over F . Although an irreducible representation ρ whose dominant
weight is fixed by Γ may not be F -defined, there is always some central simple
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F -algebra A and a map G → SL1(A) defined over F which is an appropriate
descent of ρ, see [14] or [12, p. 230, Prop. 1] for details. The algebra A is
uniquely determined up to F -isomorphism. If ρ is orthogonal or symplectic
over Fs, then it is easy to show that A supports a unique G-invariant involution
γ of the first kind which is adjoint to the G-invariant bilinear form over every
extension of F where A is split and hence ρ is defined.

It is of interest to determine γ. For example, invariants of γ in turn provide
invariants of G. All involutions γ have been implicitly determined for F = Qp

and F = R in [4] and [5], but over an arbitrary field the problem is much more
difficult since involutions are no longer classified by their classical invariants [2].
We restrict our attention to simply connected groups of type 1A2n−1; that is, to
the case G = SL1(A) for A a central simple F -algebra of degree 2n. Moreover,
we will focus on the fundamental irreducible representation corresponding to
the middle vertex of the Dynkin diagram of G, which supports a G-invariant
involution γ.

For any nonnegative integer k ≤ 2n, there is a central simple F -algebra λkA
attached to A called the kth exterior power of A, and the appropriate analogues
of the fundamental representations of SL1(A) are the natural maps SL1(A)→
SL1(λ

kA) for 1 ≤ k < 2n. The representation we will study, which corresponds
to the middle vertex of the Dynkin diagram, is the k = n case. In general, λkA
is of degree

(

2n
k

)

and is Brauer-equivalent to A⊗k, see [7, 10.A]. It is defined so
that when A is the split algebra A = EndF (W ), this λk EndF (W ) is naturally
isomorphic to EndF (∧

kW ).

The nth exterior power λnA is endowed with a canonical involution γ such
that when A is split, γ is adjoint to the bilinear form θ defined on ∧nW by the
equation θ(x1 ∧ . . .∧xn, y1 ∧ . . .∧ yn)e = x1 ∧ . . .∧xn ∧ y1 ∧ . . .∧ yn, where e is
any basis of the 1-dimensional vector space ∧2nW . This involution is preserved
by the image of G in SL1(λ

nA) and is the one we wish to describe. If n is even
and A⊗n is split, then γ is orthogonal and λnA is split, so our fundamental
representation of G is defined over F and orthogonal. For example, for A a
biquaternion algebra over an arbitrary field F , γ is adjoint to an Albert form
of A [3, 6.2]. In this paper, we provide a complete description of γ for G of
type 1A2n−1 when n is odd (see 1.1) or when n is even and A is isomorphic to
B ⊗ Q where Q is a quaternion algebra (in 1.4 and 1.5). In particular, until
now a description of γ has not been known for any algebra A of index ≥ 8. If A
is a tensor product of quaternion algebras, we provide (in 1.6 below) a formula
that gives γ in terms of the norm forms of the quaternion algebras.

Describing this particular involution γ is also interesting from the point of view
of groups of type 1D2n. Such a group is isogenous to G = Spin(E, σ) for E a
central simple algebra of degree 4n and σ an orthogonal involution with triv-
ial discriminant. If σ is hyperbolic, then E is isomorphic to M2(A) for some
algebra A of degree 2n. The analogue of the direct sum of the two half-spin
representations for Spin(M2(A), σ) over F is the map G→ SL1(C(M2(A), σ))
where C(M2(A), σ) denotes the even Clifford algebra of (M2(A), σ). This alge-

Documenta Mathematica 6 (2001) 99–120



Involutions and Trace Forms on Exterior Powers 101

bra is endowed with a canonical involution σ which is G-invariant; it is mostly
hyperbolic but contains a nontrivial piece which is isomorphic to (λnA, γ).
Please see [3] for a precise statement and [10] for a rational proof.
This relationship between representations of D2n and A2n−1 as well as the
results in this paper hint at a general theory of orthogonal representations of
semisimple algebraic groups over arbitrary fields. We hope to study this in the
future.

1 Statement of the main results

We will always assume that our base field F has characteristic 6= 2 and that
A is a central simple F -algebra of degree 2n. (See 1.8 for a discussion of the
characteristic 2 case.) We assume moreover that A is isomorphic to a tensor
product A = Q⊗B, where Q is a quaternion algebra over F , and B is a central
simple F -algebra, necessarily of degree n. Note that this is always the case
when n is odd. We write γQ for the canonical symplectic involution on Q and
nQ for the norm form.
If n is odd, the main result is the following, proven in Section 4:

Theorem 1.1. If n is odd, the algebra with involution (λn(Q⊗B), γ) is Witt-
equivalent to (Q, γQ)

⊗n.

Witt-equivalence for central simple algebras is the natural generalization of
Witt-equivalence for quadratic forms, see [1] for a definition.
Assume now that n is even, n = 2m. Then λnA is split and the involution γ
is orthogonal. We fix some quadratic form qA to which γ is adjoint. It is only
defined up to similarity.
The algebra λmB is endowed with a canonical involution which we denote by
γm. For k = 0, . . . , n, we let tk : λkB → F be the reduced trace quadratic form
defined by

tk(x) = TrdλkB(x
2).(1.2)

This form also has a natural description from the representation-theoretic view-
point: The group SL1(B) acts on the vector space λkB, and when B is split
λkB is isomorphic to a tensor product of an irreducible representation with
its dual, see Section 2. Consequently, there is a canonical SL1(B)-invariant
quadratic form on λkB; it is tk.
We let t+m and t−m denote the restrictions of tm to the subspaces Sym(λmB, γm)
and Skew(λmB, γm) of elements of λmB which are respectively symmetric and
skew-symmetric under γm, so that tm = t+m ⊕ t−m. The forms thus defined are
related by the following equation, proven in 5.5:

Theorem 1.3. In the Witt ring of F , the following equality holds:

〈2〉 ·

m−1
∑

k=0

(−1)ktk =

{

−t−m if m is even,

t+m if m is odd.
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The similarity class of qA is determined by the following theorem, proven in 5.7:

Theorem 1.4. If n is even, n = 2m, the similarity class of qA contains the
quadratic form:

t+m − t−m + nQ ·
(

t−m +
∑

0≤k<m
k even

〈2〉tk

)

if m is even,

t−m − t+m + nQ ·
(

∑

0≤k<m
k even

〈2〉tk

)

if m is odd.

The Witt class of this quadratic form can be described more precisely under
some additional assumptions (see Proposition 6.1 for precise statements). We
just mention here a particular case in which the formula reduces to be quite
nice.
Assume that m is even and B is of exponent at most 2. Then λmB is split,
and its canonical involution is adjoint to a quadratic form qB . Even though
this form is only defined up to a scalar factor, its square is actually defined up
to isometry. We then have the following, proven in 5.8:

Corollary 1.5. If m is even (i.e., degB ≡ 0 mod 4) and B is of exponent
at most 2, then the similarity class of qA contains a form whose Witt class is
q2
B + nQ

(

2n−2 − 1
2

(

n
m

)

− ∧2qB
)

.

Some of the notation needs an explanation. For a quadratic form q on a vector
space W with associated symmetric bilinear form b so that q(w) = b(w,w),
we have an induced quadratic form on ∧2W which we denote by ∧2q. For
x1, x2, y1, y2 ∈W , its associated symmetric bilinear form ∧2b is defined by

(∧2b)(x1 ∧ x2, y1 ∧ y2) = b(x1, y1)b(x2, y2)− b(x1, y2)b(x2, y1).

Thus if q = 〈α1, . . . , αn〉, we have

∧2q ' ⊕1≤i<j≤n〈αiαj〉.

From this, one sees that even if q is just defined up to similarity, ∧2q is well-
defined up to isometry. (The form ∧2q also admits a representation-theoretic
description: It is isomorphic to a scalar multiple of the Killing form on the Lie
algebra o(q), where the scalar factor depends only on the dimension of q.)
From Corollary 1.5, we also get the following, which is proven in 6.3:

Corollary 1.6. Let Ar = Q1 ⊗ · · · ⊗Qr be a tensor product of r quaternion
F -algebras, where r ≥ 3, and let TAr

be the reduced trace quadratic form on
Ar. The similarity class of qAr

contains a quadratic form whose Witt class is

2n−1 −
2n−2

n
〈2r〉 · TAr

= 2f(r)
(

2r − (2− nQ1
) · · · (2− nQr

)
)

,

where n = 2r−1 = 1
2 degA and f(r) = 2r−1 − r − 1.
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In particular, for r = 3, we get the quadratic form

4(nQ1
+ nQ2

+ nQ3
)− 2(nQ1

nQ2
+ nQ1

nQ3
+ nQ2

nQ3
) + nQ1

nQ2
nQ3

.

Adrian Wadsworth had casually conjectured a description of qA3
in [3, 6.8],

and we now see that his conjecture was not quite correct in that it omitted the
nQ1

nQ2
nQ3

term.

As a consequence of Corollary 1.6, we can show that the form qA lies in the nth
power of the fundamental ideal of the Witt ring WF for many central simple
algebras A of degree 2n; the following result is proven in 6.4:

Corollary 1.7. Suppose that A is a central simple algebra of degree 2n ≡ 0
mod 4 which is isomorphic to matrices over a tensor product of quaternion
algebras. Then the form qA lies in InF .

The first author conjectured [3, 6.6] that qA lies in InF for all central simple
F -algebras A of degree 2n ≡ 0 mod 4 and such that A⊗2 is split. Corollary 1.7
fails to prove the full conjecture because for every integer r ≥ 3 there exists a
division algebra A of degree 2r and exponent 2 such that A doesn’t decompose
as A′ ⊗ A′′ for any nontrivial division algebras A′ and A′′ [6, 3.3], so such an
A doesn’t satisfy the hypotheses of Corollary 1.7.
If A is a tensor product of two quaternion algebras, the form qA is an Albert
form of A, and the Witt index of qA determines the Schur index of A, as Albert
has shown (see for instance [7, (16.5)]). Corollary 1.6 shows that one cannot
expect nice results relating the Witt index of qAr

and the Schur index of Ar for
r ≥ 3. As pointed out to us by Jan van Geel, the difficulty is that Merkurjev
has constructed in [9, §3] algebras of the form Ar for r ≥ 3 (i.e., tensor products
of at least 3 quaternion algebras) which are skew fields but whose center, F ,
has I3F = 0. By Corollary 1.7, the forms qAr

are then hyperbolic.

Remark 1.8 (characteristic 2). One might hope that results concerning repre-
sentations of algebraic groups would not involve the restriction that the charac-
teristic is not 2. However, removing this restriction for the results in this paper
would necessarily dramatically change their nature. For example, the trace
forms tk occurring here are degenerate in characteristic 2. Also, our methods
require the ability to take tensor products of quadratic forms and to scale by
a factor of 〈2〉, neither of which are available in characteristic 2. These restric-
tions may be avoidable, but we have chosen not to attempt to do so because
such an attempt would almost certainly make this paper so technical that it
would be nearly unreadable.

2 Description of λnM2(B)

In order to prove these results, we have to describe the algebra with involution
(λn(Q ⊗ B), γ), which we will do by Galois descent. Hence we first give a
description of λnM2(B), see Theorem 2.5 below.

Documenta Mathematica 6 (2001) 99–120
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Assume B = EndF (V ) for some n-dimensional vector space V . For 0 ≤ k ≤ n,
we have λkB = EndF (∧

kV ). We identify M2(B) ' EndF (V ⊕ V ) by mapping
(

a b
c d

)

∈M2(B) to the endomorphism

(x, y) 7→
(

a(x) + b(y), c(x) + d(y)
)

.

The distinguished choice of embedding of B in M2(B) corresponds with the
obvious choice of direct sum decomposition of V ⊕V . (There are many others.)
This gives an identification λnM2(B) = EndF (∧

n(V ⊕V )). For all integers k, `,
this decomposition determines ∧kV ⊗∧`V as a vector subspace of ∧k+`(V ⊕V )
by mapping (x1 ∧ · · · ∧ xk)⊗ (y1 ∧ · · · ∧ y`) to

(x1, 0) ∧ · · · ∧ (xk, 0) ∧ (0, y1) ∧ · · · ∧ (0, y`) ∈ ∧
k+`(V ⊕ V ).

In particular, we have

∧n (V ⊕ V ) = ⊕n
k=0

(

∧kV ⊗ ∧n−kV
)

.(2.1)

For each k, the space ∧kV ⊗∧n−kV can be identified to EndF (∧
kV ) as follows.

Fix a nonzero element (hence a basis) e of ∧nV and define a bilinear form

θk : ∧
k V × ∧n−kV → F

by the equation

θk(xk, xn−k) e = xk ∧ xn−k for x` ∈ ∧
`V .

This form is nonsingular, so it provides the identification mentioned above

∧k V ⊗ ∧n−kV = EndF (∧
kV )(2.2)

by sending xk ⊗ xn−k to the map y 7→ xkθn−k(xn−k, y). The product in
EndF (∧

kV ) then corresponds in ∧kV ⊗ ∧n−kV to

(xk ⊗ xn−k)(yk ⊗ yn−k) = θn−k(xn−k, yk)xk ⊗ yn−k.

From (2.1) and (2.2), we deduce an identification of the corresponding endo-
morphism rings

λnM2(B) = EndF (⊕
n
k=0λ

kB).(2.3)

This remains true in the case when B is non split, as we will prove by Galois
descent. First, we must introduce some maps on ⊕n

k=0λ
kB.

Since the bilinear form θk is nonsingular, for any f ∈ EndF (∧
kV ), we have a

unique element γk(f) ∈ EndF (∧
n−kV ) such that

θk (f(x), y) = θk (x, γk(f)(y)) ,
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Involutions and Trace Forms on Exterior Powers 105

for every x ∈ ∧kV and y ∈ ∧n−kV . This defines a canonical anti-isomorphism
(not depending on the choice of e)

γk : EndF (∧
kV )→ EndF (∧

n−kV )

such that

γk(x⊗ y) = (−1)k(n−k)y ⊗ x(2.4)

for x and y as before. One may easily verify that γn−k ◦ γk = IdEndF (∧kV )

for all k = 0, . . . , n. By Galois descent, the maps γk are defined even when
B is nonsplit, i.e., we have anti-isomorphisms γk : λ

kB → λn−kB such that
γk ◦ γn−k = IdλkB (see [7, Exercise 12, p. 147] for a rational definition). In
the particular case where n is even, by definition of the bilinear form θn/2, the

map γn/2 is actually the canonical involution on λn/2B.

Theorem 2.5. Whether or not B is split, there is a canonical isomorphism

Φ: λnM2(B)→ EndF (λ
0B ⊕ · · · ⊕ λnB)

which in the split case is the identification (2.3) above. The canonical involution
γ on λnM2(B) induces via Φ an involution on EndF (⊕

n
k=0λ

kB) which is adjoint
to the bilinear form T defined on λ0B ⊕ · · · ⊕ λnB by

T (u, v) =

{

(−1)` TrdλkB (uγ`(v)) if k + ` = n,

0 if k + ` 6= n,

for any u ∈ λkB and v ∈ λ`B.

Proof. We prove this by Galois descent. Fix a separable closure Fs of F and let
Γ := Gal(Fs/F ) be the absolute Galois group. We fix a vector space V over F
such that dimF V = degB = n and let Vs = V ⊗F Fs. We fix also an Fs-algebra
isomorphism ϕ : B ⊗F Fs

∼
−→ EndF (V ) ⊗F Fs. Every σ ∈ Γ acts canonically

on Vs and EndFs(Vs) = EndF (V )⊗F Fs; we denote again by σ these canonical
actions, so that σ(f) = σ ◦ f ◦ σ−1 for f ∈ EndFs(Vs). On the other hand, the
canonical action of Γ on B ⊗F Fs corresponds under ϕ to some twisted action
∗ on EndFs(Vs). Since every Fs-linear automorphism of EndFs(Vs) is inner, we
may find gσ ∈ GL(Vs) such that

σ ∗ f = gσ ◦ σ(f) ◦ g
−1
σ = Int(gσ) ◦ σ(f) for all f ∈ EndFs(Vs).

Then ϕ induces an F -algebra isomorphism from B onto the F -subalgebra

{

f ∈ EndFs(Vs) | gσ ◦ σ(f) ◦ g
−1
σ = f for all σ ∈ Γ

}

.

The ∗-action of Γ on EndFs(Vs) induces twisted actions on EndFs
(

∧n(Vs ⊕

Vs)
)

and on EndFs
(

⊕n
k=0 EndFs(∧

kVs)
)

such that the F -algebras of Γ-invariant

Documenta Mathematica 6 (2001) 99–120
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elements are λn
(

M2(B)
)

and EndF (⊕
n
k=0λ

kB) respectively. To prove the first
assertion of the theorem, we will show that these actions correspond to each
other under the isomorphism

EndFs
(

∧n(Vs ⊕ Vs)
) ∼
−→ EndFs

(

⊕n
k=0 EndFs(∧

kVs)
)

derived from (2.1) and (2.2).
For σ ∈ Γ and k = 0, . . . , n, define ∧kgσ ∈ GL(∧kVs) by

∧kgσ(x1 ∧ . . . ∧ xk) = gσ(x1) ∧ . . . ∧ gσ(xk).

Then ϕ induces an F -algebra isomorphism from λkB onto the F -subalgebra

{

f ∈ EndFs(∧
kVs) | ∧

kgσ ◦ σ(f) ◦ (∧
kgσ)

−1 = f for all σ ∈ Γ
}

,

hence also from EndF (⊕
n
k=0λ

kB) to

{

f ∈ EndFs
(

⊕n
k=0 EndFs(∧

kVs)
)

|

(

⊕k Int(∧
kgσ)

)

◦ σ(f) = f ◦
(

⊕k Int(∧
kgσ)

)

for all σ ∈ Γ
}

.

Similarly, define ∧n(gσ ⊕ gσ) ∈ GL
(

∧n(Vs ⊕ Vs)
)

by

∧n (gσ ⊕ gσ)
(

(x1, y1) ∧ . . . ∧ (xn, yn)
)

=
(

gσ(x1), gσ(y1)
)

∧ . . . ∧
(

gσ(xn), gσ(yn)
)

,

so that λn
(

M2(B)
)

can be identified through ϕ with

{

f ∈ EndFs
(

∧n(Vs ⊕ Vs)
)

|

∧n (gσ ⊕ gσ) ◦ σ(f) = f ◦ ∧n(gσ ⊕ gσ) for all σ ∈ Γ
}

.

Certainly, ∧n(gσ ⊕ gσ) = ⊕
n
k=0(∧

kgσ ⊗∧
n−kgσ) under (2.1), and computation

shows that ∧kgσ ⊗ ∧
n−kgσ = (det gσ) Int(∧

kgσ) under (2.2). Therefore, (2.1)
and (2.2) induce an isomorphism of F -algebras

Φ: λn
(

M2(B)
) ∼
−→ EndF (⊕

n
k=0λ

kB).

To complete the proof of the theorem, we show that the canonical involution γ
on λn

(

M2(B)
)

corresponds to the adjoint involution with respect to T under

Φ. In order to do so, we view λn
(

M2(B)
)

and EndF (⊕
n
k=0λ

kB) as the fixed

subalgebras of EndFs
(

∧n(Vs ⊕ Vs)
)

and EndFs
(

⊕n
k=0 EndFs(∧

kVs)
)

, and show

that the canonical involution γ on EndFs
(

∧n(Vs ⊕ Vs)
)

corresponds to the
adjoint involution with respect to T (extended to Fs) under the isomorphism
induced by (2.1) and (2.2).
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Involutions and Trace Forms on Exterior Powers 107

Taking any nonzero element e ∈ ∧nVs, the identification ∧
2n(Vs⊕Vs) = ∧

nVs⊗
∧nVs allows us to write e⊗ e for a nonzero element of ∧2n(Vs ⊗ Vs). Then γ is
adjoint to the bilinear form

Θ: ∧n (Vs ⊕ Vs)× ∧
n(Vs ⊕ Vs)→ Fs

given by

Θ(x, y) e⊗ e = x ∧ y for x, y ∈ ∧n(Vs ⊕ Vs)

as was mentioned in the introduction. Using the identification of ∧kVs⊗∧
n−kVs

as a subspace of ∧n(Vs ⊕ Vs), we have that for xi, yi ∈ ∧
iVs,

Θ(xk ⊗ xn−k, y` ⊗ yn−`) =
{

(−1)`θk(xk, y`)θn−k(xn−k, yn−`) if k + ` = n,
0 if k + ` 6= n.

We translate this into terms involving B, using the isomorphism ϕ to identify
λkBs := (λkB)⊗F Fs with EndFs(∧

kVs). In particular, we know that

TrdλkBs
(xk ⊗ xn−k) = θn−k(xn−k, xk)

for Trd the reduced trace, and that

θk(xk, xn−k) = (−1)k(n−k)θn−k(xn−k, xk).

So for x = xk ⊗ xn−k ∈ λkBs and y = y` ⊗ yn−` ∈ λ`Bs,

Θ(x, y) =

{

(−1)` TrdλkBs
(γ`(y)x) if k + ` = n,

0 if k + ` 6= n.

Of course, in the k + ` = n case we could just as easily have taken

Θ(x, y) = (−1)` Trdλ`Bs
(γk(x)y).

So, the vector space isomorphism derived from (2.1) and (2.2) is an isometry of
Θ and T , and it follows that the canonical involution γ adjoint to Θ corresponds
to the adjoint involution to T under Φ.

For later use, we prove a little bit more about this isomorphism Φ. Let us
consider the elements e1 = ( 1 0

0 0 ) and e2 = ( 0 0
0 1 ) ∈ M2(B), and let t be an

indeterminate over F . We write λn for the map M2(B) → λnM2(B) defined
in [7, 14.3], which is a homogeneous polynomial map of degree n. In the
split case where M2(B) is identified with EndF (V ⊕ V ) and λnM2(B) with
EndF

(

∧n(V ⊕ V )
)

, the map is given by

(λnf)(w1 ∧ · · · ∧ wn) = f(w1) ∧ · · · ∧ f(wn)

for f ∈ EndF (V ⊕ V ) and w1, . . . , wn ∈ V ⊕ V . Whether or not B is split,
there exist `0, . . . , `n ∈ λnM2(B) such that

λn(e1 + te2) = tn`0 + tn−1`1 + · · ·+ t`n−1 + `n.

We then have
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108 R. S. Garibaldi, A. Quéguiner-Mathieu, J.-P. Tignol

Lemma 2.6. For k = 0, . . . , n, the image of `k under Φ is the projection on
λkB. Moreover, we have γ(`k) = `n−k.

Proof. It is enough to prove it in the split case. Hence, we may assume B =
EndF (V ), and use identification (2.2) of the previous section. An element of
λkB = EndF (∧

kV ) can be written as (x1 ∧ · · · ∧ xk)⊗ (y1 ∧ · · · ∧ yn−k), where
x1, . . . , xk, y1, . . . , yn−k ∈ V . The endomorphism λn(e1 + te2) acts on this
element as follows:

λn(e1 + te2) ((x1 ∧ · · · ∧ xk)⊗ (y1 ∧ · · · ∧ yn−k))
= (x1, 0) ∧ · · · ∧ (xk, 0) ∧ (0, ty1) ∧ · · · ∧ (0, tyn−k)
= tn−k(x1 ∧ · · · ∧ xk)⊗ (y1 ∧ · · · ∧ yn−k).

Hence, the image under `i of this element is itself if i = k and 0 otherwise.
This proves the first assertion of the lemma. By Theorem 2.5, to prove the
second one, one has to check that for any u, v ∈ λ0B ⊕ · · · ⊕ λnB, we have
T (`i(u), v) = T (u, `n−i(v)), which follows easily from the description of T given
in that theorem.

Remark 2.7. By the previous lemma, the elements `0, . . . , `n ∈ λnM2(B) are
orthogonal idempotents. Hence, the fact that γ(`k) = `n−k for all k = 0, . . . , n
implies that the involution γ is hyperbolic if n is odd and Witt-equivalent to
its restriction to `mλ

nM2(B)`m if n = 2m.

We will also use the following:

Lemma 2.8. For any b ∈ F×, consider g0 := ( 0 b
1 0 ) ∈ M2(B), and set g :=

λn(g0). We have:

1. for any u ∈ λkB, Φ(g)(u) = bn−kγk(u) ∈ λn−kB;

2. g2 = bn and γ(g) = (−1)ng;

3. For any k = 0, . . . , n, g`k = `n−kg.

Proof. Again, it is enough to prove it in the split case. A direct computation
then shows that for any x⊗ y ∈ ∧kV ⊗ ∧n−kV = λkB, we have

g(x⊗ y) = (−1)k(n−k)bn−k(y ⊗ x),

which combined with (2.4) gives (1), which in turn easily implies (3). The first
part of (2) is because λn restricts to be a group homomorphism on M2(B)∗ [7,
14.3], and the second part then follows since γ(g)g = NrdλnM2(B)(g) = (−b)n

by [7, 14.4].
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3 Description of λn(Q⊗B)

We suppose that Q = (a, b)F is a quaternion F -algebra and B is an arbitrary
central simple F -algebra of degree n. We will describe λn(Q ⊗ B) by Galois
descent from K = F (α), where α ∈ Fs is a fixed square root of a. More pre-
cisely, let us identify Q with the F -subalgebra of M2(K) generated by

(

α 0
0 −α

)

and g0 = ( 0 b
1 0 ), i.e.,

Q = {x ∈M2(K) | g0x̄g
−1
0 = x},

where ¯ denotes the non-trivial automorphism of K/F . We also have

Q⊗B = {x ∈M2(BK) | g0x̄g
−1
0 = x},

where BK = B ⊗F K, and g0 is now viewed as an element of M2(BK).
The canonical map λn : A → λnA restricts to be a group homomorphism on
A∗ [7, 14.3]. Moreover, when degA = 2n, for a ∈ A∗, Int(λn(a)) preserves the
canonical involution γ on λnA [7, 14.4], and so we get a map

λn : Aut(A)→ Aut(λnA, γ).

In particular this holds for A = M2(BK). This induces a map on Galois
cohomology

H1(K/F,Aut(M2(BK)))
H1(λn)
−−−−−→ H1(K/F,Aut(λnM2(BK), γ)).

The image under this map of the 1-cocycle ¯ 7→ Int(g0) is the 1-cocycle ¯ 7→
Int(λng0), as in the preceding section. Since the former 1-cocycle corresponds
to Q⊗B, the latter corresponds to λn(Q⊗B), so

λn(Q⊗B) = {x ∈ λnM2(BK) | gx̄g−1 = x}(3.1)

for g := λn(g0). We fix this definition of g for the rest of the paper.

4 The n odd case

This section is essentially the proof of Theorem 1.1.
We set λevenB := ⊕0≤k<n

k even
λkB. For 0 ≤ k ≤ n, we let tk be the reduced trace

quadratic form on λkB as in (1.2). We then have the following:

Lemma 4.1. When n = degB is odd, the algebra with involution (λn(Q⊗B), γ)
is isomorphic to (Q, γQ)⊗ (C, σ), where (C, σ) is isomorphic to EndF (λ

evenB)
endowed with the adjoint involution with respect to

∑

0≤k<n
k even

tk.

Proof. If i, j ∈ Q satisfy i2 = a, j2 = b and ij = −ji, then since λn restricts to
be a group homomorphism on (Q⊗B)∗, λn(i⊗ 1) and λn(j ⊗ 1) ∈ λn(Q⊗B)
anticommute and satisfy

λn(i⊗ 1)2 = an, λn(j ⊗ 1)2 = bn,
γ(λn(i⊗ 1)) = −λn(i⊗ 1), γ(λn(j ⊗ 1)) = −λn(j ⊗ 1).
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(For the bottom two equations, see [7, (14.4)].) Hence, these two elements
generate a copy of Q in λn(Q⊗B) on which γ restricts to be γQ and we have
(λn(Q⊗B), γ) ' (Q, γQ)⊗ (C, σ), where C is the centralizer of Q in λn(Q⊗B)
and σ denotes the restriction of γ to C [7, 1.5].
To describe C, we take i = α(e1 − e2) and j = g0, as in the beginning of the
previous section, so that λn(j ⊗ 1) = g and

λn(i⊗ 1) = αn((−1)n`0 + (−1)n−1`1 + · · ·+ `n) = −α
n(`even − `odd),

where `even =
∑

0≤k≤n
k even

`k and `odd =
∑

0≤k≤n
k odd

`k.

Let us consider the map Ψ: `evenλ
n(M2(B))`even → λn(M2(BK)) defined by

Ψ(x) = x+ gxg−1. A direct computation shows that Ψ is an F -algebra homo-
morphism, amazingly. Clearly, Ψ(x) = Ψ(x) and since g2 = bn is central (see
Lemma 2.8), gΨ(x) = Ψ(x)g for all x. Hence, the image of Ψ is contained in
λn(Q⊗B) and is centralized by g. Moreover,

λn(i⊗ 1)Ψ(x) = −αn(x− gxg−1) = Ψ(x)λn(i⊗ 1).

Hence, the image of Ψ also centralizes λn(i ⊗ 1), and is therefore con-
tained in C. Now, since `even is an idempotent of λn(M2(B)), the algebra
`evenλ

n(M2(B))`even is simple, hence Ψ is injective. By dimension count it
follows that its image is exactly C.
Since γ(Ψ(x)) = Ψ(g−1γ(x)g), the involution σ on C corresponds via Ψ to
Int(g−1) ◦ γ on `evenλ

n(M2(B))`even. Note that if x ∈ `evenλ
n(M2(B))`even,

then γ(x) ∈ `oddλ
n(M2(B))`odd and g−1γ(x)g ∈ `evenλ

n(M2(B))`even. By
Theorem 2.5, we get that (C, σ) is isomorphic to EndF (λ

evenB) endowed
with the involution adjoint to the quadratic form T ′ defined by T ′(u, v) =
T (u,Φ(g)(v)). Using the description of T given in Theorem 2.5 and
Lemma 2.8(1), it is easy to check that the λkB are pairwise orthogonal for
T ′ and that T ′ restricts to be 〈(−b)n−k〉tk on λkB. Thus T ′ is similar to
∑

0≤k<n
k even

tk.

Let us now prove Theorem 1.1. If n = 2m+1, then the algebra with involution
(Q, γQ)

⊗n is isomorphic to (Q, γQ)⊗ (EndF (Q), adnQ)
⊗m, where adnQ denotes

the adjoint involution with respect to the quadratic form nQ. Indeed, one may
easily check that (Q⊗Q, γQ⊗γQ) is isomorphic to

(

EndF (Q), adT(Q,γQ)

)

, where

T(Q,γQ) is the quadratic form defined by T(Q,γQ)(x) = TrdQ(xγQ(x)). Since for

any x ∈ Q, we have xγQ(x) = nQ(x) ∈ F , T(Q,γQ) = 〈2〉nQ, and (Q⊗2, γ⊗2
Q ) '

(EndF (Q), adnQ). Therefore, to prove Theorem 1.1, it suffices to show that the
algebras with involution (Q, γQ)⊗(C, σ) and (Q, γQ)⊗(EndF (Q), adnQ)

⊗m are
Witt-equivalent. We will use the following lemma:

Lemma 4.2. Let (U, q) and (U ′, q′) be two quadratic spaces over F . There
exists an isomorphism

(Q, γQ)⊗ (EndF (U), adq) ' (Q, γQ)⊗ (EndF (U
′), adq′)

if and only if the quadratic forms nQ ⊗ q and nQ ⊗ q′ are similar.
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Proof. Consider the right Q-vector space UQ = U ⊗F Q. The quadratic form
q on U induces a hermitian form h : UQ × UQ → Q (with respect to γQ) such
that

h(u⊗ x, u′ ⊗ x′) =
1

2

(

q(u+ u′)− q(u)− q(u′)
)

γQ(x)x
′

for u, u′ ∈ U and x, x′ ∈ Q. The adjoint involution adh satisfies

(EndQ(UQ), adh) = (EndF (U), adq)⊗ (Q, γQ).(4.3)

The trace form of h, which is by definition the quadratic form

U ⊗F Q→ F, x 7→ h(x, x),

is q ⊗ nQ. Similarly, we denote by h′ the hermitian form induced by q′. By a
theorem of Jacobson [13, 10.1.7], the hermitian modules (UQ, h) and (U ′Q, h

′)
are isomorphic if and only if their trace forms are isometric. Hence, if the
quadratic forms q ⊗ nQ and q′ ⊗ nQ are similar, i.e., q ⊗ nQ ' 〈µ〉q

′ ⊗ nQ for
some µ ∈ F ∗, then the hermitian forms h and 〈µ〉h′ are isomorphic, which
proves that

(Q, γQ)⊗ (EndF (U), adq) ' (Q, γQ)⊗ (EndF (U
′), adq′).

Conversely, if there is such an isomorphism, then equation (4.3) shows that
the hermitian forms h and h′ are similar, hence their trace forms q ⊗ nQ and
q′ ⊗ nQ also are similar.

These two lemmas reduce the proof of Theorem 1.1 to showing that the

quadratic forms nQ ⊗
∑

0≤k<n
k even

tk and n
⊗(m+1)
Q are Witt-equivalent, up to a

scalar factor.
On the one hand, we have n

⊗(m+1)
Q = 4mnQ, since n

⊗2
Q = 4nQ. On the other

hand, since the algebra B is split by an odd-degree field extension, Springer’s
Theorem [8, VII.2.3] shows that tk is isometric to the trace form of

λk(Mn(F )) = M(nk)
(F )

which is Witt-equivalent to
(

n
k

)

〈1〉. Hence the Witt class of nQ⊗
∑

0≤k<n
k even

tk is

∑

0≤k<n
k even

(

n

k

)

nQ = 2n−1nQ = 4mnQ,

which completes the proof of Theorem 1.1.

5 The n even case

In this section, we prove Theorems 1.3, 1.4, and Corollary 1.5.
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112 R. S. Garibaldi, A. Quéguiner-Mathieu, J.-P. Tignol

Assume from now on that n is even and write n = 2m. Consider the element
of λn(M2(BK))

h = α(1− b−mg)(`0 + · · ·+ `m−1 +
1
2`m) + (1+ b−mg)( 1

2`m + `m+1 + · · ·+ `n).

One can check that

h−1 = 1
2

(

(α−1 + b−mg)(`0 + · · ·+ `m) + (1− b−mgα−1)(`m + · · ·+ `n)
)

and g = bm hh
−1

.
Therefore, it follows from (3.1) that

λn(Q⊗B) = hλnM2(B)h−1 ⊂ λnM2(B)K .

Using the isomorphism Φ of Theorem 2.5 as an identification, we then have

λn(Q⊗B) = EndF
(

h(λ0B)⊕ · · · ⊕ h(λnB)
)

,

and the canonical involution on λn(Q ⊗ B) is adjoint to the restriction of the
bilinear form TK to the F -subspace h(λ0B)⊕ · · · ⊕ h(λnB). This restriction is
given by the following formula:

Lemma 5.1. The F -subspaces h(λkB) are pairwise orthogonal. Moreover, for
u, v ∈ λkB we have

TK (h(u), h(v)) =














−2a(−1)kbm−k TrdλkB(uv) if k < m,

(−1)m
(

1+a
2 TrdλmB

(

γm(u)v
)

+ 1−a
2 TrdλmB(uv)

)

if k = m,

2(−1)kbm−k TrdλkB(uv) if k > m.

Proof. Using Lemmas 2.6 and 2.8(1), one may easily check that for any u ∈
λkB, we have

h(u) =











α(u− bm−kγk(u)) if k < m,
1
2

[

(1 + α)u+ (1− α)γk(u)
]

if k = m,

u+ bm−kγk(u) if k > m.

The claim then follows from the description of T given in Theorem 2.5 and
Lemma 2.8(1) by some direct computations. For instance, if u, v ∈ λmB, we
get

TK
(

h(u), h(v)
)

= (−1)m TrdλmBK

[

h(u)γm
(

h(v)
)]

(5.2)

by Theorem 2.5, and

h(u)γm
(

h(v)
)

=

1
4

[

(1 + α)2uγm(v) + (1− a)
(

uv + γm(u)γm(v)
)

+ (1− α)2γm(u)v
]

.
(5.3)
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Since TrdλmB
(

uγm(v)
)

= TrdλmB
(

γm(u)v
)

and TrdλmB
(

γm(u)γm(v)
)

=
TrdλmB(uv), it follows that

TrdλmBK

[

(1 + α)2uγm(v) + (1− α)2γm(u)v
]

= 2(1 + a)TrdλmB
(

γm(u)v
)

and

TrdλmBK

[

(1− a)(uv + γm(u)γm(v))
]

= 2(1− a)TrdλmB(uv).

Therefore, (5.2) and (5.3) yield

TK
(

h(u), h(v)
)

= (−1)m
1 + a

2
TrdλmB

(

γm(u)v
)

+ (−1)m
1− a

2
TrdλmB(uv).

This lemma provides a first description of the similarity class of qA:

Proposition 5.4. If n is even, the similarity class of qA contains the quadratic
form:

(

⊕0≤k<m〈2(−1)
kbm−k〉〈1,−a〉tk

)

⊕ 〈(−1)m〉(t+m ⊕ 〈−a〉t
−
m).

Proof. Since the anti-isomorphism γk defines an isometry tk ' tn−k, the re-
striction of TK to h(λkB ⊕ λn−kB), for all k < m, is

〈2(−1)kbm−k〉〈1,−a〉tk.

Moreover, we have

1 + a

2
TrdλmB

(

γm(u)v
)

+
1− a

2
TrdλmB(uv) =
{

TrdλmB(uv) if u ∈ Sym(λmB, γm),

−aTrdλmB(uv) if u ∈ Skew(λmB, γm).

Hence, the proposition clearly follows from the lemma.

5.5. Proof of Theorem 1.3.
Theorem 1.3 is a consequence of the preceding results in the special case where
Q = (a, b)F is split. In that case, we may take b = 1 so that the matrix
g0 = ( 0 1

1 0 ) then decomposes as g0 = f0f̄
−1
0 , where f0 =

(

1 −α
1 α

)

. Hence,
if we let f = λnf0, we have g = f f̄−1. On the other hand, we also have
g = hh̄−1, for h as in the preceding section, hence f−1h = f−1h, which means
that f−1h ∈ λn

(

M2(B)
)

. Considering the isomorphism Φ of Theorem 2.5
as an identification as we did in the preceding section, we get that f−1h ∈
EndF (λ

0B ⊕ · · · ⊕ λnB), hence

h(λ0B ⊕ · · · ⊕ λnB) = f(λ0B ⊕ · · · ⊕ λnB).
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To prove Theorem 1.3, we compute the restriction of TK to this F -subspace in
two different ways. First, we use [7, (14.4)], which says that f is a similarity
for TK with similarity factor NrdM2(BK)(f0) = (−2α)n = 2nam. Hence, for
any u, v ∈ λ0B ⊕ · · · ⊕ λnB, we have

TK(f(u), f(v)) = 2namT (u, v).

By Remark 2.7 and Theorem 2.5, the form T is Witt-equivalent to its restriction
to λmB, which is isometric to 〈(−1)m〉(t+m ⊕ 〈−1〉t

−
m).

Second, the restriction of TK to h(λ0B ⊕ · · · ⊕ λnB) has been computed in
Lemma 5.1 and the proof of Proposition 5.4. Comparing the results, we get
that the quadratic forms

(

⊕0≤k<m〈2(−1)
k〉〈1,−a〉tk

)

⊕ 〈(−1)m〉(t+m ⊕ 〈−a〉t
−
m)

and

〈2nam〉〈(−1)m〉(t+m ⊕ 〈−1〉t
−
m)

are Witt-equivalent. If m is even, we get that the following equality holds in
the Witt ring:

(

∑

0≤k<m
〈2(−1)k〉〈1,−a〉tk

)

+ t+m + 〈−a〉t−m = t+m − t−m,

from which we deduce

〈1,−a〉
((

∑

0≤k<m
〈2(−1)k〉tk

)

+ t−m

)

= 0.

To finish the proof, we may assume a is an indeterminate over the base field
F . The previous equality then implies that the quadratic form

(

⊕

0≤k<m
〈2(−1)k〉tk

)

⊕ t−m

is hyperbolic, which proves the theorem in this case. A similar argument fin-
ishes the proof for the m odd case.

Remark 5.6. Let t(λmB,γm) : λ
mB → F be the quadratic form

t(λmB,γm)(x) = TrdλmB(γm(x)x).

Using Theorem 1.3, together with the facts that tn−k = tk, t(λmB,γm) = t+m−t
−
m,

and that 2q ' 2〈2〉q for an arbitrary quadratic form q since 2〈2〉 = 2〈1〉, we
obtain the following memorable formula:

n
∑

k=0

(−1)ktk = t(λmB,γm) in WF.
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5.7. Proof of Theorem 1.4. Consider first the case where m is even. In
that case, Theorem 1.3 yields

∑

0≤k<m
k even

〈2〉tk + t−m =
∑

0≤k<m
k odd

〈2〉tk.

Substituting in the formula given in Proposition 5.4, we get that the similarity
class of qA contains a quadratic form whose Witt class is

∑

0≤k<m
k even

〈2,−2a〉tk +
∑

0≤k<m
k even

〈−2b, 2ab〉tk + 〈−a,−b, ab〉t
−
m + t+m

=
∑

0≤k<m
k even

〈2〉nQtk + t+m − t−m + nQt
−
m.

Now, suppose m is odd. Multiplying by 〈a〉 the quadratic form given in Propo-
sition 5.4 does not change its similarity class, and shows that the similarity
class of qA contains a quadratic form whose Witt class is

〈1,−a〉 ·
(

t+m +
∑

0≤k<m
〈2(−b)k+1〉tk

)

+ t−m − t+m.

Substituting for t+m the formula of Theorem 1.3 simplifies the expression in

brackets to 〈1,−b〉 ·
(

∑

0≤k<m
k even

〈2〉tk

)

and completes the proof.

5.8. Proof of Corollary 1.5. Let us assume that B is of exponent at most
2. Then, for any even k, the algebra λkB is split. Hence, its trace form tk is
Witt-equivalent to

(

n
k

)

. Since m is even, λmB is also split, and its canonical
involution γm is adjoint to a quadratic form qB . This form is only defined up
to a scalar factor, but its square is defined up to isometry. Now [7, 11.4] gives
relationships between qB and the forms t+m and t−m:

t+m − t−m ' q2
B and − t−m ' 〈1/2〉 ∧

2 qB .

Hence, by Theorem 1.4, the similarity class of qA contains a form whose Witt
class is

q2
B + nQ

(

〈−2〉(∧2qB) +
∑

0≤k<m
k even

(

n
k

)

〈2〉
)

.

One may easily check that, since 〈2, 2〉 ' 〈1, 1〉 and qB is even-dimensional,
q2
B ' 〈2〉q

2
B . Since we are concerned only with the similarity class of qA, we

may therefore forget the factors 〈2〉 throughout. Moreover, since m is even,
∑

0≤k<m
k even

(

n
k

)

= 2n−2 − 1
2

(

n
m

)

, and Corollary 1.5 follows.

6 Another approach to the n even case

Let us decompose B = B0 ⊗ B1, where degB0 = 2m0 is a power of 2 and
degB1 = m1 is odd. We have m = m0m1, and m is even if and only if m0 > 1.

Documenta Mathematica 6 (2001) 99–120
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We write T0 for the trace form of B0. Under the assumption that B⊗2
0 is split

(which is automatic if m is odd), we will give a different characterization of qA
for A = Q⊗B than the one in Theorem 1.4. Corollaries 1.6 and 1.7 will follow
from this.

Proposition 6.1. Suppose that B⊗2
0 is split. Then the similarity class of qA

contains a form whose Witt class is

2n−1 +
2n−3

m0
T0(nQ − 2) if m is even

and

2n−2(nQ − nB0
) if m is odd.

(Note that B0 is a quaternion algebra if m is odd.)

This result is already known for m odd: If A is a biquaternion algebra (i.e.,
m = 1) it is [3, 6.2], and in general it follows from [3, 6.4] by a straightforward
computation, using the fact that for any integer k ≥ 1, one has nkQ = 22(k−1)nQ.
However, the results from [3] make use of Clifford algebras, which seems a long
way to go. So we include a direct proof.
We start with a lemma.

Lemma 6.2. Suppose that B⊗2
0 is split. Then the quadratic form tk is Witt-

equivalent to
(

n
k

)

if k is even and 1
2m0

(

n
k

)

T0 if k is odd. Moreover, we have:

t−m =
2n−3

m0
〈2〉T0 −

(

2n−2 − 1
2

(

n
m

)

)

〈2〉 if m is even,

and

t+m = 2n−2〈2〉 −
(

2n−3 − 1
4

(

n
m

)

)

〈2〉T0 if m is odd.

This lemma actually specifies t+m and t−m whatever the parity of m since in both
cases tm = t+m + t−m, and tm is known.

Proof. Since B1 is split by an odd-degree field extension, Springer’s Theorem
shows that tk is isometric to the trace form of λk

(

B0 ⊗Mm1
(F )

)

. If k is even,
this algebra is split, and the result is clear. If k is odd, the algebra is Brauer-
equivalent to B0, hence isomorphic to Mp(F ) ⊗ B0, where p = 1

2m0

(

n
k

)

. The
form of tk for k odd then follows from the fact that the trace form of a tensor
product of central simple algebras is isometric to the product of the trace forms
of each factor.
We have m = m0m1, and m is odd if and only if m0 = 1. Recall that

∑

0≤k<m
k even

(

n
k

)

=

{

2n−2 if m is odd,

2n−2 − 1
2

(

n
m

)

if m is even,
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and

∑

0≤k<m
k odd

(

n
k

)

=

{

2n−2 − 1
2

(

n
m

)

if m is odd,

2n−2 if m is even.

The second part of the lemma then follows from Theorem 1.3 by a direct
computation.

Let us now prove Proposition 6.1. Assume first that m is even. The preceding
lemma yields

t−m +
∑

0≤k<m
k even

〈2〉tk =
2n−3

m0
〈2〉T0

and

t+m − t−m =
(

n
m

)

− 2t−m = 2n−1〈2〉 −
2n−2

m0
〈2〉T0 +

(

n
m

)

〈1,−2〉.

Since
(

n
m

)

is even, the last term on the right side vanishes, hence the quadratic
form given by Theorem 1.4 is

〈2〉
(

2n−1 −
2n−2

m0
T0 +

2n−3

m0
nQT0

)

.

This finishes the m even case.
Assume now that m is odd. Then, B0 is a quaternion algebra, and T0 =
〈2〉(2− nB0

). The preceding lemma yields

∑

0≤k<m
k even

〈2〉tk = 2n−2〈2〉

and

t−m − t+m = 1
2

(

n
m

)

T0 − 2t+m = 1
2

(

n
m

)

T0 − 2n−1〈2〉+
(

2n−2 − 1
2

(

n
m

)

)

〈2〉T0.

If m = 1, then this reduces to t−m − t+m = −〈2〉nB0
, and Theorem 1.4 gives the

desired result. Otherwise, since m is odd and m ≥ 3, the integer 2n−2 − 1
2

(

n
m

)

is even, by [7, (10.29)], hence
(

2n−2 − 1
2

(

n
m

))

〈2〉 = 2n−2 − 1
2

(

n
m

)

and the right
side of the last displayed equation simplifies to yield

t−m − t+m = −2n−2〈2〉nB0
.

Therefore, the quadratic form given by Theorem 1.4 is 2n−2〈2〉(nQ − nB0
),

which is isometric to 2n−2(nQ − nB0
) since 2n−2〈2〉 = 2n−2, and the proof of

Proposition 6.1 is complete.

6.3. Proof of Corollary 1.6. Corollary 1.6 can be proved by induction,
using the formula given in Corollary 1.5, but it can also be directly deduced
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from Proposition 6.1. Indeed, let us assume A = Ar = Q1 ⊗ · · · ⊗ Qr is a
product of r ≥ 3 quaternion algebras. We let B = Q2 ⊗ · · · ⊗ Qr. Its degree
n = 2r−1 is a power of 2, and since r ≥ 3, m = 2r−2 is even. In the notation
from earlier in this previous section, we have B0 = B and B⊗2

0 is split. Hence,
we may apply Proposition 6.1. The form T0 is the trace form of B, that is the
tensor product of the trace forms of the quaternion algebras Qi for i = 2, . . . , r.
Hence, we have T0 = 〈2r−1〉(2−nQ2

) · · · (2−nQr
), and Proposition 6.1 tells us

that the similarity class of qA contains a form whose Witt class is

2n−1 +
2n−3

2r−2
〈2r−1〉(nQ1

− 2)(2− nQ2
) · · · (2− nQr

) =

=2n−1〈2r−1〉 − 2n−r−1〈2r−1〉(2− nQ1
)(2− nQ2

) · · · (2− nQr
)

= 〈2r−1〉2n−r−1
(

2r − (2− nQ1
) · · · (2− nQr

)
)

,

which proves the corollary.

6.4. Proof of Corollary 1.7. Let us now consider a central simple algebra
A as in the statement of Corollary 1.7. Then A is isomorphic to Mk(Ar), where
Ar = Q1 ⊗ · · · ⊗ Qr is a product of r quaternion algebras. If A is split then
qA is hyperbolic and the result is clear, so we may assume that r 6= 0. Because
degA ≡ 0 mod 4 by hypothesis, we may further assume that r 6= 1 (so that
r ≥ 2), with perhaps some of the Qi being split.

We first treat the k = 1 case. If r = 2, then A is biquaternion algebra and qA
is an Albert form, which lies in I2F . If r ≥ 3, then by Corollary 1.6 we have to
prove that

2n−1 − 2n−r−1(2− nQ1
) · · · (2− nQr

)

lies in InF . When we expand this product, the terms of the form 2n−1 cancel,
and we are left with a sum of terms of the form ±2n−`−1nQi1

· · ·nQi`
, where

` ≥ 1. Since for any i the form nQi
lies in I2F , 2n−`−1nQi1

· · ·nQi`
belongs to

In−`−1+2`F = In+`−1F , and hence to InF .

Now suppose that k ≥ 2. Since r ≥ 2, we have deg(Ar) ≡ 0 mod 4 and we
can apply [3, 6.3(1)]. Hence, the similarity class of qA contains a form which
is Witt-equivalent to q⊗kAr

. Since the result holds for Ar by the k = 1 case, we
are done.
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