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1 Introduction

Let K be a non-archimedean local field and V a finite-dimensional vector space
over K. In this paper we construct a compactification of the Bruhat-Tits
building X associated to the group PGL(V ) by attaching all the Bruhat-Tits
buildings of PGL(W ) for non-trivial subspaces W of V as a boundary. Since
the vertices of such a building correspond to homothety classes of lattices of full
rank in W , we can also view this process as attaching to X (whose underlying
simplicial complex is defined by lattices of full rank in V ) all the lattices in V
of smaller rank.

This compactification differs from both the Borel-Serre compactification and
Landvogt’s polyhedral compactification of X. The different features of these
three constructions can be illustrated in the case of a three-dimensional V by
looking at the compactification of one apartment:
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Borel-Serre Landvogt Our compactification

In the Borel-Serre compactification, the points on the boundary correspond to
the rays, i.e. to the half-lines emanating from the origin, and parallel lines have
the same limits. In Landvogt’s compactification, parallel lines have different
limit points, whereas the rays in one segment (chamber) all converge to the
corner vertex. In our compactification all rays contained in the two chambers
around a boundary vertex converge to this vertex, and so do lines which are
parallel to the middle axis. The two rays at the boundary of this double
chamber (they look shorter in our picture) converge to points on the boundary
lines, and their parallels converge to different points on these lines.
The idea to attach lattices of smaller rank to compactify X already appeared in
Mustafin’s paper [Mu]. The goal of this paper is a generalization of Mumford’s
p-adic Schottky uniformization to higher dimensions. Mustafin’s construction
and investigation of the compactified building take up about one page. He
works with lattices and defines the compactification as the union of X and
all the lattices in V of smaller rank, i.e. he only uses a set of vertices as the
boundary. His construction remains rather obscure (at least to the author),
and does not include proofs.
The construction of our compactification is based on the same idea of attaching
lattices of smaller rank, but is entirely different. First we compactify one apart-
ment Λ in X (corresponding to a maximal torus T in PGL(V )) by attaching
some apartments of lower dimension corresponding to certain tori which are
quotients of T . We define a continuous action of the normalizer N of T on
this compactification Λ. Then we glue all the compactified apartments cor-
responding to maximal tori in PGL(V ) together. To be precise, we take a
certain compact subgroup U∧0 in G, and we define for each x ∈ Λ a subgroup
Px of G, which turns out later to be the stabilizer of x. Our compactification
X is defined as the quotient of U∧0 × Λ by the following equivalence relation:
(g, x) ∼ (h, y) iff there exists some n in N such that nx = y and g−1hn lies in
Px. This is similar to the construction of the building X.
Then we prove the following results: X is an open, dense subset of X, and X
carries a G-action compatible with the one on X. Besides, X is compact and
contractible and can be identified with the union of all Bruhat-Tits buildings
corresponding to non-zero subspaces W of V .
In order to prove these results, we have to investigate in detail the structure of
our stabilizer groups Px. In particular, we show a mixed Bruhat decomposition
theorem for them.
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Bruhat-Tits Building of PGL 317

It is of course a natural question whether a similar compactification also exists
for other groups. At present, I can see no generalization of this approach
to arbitrary reductive groups, but probably some other cases can be treated
individually. In order to facilitate such generalizations we work in a group
theoretic set up where possible, and do not use the realization of X as the
space of norms up to similarity.
Moreover, it would be interesting to see if there exists an analogue of our
construction in the archimedean world of symmetric spaces.
Acknowledgements: I would like to thank C. Deninger, E. Landvogt and
P. Schneider for helpful discussions concerning this paper.

2 The Bruhat-Tits building for PGL

Throughout this paper we denote by K a non-archimedean local field, by R its
valuation ring and by k the residue class field. Besides, v is the valuation map,
normalized so that it maps a prime element to 1.
We adopt the convention that “⊂” always means strict subset, whereas we
write “⊆”, if equality is permitted.
Let V be an n-dimensional vector space over K. Let us recall the definition of
the Bruhat-Tits building for the group G = PGL(V ) (see [Br-Ti] and [La]).
We fix a maximal K-split torus T and let N = NGT be its normalizer. Note
that T is equal to its centralizer in G. We write G = G(K), T = T(K) and
N = N(K) for the groups of rational points. By X∗(T) respectively X∗(T)
we denote the cocharacter respectively the character group of T. We have a
natural perfect pairing

<,>: X∗(T)×X∗(T) −→ Z

(λ, χ) 7−→< λ, χ >,

where < λ, χ > is the integer such that χ ◦ λ(t) = t<λ,χ> for all t ∈ Gm. Let
Λ be the R-vector space Λ = X∗(T)⊗Z R. We can identify the dual space Λ∗

with X∗(T)⊗Z R, and extend <,> to a pairing

<,>: Λ× Λ∗ −→ R.

Since <,> is perfect, there exists a unique homomorphism ν : T → Λ such
that

< ν(z), χ >= −v(χ(z))

for all z ∈ T and χ ∈ X∗(T) (compare [La], Lemma 1.1). Besides, by [La],
Proposition 1.8, there exists an affine Λ-space A together with a homomorphism
ν : N → Aff(A) extending ν : T → Λ. Here Aff(A) denotes the space of affine
bijections A → A. The pair (A, ν) is unique up to unique isomorphism. It is
called the empty appartment defined by T.
Let g be the Lie algebra of G. We have the root decomposition

g = gT ⊕
⊕

a∈Φ

ga,
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where Φ = Φ(T,G) is the set of roots and where gT = {X ∈ g : Ad(t)X =
X for all t ∈ T} and ga = {X ∈ g : Ad(t)X = a(t)X for all t ∈ T} for all
a ∈ Φ (see [Bo], 8.17 and 21.1). By [Bo], 21.6, Φ is a root system in Λ∗ with
Weyl group W = N/T . For all a ∈ Φ there exists a unique closed, connected,
unipotent subgroup Ua of G which is normalized by T and has Lie algebra ga
(see [Bo], 21.9). We denote the K-rational points of Ua by Ua.
In our case G = PGL(V ) we can describe these data explicitly. Our torus T

is the image of a maximal split torus T∼ in GL(V ). Hence there exists a basis
v1, . . . , vn of V such that T∼ is the group of diagonal matrices in GL(V ) with
respect to v1, . . . , vn. From now on we will fix such a basis. Let N∼ be the
normalizer of T∼ in GL(V ). Then N is the image of N∼ in PGL(V ). Hence
N is the semidirect product of T and the group of permutation matrices, which
is isomorphic to W = N/T .
Since W is the Weyl group corresponding to Φ, it acts as a group of reflections
on Λ, and we have a natural homomorphism

W −→ GL(Λ).

Since Aff(Λ) = Λ o GL(Λ), we can use this map together with ν : T → Λ to
define

ν : N = T oW −→ Λ oGL(Λ) = Aff(Λ).

Hence (Λ, ν) is an empty apartment, and we write from now on A = Λ.
Denote by χi the character

χi : T∼ −→ Gm






t1
. . .

tn






7−→ ti.

Then for all i and j we have characters aij := χi − χj , and

Φ = {aij : i 6= j}.

For a = aij we define now U∼
a as the subgroup of GL(V ) such that U∼

a (K)
is the group of matrices U = (ukl)k,l such that the diagonal elements ukk are
equal to one, uij is an element in K and the rest of the entries ukl is zero.
Its image in PGL(V ) is isomorphic to U∼

a and coincides with the group Ua.
Define

ψa : Ua −→ Z ∪ {∞}

by mapping the matrix U = (ukl)k,l to v(uij). Then we put for all l ∈ Z

Ua,l = {u ∈ Ua : ψa(u) ≥ l}.

We also define Ua,∞ = {1}, and Ua,−∞ = Ua. An affine function θ : Λ → R
of the form θ(x) = a(x) + l for some a ∈ Φ and some l ∈ Z is called an affine
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root. We can define an equivalence relation ∼ on Λ as follows:

x ∼ y iff θ(x) and θ(y) have the same sign

or are both equal to 0 for all affine roots θ.

The equivalence classes with respect to this relation are called the faces of Λ.
These faces are simplices which partition Λ (see [Bou], V, 3.9). There exists a
W -invariant scalar product on Λ (uniquely determined up to scalar factor), see
[Bou], VI, 1.1 and 1.2, and all the reflections at affine hyperplanes are contained
in ν(N).
For all x ∈ Λ let Ux be the group generated by Ua,−a(x) = {u ∈ Ua : ψa(u) ≥
−a(x)} for all a ∈ Φ. Besides, put Nx = {n ∈ N : ν(n)x = x}, and

Px = UxNx = NxUx.

Now we are ready to define the building X = X(PGL(V )) as

X = G× Λ/ ∼,

where the equivalence relation ∼ is defined as follows (see [La], 13.1):

(g, x) ∼ (h, y) iff there exists an element n ∈ N

such that ν(n)x = y and g−1hn ∈ Px.

We have a natural action of G on X via left multiplication on the first factor.
The G-action on X continues the N -action on Λ, so that we will write nx for
our old ν(n)x if x ∈ Λ and n ∈ N . Besides, we can embed the apartment
Λ in X, mapping a ∈ Λ to the class of (1, a). (This is injective, see [La],
Lemma 13.2.) For x ∈ Λ the group Px is the stabilizer of x. A subset of X
of the form gΛ for some g ∈ G is called apartment in X. Similarly, we define
the faces in gΛ as the subsets gF , where F is a face in Λ. Then two points
(and even two faces) in X are always contained in a common apartment ([La],
Proposition 13.12 and [Br-Ti], 7.4.18). Any apartment which contains a point
of a face contains the whole face, and even its closure (see [La], 13.10, 13.11, and
[Br-Ti], 7.4.13, 7.4.14). We fix once and for all a W -invariant scalar product
on Λ, which induces a metric on Λ. Using the G-action it can be continued to
a metric d on the whole of X (see [La], 13.14 and [Br-Ti], 7.4.20).
Note that if n = 2, then X is an infinite regular tree, with q+1 edges meeting
in every vertex, where q is the cardinality of the residue field.
We denote by X0 the set of vertices (i.e. 0-dimensional faces) in X. We define
a simplex in X0 to be a subset {x1, . . . , xk} of X

0 such that x1, . . . , xk are the
vertices of a face in X.
Let ηi : Gm → T be the cocharacter induced by mapping x to the diagonal
matrix with diagonal entries d1, . . . , dn such that dk = 1 for k 6= i and di = x.
Then η1, . . . , ηn−1 is an R-basis of Λ, and the set of vertices in Λ is equal to
⊕n−1

i=1 Zηi.

Documenta Mathematica 6 (2001) 315–341



320 Annette Werner

Let L be the set of all homothety classes of R-lattices of full rank in V . We
write {M} for the class of a lattice M . Two different lattice classes {M ′} and
{N ′} are called adjacent, if there are representatives M and N of {M ′} and
{N ′} such that

πN ⊂M ⊂ N.

This relation defines a flag complex, namely the simplicial complex with vertex
set L such that the simplices are the sets of pairwise adjacent lattice classes.
We have a natural G-action on L preserving the simplicial structure.
Moreover, there is a G-equivariant bijection

ϕ : L −→ X0

preserving the simplicial structures. If {N} ∈ L can be written as {N} = g{M}
for some g ∈ G and M = πk1Rv1 + . . .+ πknRvn, then ϕ({N}) is given by the
pair (g, ϕ{M}) ∈ G× Λ, where

ϕ({M}) =
n−1
∑

i=1

(kn − ki)ηi

is a vertex in Λ.

3 Compactification of one apartment

We write n for the set {1, . . . , n}. We continue to fix the basis v1, . . . , vn of V

and the maximally split torus T from section 2. Recall that Λ =
⊕n−1

i=1 Rηi, and
that ηn satisfies the relation η1+. . .+ηn = 0. We will often write Λ =

∑n
i=1 Rηi,

bearing this relation in mind.
Let now I be a non-empty subset of n, and let VI be the subspace of V generated
by the vi for i ∈ I. We write GVI for the subgroup of G = PGL(V ) consisting
of the elements fixing the subspace VI , and GI for the group PGL(VI). Then
we have a natural restriction map

ρI : G
VI −→ GI .

The torus T is contained in GVI , and its image under ρI is a maximal K-split
torus TI in GI , namely the torus induced by the diagonal matrices with respect
to the base {vi : i ∈ I} of VI . As usual, we write TI , GI and G

VI for the groups
of K-rational points.
We put ΛI = X∗(TI) ⊗Z R. Then ρI induces a surjective homomorphism
ρI∗ : X∗(T)→ X∗(TI), hence a surjective homomorphism of R-vector spaces

rI : Λ −→ ΛI .

For all i ∈ I we write ηIi for the cocharacter of TI induced by mapping x to
the diagonal matrix with entry x at the i-th place, i.e. ηIi = ρI∗ηi.
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Then ΛI =
∑

i∈I RηIi , subject to the relation
∑

i∈I η
I
i = 0. In particular,

Λ{i} = 0. Note that rI(
∑n

i=1 xiηi) =
∑

i∈I xiη
I
i .

Let νI : TI → ΛI be the unique homomorphism satisfying < νI(z), χ >=
−v(χ(z)) for all χ ∈ X∗(TI). It is compatible with ν, i.e. the following
diagram is commutative:

T
ν

−−−−→ Λ

ρI





y





y

rI

TI
νI−−−−→ ΛI

Now we define
Λ = Λ ∪

⋃

∅6=I⊂n

ΛI =
⋃

∅6=I⊆n

ΛI .

Recall that we write “⊂” for a strict subset, and “⊆” if equality is permitted.
Here Λn = Λ and rn is the identity.

Let us now define a topology on Λ. For all I ⊂ n we put

DI =
∑

i/∈I

R≥0(−ηi).

We think of DI as a “corner” around ΛI . For all open and bounded subsets
U ⊂ Λ we define

CIU = (U +DI) ∪
⋃

I⊆J⊂n

rJ(U +DI).

We take as a base of our topology on Λ the open subsets of Λ together with
these sets CI

U for all non-empty I ⊂ n and all open bounded subsets U of Λ.
Note that every point x ∈ Λ has a countable fundamental system of neighbor-
hoods. This is clear for x ∈ Λ. If x is in ΛI for some I ⊂ n, then choose some
z ∈ Λ with rIz = x, and choose a countable decreasing fundamental system of
bounded open neighborhoods (Vk)k≥1 of z in Λ. Put Uk = Vk +

∑

i/∈I k(−ηi).
This is an open neighborhood of z + k

∑

i/∈I(−ηi). Then (CI
Uk

)k≥1 is a funda-
mental system of open neighborhoods of x.
Hopefully the next result will shed some light on the definition of the topological
space Λ.
Recall from section 2, that we have a G-equivariant bijection ϕ between equiv-
alence classes of lattices of full rank in V and vertices in the building X. If we
restrict ϕ to lattices which can be diagonalized with respect to v1, . . . , vn, i.e.
which have an R-basis consisting of multiples of these elements, then we get a
bijection between these diagonal lattices and vertices in Λ. Applying this to
the group GI = PGL(VI), we get a bijection ϕI between classes of diagonal
lattices in VI with respect to the vi for i ∈ I, and vertices in ΛI .

Proposition 3.1 Let (Mk)k≥1 be a sequence of diagonal lattices in V and let
N be a diagonal lattice in VI . The sequence of vertices ϕ({Mk}) converges to the
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vertex ϕI({N}) ∈ ΛI in our topology on Λ iff after passing to a subsequence
there are lattices M ′

k equivalent to Mk such that M ′
k+1 ⊆ M ′

k and such that
⋂

kM
′
k is equivalent to N .

Proof: We can write M ′
k =

⊕n
i=1 π

ai,kRvi for some integers ai,k. Since
M ′
k+1 ⊂ M ′

k, we have ai,k+1 ≥ ai,k. Therefore for all i the sequence ai,k
becomes stationary or goes to infinity, so that

⋂

kM
′
k =

⊕

i∈I′ π
aiRvi, where

I ′ is the set of all i, such that ai,k becomes stationary, i.e. ai,k = ai for all k
big enough. Let us call this intersection module N ′. It is a lattice in VI′ , and
by assumption equivalent to N , so that I = I ′.
Besides, we have ϕ({M ′

k}) =
∑n

i=1(−ai,k)ηi, and ϕI({N
′}) =

∑

i∈I(−ai)η
I
i . If

k is big enough, we have ϕ({M ′
k}) =

∑

i∈I(−ai)ηi +
∑

i/∈I(−ai,k)ηi, with ai,k
arbitrarily large. If we take one of the systems of fundamental neighborhoods
of ϕI({N}) = ϕI({N

′}) constructed previously, we find that every one of them
must contain a point ϕ({M ′

k}), so that ϕ({Mk}) converges indeed to ϕI({N}).
To prove the other direction, assume that ϕ({Mk}) converges to ϕI({N}) for
Mk =

⊕n
i=1 π

ai,kRvi and N =
⊕

i∈I π
biRvi. Looking at the fundamental

neighborhoods as above, we find that for any fixed i0 ∈ I the sequence ai,k −
ai0,k is unbounded for i /∈ I, and goes to bi − bi0 for i ∈ I. This implies our
claim. ¤

We will now show that the space Λ is compact.
Fix some i ∈ n. We write Di for D{i} =

∑

j 6=i R≥0(−ηj), the “corner in Λ
around the point Λ{i}”. Besides, let

Ei = Di ∪
⋃

i∈J⊂n

rJ(Di) ⊂ Λ,

the “closed corner in Λ around the point Λ{i}”.

Lemma 3.2 i) Each point in Λ lies in one of the Ei.
ii) Each Ei is closed in Λ.

Proof: i) Let x =
∑n

j=1 xj(−ηj) be a point in Λ. Note that the relation
∑n

j=1 ηj = 0 implies that we can write x =
∑

j 6=i(xj − xi)(−ηj) for all i. Now
Ei ∩ Λ = Di is the set of all x such that all xj − xi are non-negative. In other
words, a point x =

∑n
j=1 xj(−ηj) is in Di iff xi is the minimum of all the

coefficients xj . This implies that for given x we always find some Ei containing
it. As similar argument holds if x is contained in a boundary piece ΛJ , since
if J contains i, the boundary piece Ei ∩ΛJ is the set of all x =

∑

j∈J xj(−η
J
j )

such that xi is the minimum of all the xj for j ∈ J . (If i is not contained in J ,
then of course Ei ∩ ΛJ is empty.)
ii) Take some x ∈ Λ not contained in Ei. Then x is in some ΛJ for J ⊆ n
(possibly n). Since the point Λ{i} is contained in Ei, we know that J 6= {i}.
Let us first assume that i is contained in J . We write x =

∑

j∈J,j 6=i xj(−η
J
j ).

Since x is not in Ei, our considerations in part i) imply that one of the xj
for j ∈ J , say xj0 , must be negative. The point z =

∑

j∈J,j 6=i xj(−ηj) in Λ
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projects to x, i.e. rJ (z) = x. This point must also be in the complement of Ei.
Since Ei ∩ Λ = Di is closed, we find a bounded open neighborhood U of z in
Λ which is disjoint from Ei, and which contains only points y =

∑

j 6=i yj(−ηj)

with yj0 < 0. Then the open neighborhood CJ
U of x is also disjoint from Ei,

which proves our claim.
If i /∈ J and x =

∑

j∈J xj(−η
J
j ), we choose some j0 ∈ J and some xi > xj0 .

The point z =
∑

j∈J xj(−ηj) + xi(−ηi) ∈ Λ is not contained in Ei. Hence we
can again find a bounded open neighborhood U of z in Λ which is disjoint from
Ei, and which contains only points y =

∑

j 6=i yj(−ηj) with yj0 < 0. Then CJ
U

is an open neighborhood of x contained in the complement of Ei. ¤

Let R≥0,∞ be the compactified half-line R≥0∪{∞} with the topology generated
by all intervals [0, a[, ]b, c[ and ]b,∞] for a > 0 and b, c ≥ 0. The space R≥0,∞
is compact and contractible. A contraction map r : R≥0,∞ × [0, 1]→ R≥0,∞ is
given by

r(x, t) =
(1− t)x

1 + tx
for x ∈ R, and r(∞, t) =

{

∞, if t = 0
1−t
t , if t 6= 0

,

see [La], 2.1. Let us fix some i ∈ n. We will now compare Ei to Rn−1
≥0,∞, which we

write as
⊕

j 6=i R≥0,∞ej for a basis ej . Recall from the proof of Lemma 3.2 that

in the case i ∈ I we can describe Ei∩ΛI as the set of all x =
∑

j∈I,j 6=i xj(−η
I
j )

with non-negative xj . Hence the following map is a bijection

αI : Ei ∩ ΛI → {
∑

j 6=i

xjej ∈
⊕

j 6=i

R≥0,∞ej : xj =∞ iff j /∈ I}

∑

j∈I,j 6=i xj(−η
I
j ) 7→

∑

j∈I,j 6=i

xjej +
∑

j /∈I

∞ ej .

For I = n the map αn : Ei ∩ Λ = Di →
⊕

j 6=i R≥0ej can be continued to a
homomorphism of R-vector spaces

αΛ : Λ −→
⊕

j 6=i

Rej ,

which is a homeomorphism. Putting all the maps αI together, we get a bijection

α : Ei −→
⊕

j 6=i

R≥0,∞ej ,

whose restriction to Ei ∩ Λ is a homeomorphism. We even have the following
fact:

Lemma 3.3 With respect to the topology on Ei induced by Λ, the map α is a
homeomorphism on the whole of Ei.

Proof: For all j 6= i choose an open interval Aj in R≥0,∞, which is either of
the form Aj = [0, aj [ or Aj =]bj , cj [ or of the form Aj =]bj ,∞]. We claim that
the preimage of A =

∑

j 6=iAjej is open in Ei.

Documenta Mathematica 6 (2001) 315–341



324 Annette Werner

We put A′j =] − 1, aj [, if Aj = [0, aj [. In all the other cases we put A′j = Aj .
Let A′ =

∑

j 6=iA
′
jej and put

W = α−1Λ (A′ ∩
⊕

j 6=i

Rej).

Since αΛ is a homeomorphism, W is open in Λ. Obviously, we have W ∩Ei =
α−1(A) ∩ Λ. Now put

I = {j ∈ n :∞ /∈ Aj} ∪ {i}.

We can assume that I 6= n. Choose some positive real number b strictly bigger
than all the bj for j /∈ I. Then U =W ∩{x =

∑

j 6=i xj(−ηj) : xj < b for j /∈ I}
is an open bounded subset of Λ. Note that U + DI = W . We claim that
α−1(A) = CI

U ∩ Ei.
Indeed, every element u in W = U +DI can be written as u =

∑

j 6=i xj(−ηj)

with xj ∈ A
′
j . Let J be a subset of n containing I. If rJ (u) =

∑

j∈J,j 6=i xj(−η
J
j )

is in Ei, we have xj ∈ Aj for all j ∈ J not equal to i. This implies that α(rJ (u))
is contained in A. On the other hand, let y =

∑

j 6=i yjej be an element in A,
i.e. yj ∈ Aj . Put J = {j 6= i : yj 6= ∞} ∪ {i}. Then J contains I. We put
xj = yj , if j 6= i is in J . If j /∈ J , we choose an arbitrary element in Aj ∩ R
and call it xj . Then x =

∑

j 6=i xj(−ηj) is contained in W ∩Di, so that rJ(x)

is an element in CI
U ∩ Ei which satisfies α(rJ (x)) = y. Hence we also find

α−1(A) ⊂ CI
U ∩ Ei.

Therefore α is continuous. It remains to show that α is open. Let U be an
open, bounded subset of Λ and I ⊂ n non-empty. We will show that α(CI

U∩Ei)
is open. Let x be a point in CI

U ∩ Ei lying in ΛJ for some J containing I and
i. Hence x =

∑

j∈J,j 6=i xj(−η
J
j ) with non-negative xj . Since x is contained in

CIU , we can find some z =
∑

j 6=i zj(−ηj) in U +DI such that rJ(z) = x (hence
zj ≥ 0 for j ∈ J) and zj > 0 for j /∈ J . Then z ∈ (U +DI) ∩ Ei.
Since the restriction of α to Ei ∩ Λ is open, we find open intervals Aj (of the
form [0, aj [ or ]bj , cj [) in R≥0 such that A =

∑

j 6=iAjej is an open neighborhood
of α(z) in

⊕

j 6=i R≥0ej which is contained in α((U + DI) ∩ Ei). We can also
assume that for j /∈ J the interval Aj does not contain 0.
Now put A′j = Aj if j 6= i is contained in J , and put A′j =]bj ,∞] if j is not
contained in J , and Aj =]bj , cj [. (The interval Aj looks indeed like this since
we took care to stay away from zero.)
It is easy to see that A′ =

∑

j 6=iA
′
jej is contained in α(CI

U ∩ Ei). Hence we

found an open neighborhood A′ around α(x) in α(CI
U ∩ Ei). ¤

Theorem 3.4 The topological space Λ is compact and contractible, and Λ is
an open, dense subset of Λ.

Proof: By the previous result, all Ei are compact and contractible. Since Λ
is the union of the Ei, it is also compact. A straightforward calculation shows
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that the contraction maps are compatible, so that Λ is contractible. It is clear
that Λ is open and dense in Λ. ¤

Our next goal is to extend the action of N on Λ to a continuous action on the
compactification Λ. Recall that we identifiedW with the group of permutation
matrices in N , so that N = T o W . For w ∈ W we denote the induced
permutation of the set n also by w, i.e. we abuse notation so that w(vi) = vw(i).
Let I be a non-empty subset of n. We define a map

w : ΛI −→ Λw(I)

by sending ηIi to η
w(I)
w(i) . This gives an action of W on Λ. Note that it is

compatible with rJ , i.e. we have

w ◦ rJ = rw(J) ◦ w

on Λ. Besides, we can combine the maps νI : TI → ΛI with the restriction
map ρI : T → TI to define a map νI ◦ ρI : T → ΛI , so that T acts by affine
transformations on ΛI . Recall that rI(ν(t)) = νI(ρI(t)) for all t ∈ T .
It is easy to check that these two actions give rise to an action of N = T oW
on Λ, which we denote by ν.

Lemma 3.5 The action ν : N × Λ −→ Λ is continuous and extends the action
of N on Λ.

Proof: Let first w be an element of W , and let CI
U one of our open basis

sets. Then ν(w)(U + DI) = ν(w)(U) + Dw(I), since ν(w) is a linear map on
Λ. Besides, we have ν(w)(rJ (U + DI)) = rw(J)(ν(w)(U) + Dw(I)), so that

ν(w)(CI
U ) = C

w(I)
ν(w)(U).

Now take some element t ∈ T . Then ν(t)(U +DI) = ν(t)(U) +DI , since ν(t)
acts by translation. Besides, we have ν(t)(rJ (U +DI)) = rJ(ν(t)(U +DI)), so
that ν(t)(CI

U ) = CI
ν(t)(U).

Hence for all n ∈ N the action ν(n) on Λ is continuous. Since the kernel of the
map ν : T → Λ is an open subgroup of N (see [La], Prop. 1.2), which obviously
acts trivially on Λ, we find that the action is indeed continuous. ¤

4 Compactification of the building

We can now define the compactification of the building X. For all non-empty
subsets Ω of Λ and all roots a ∈ Φ we put

fΩ(a) = inf {t : Ω ⊆ {z ∈ Λ : a(z) ≥ −t}}

= − sup{t : Ω ⊆ {z ∈ Λ : a(z) ≥ t}}

Here we put inf ∅ = supR =∞ and inf R = sup ∅ = −∞. Moreover, if Ω = {x}
consists of one point only, then we write fx(a) = f{x}(a). Note that

fx(a) = −a(x) for all x ∈ Λ,
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and that
fΩ1(a) ≤ fΩ2(a), if Ω1 ⊆ Ω2.

Recall our generalized valuation map ψa : Ua → Z ∪ {∞} from section 2. We
can now define a subgroup

Ua,Ω = Ua,fΩ(a) = {u ∈ Ua : ψa(u) ≥ fΩ(a)}

of Ua, where Ua,∞ = 1 and Ua,−∞ = Ua. By UΩ we denote the subgroup of
G generated by all the Ua,Ω for roots a ∈ Φ. Note that if Ω = {x} for some
point x ∈ Λ, then this coincides with our previous definition of Ux. We will
now investigate these groups Ux for boundary points of Λ.

Proposition 4.1 Recall that we denote by aij the root of T induced by the
character χi − χj. Put a = aij , and let x be a point in ΛI for some I ⊆ n.
i) If j /∈ I, we have fx(a) = −∞, so that Ua,x is the whole group Ua.
ii) If j ∈ I and i /∈ I, then we have fx(a) =∞, so that Ua,x = 1.
iii) If i and j are contained in I, then a is equal to ρ∗I(b) for some root b of
the torus TI in GI . In this case we have fx(a) = −b(x). For any z ∈ Λ with
rI(z) = x we also have fx(a) = −a(z).

Proof: i) Choose some z ∈ Λ such that rI(z) = x. If i is contained in I, put
zk = z+

∑

l/∈I k(−ηl). If i is not in I, then we define zk = z+
∑

l/∈I,l 6=j k(−ηl)−
2kηj . In both cases we find that a(zk) equals a(z)+k, hence it goes to infinity.
Since the zk converge to x, we find that x lies indeed in the closure of any set
of the form {a ≥ s}, which implies our claim.
ii) We choose again some z ∈ Λ with rI(z) = x. Let Vk be a countable
decreasing fundamental system of bounded open neighborhoods of z. This
defines a fundamental system of open neighborhoods CI

Uk
around x, where

Uk = Vk +
∑

i/∈I k(−ηi). Now suppose that x is contained in the closure of the
set {z ∈ Λ : a(z) ≥ s}. Then we find for all k some yk in CI

Uk
∩ Λ satisfying

a(yk) ≥ s. We can write yk = zk+λk for some zk ∈ Vk and λk =
∑

l/∈I λk,l(−ηl)
with λk,l ≥ k. Now a(zk) is bounded, but a(λk) = −λk,i, so that a(yk) cannot
be bounded from below. Hence we find indeed that fx(a) must be ∞.
iii) Recall that GI is the group PGL(VI), and TI is the maximal K-split torus
induced by the diagonal matrices with respect to the vi for i ∈ I. Then the
root system corresponding to TI and GI is

ΦI = {bij : i 6= j in I}

where bij is the character mapping a diagonal matrix with entries ti for i ∈ I
to ti/tj . Hence it is clear that in our case i, j ∈ I the root a = ai,j of T is
induced by the root b = bij of TI . Note that this implies that for all z ∈ Λ we
have a(z) = b(rI(z)).
It suffices to show that

{z ∈ Λ : a(z) ≥ s} ∩ ΛI = {x ∈ ΛI : b(x) ≥ s}.
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Take some x contained in the left hand side, and choose some z ∈ Λ with
rI(z) = x. Besides, we take again fundamental neighborhoods Vk around z
and use them to construct the open neighborhoods CI

Uk
around x. Each CI

Uk
must contain some yk ∈ Λ satisfying a(yk) ≥ s. Note that we can write
yk = zk + λk, where zk is in Vk and λk is a linear combination of ηi for i /∈ I.
Besides a(yk) = a(zk), so that the sequence of a(yk) converges to a(z). Since
all a(yk) are ≥ s, we find b(x) = b(rIz) = a(z) ≥ s.
On the other hand, suppose that x is a point in ΛI satisfying b(x) ≥ s. Again,
we choose some z ∈ Λ with rI(z) = x, and neighborhoods Vk around z. For
any k the point zk = z + k

∑

l/∈I(−ηl) lies in CI
Uk

. Besides, a(zk) = a(z) =
b(rI(z)) = b(x) is bounded below by s. This implies that x lies indeed in the
closure of {z ∈ Λ : a(z) ≥ s}. ¤

Proposition 4.2 Let x be in ΛI and let a = aij ∈ Φ be a root.
i) Each Ua,x (and hence also Ux) leaves the vector space VI invariant. Hence
Ua,x is contained in GVI .
ii) If i and j are not both in I, we have ρI(Ua,x) = 1. If i and j are both in I,
and the root a is induced by the root b of TI , then ρI induces an isomorphism
Ua,x → U I

b,x, where U
I
b,x is defined with the root group U I

b in GI as described
in section 2.

Proof: Recall that u ∈ Ua maps vl to itself, if l is not equal to j, and it
maps vj to vj + ωvi, where ψa(u) = v(ω). Hence our claim in i) is clear if j is
not contained in I or if both i and j are contained in I. In the remaining case
we saw in 4.1 that Ua,x is trivial, so that i) holds in any case.
Let us now prove ii). If j is not contained in I, then each u ∈ Ua induces the
identity map on VI . If j is in I, but i is not, then Ua,x is trivial. Hence in both
cases we find that ρI(Ua,x) = 1. Let us assume that both i and j are contained
in I, and let u be an element of Ua,x. Then ρI(u) ∈ PGL(VI) is induced by
the matrix mapping vl to vl for all l 6= j in I, and vj to vj + ωvi with some ω
having valuation ≥ fx(a). By our description of the groups U I

b in section 2 we
find that ρI(u) is contained in U I

b and has valuation ψb(ρIx) = v(ω) ≥ fx(a).
By 4.1, fx(a) = −b(x), so that ρI(u) lies indeed in U I

b,x. The homomorphism

ρI : Ua,x → U I
b,x is obviously bijective. ¤

Note that the map x 7→ fx(a) is in general not continuous on Λ. Take some
z ∈ Λ and define a sequence xk = z +

∑

i/∈I k(−ηi) for some non-empty I
such that the complement n\I contains at least two elements i and j. Then
a = aij has the property that a(xk) = a(z), so that fxk(a) is constant. But
the sequence xk converges to the point rI(z) in ΛI , for which frI(z)(a) = −∞
holds.
Nevertheless, we have the following result:

Lemma 4.3 Let xk be a sequence of points in Λ, which converges to x ∈ Λ. Let
uk ∈ Ua,xk be a sequence of elements, converging to some u in the big group
Ua. Then u lies in fact in Ua,x.
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Proof: Note first of all, that the statement is clear if fx(a) = −∞, since
then Ua,x = Ua. It is also clear if fxk(a) converges to fx(a), since the map
ψa : Ua → Z ∪ {∞} is continuous. Assume that fx(a) = ∞. Then any set
{z : a(z) ≥ s} contains only finitely many elements xk. This implies that the
sequence fxk(a) goes to ∞ = fx(a), so that in this case our claim holds by
continuity.
The only case which is left is that fx(a) is real. Assume that x ∈ ΛI . By 4.1,
we must have a = aij with i and j in I. Choose some z ∈ Λ with rI(z) = x,
and a decreasing fundamental system of open neighborhoods Vk around z. As
before, we use them to define neighborhoods CI

Uk
around x. Since xk converges

to x, we can assume that xk is contained in CI
Uk

. Then xk ∈ ΛJk for some Jk
containing I. By definition of CI

Uk
we find some yk ∈ Vk and some coefficients

αl such that zk = yk +
∑

l/∈I αl(−ηl) satisfies rJk(zk) = xk. By 4.1 we have
fxk(a) = −a(zk) = −a(yk) and fx(a) = −a(z). Hence fxk(a) converges to
fx(a), and our claim follows again by continuity. ¤

Proposition 4.4 For x ∈ Λ, n ∈ N and a ∈ Φ we have

nUa,xn
−1 = Un(a),ν(n)(x),

where ν denotes the action of N on Λ, and n 7→ n denotes the quotient map
from N to the Weyl group W (which acts on the roots). In particular, we have
nUxn

−1 = Uν(n)(x).

Proof: Fix some n ∈ N and denote by p the permutation matrix mapping
to n, i.e. n = tp for some t ∈ T . We denote by p also the corresponding
permutation of n. If a = aij , then n(a) = ap(i)p(j). By 4.1 we find that
if x ∈ ΛI and j /∈ I both fx(a) and fν(n)(x)(na) are equal to −∞. Since
nUan

−1 = Una, our claim holds in this case. Similarly, if j ∈ I and i /∈ I both
fx(a) and fν(n)(x)(na) are equal to ∞, so that both Ua,x and Una,ν(n)(x) are
trivial.
We can therefore assume that x is in some ΛI such that both i and j are
contained in I. Recall that we composed the action of N on Λ from the natural
action of the Weyl group on Λ and translation by ν(t) for elements in the torus
T . Hence for all z ∈ Λ we have ν(n)(z) = ν(n)(0)+n(z). We can now calculate

a(ν(n)(z)) = a(ν(n)(0)) + a(n(z))

= a(ν(n)(0)) + (n−1a)(z),

so that ν(n−1){z ∈ Λ : (na)(z) ≥ s} = {z ∈ Λ : a(z) ≥ a(ν(n−1)(0)) + s}.
Since ν(n−1) is a homeomorphism, we also have

ν(n−1){z : na(z) ≥ s} = {z : a(z) ≥ a(ν(n−1)(0)) + s}.

Hence

fν(n)(x)(n(a)) = inf{t : ν(n)(x) ∈ {n(a) ≥ −t}}

= inf{t : x ∈ {z : a(z) ≥ a(ν(n−1)(0))− t}}

= fx(a) + a(ν(n−1)(0)).
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Since we have nUa,sn
−1 = Un(a),s+a(ν(n−1)(0)) for all real numbers s (see [La],

11.6), we find that indeed

nUa,xn
−1 = Un(a),fx(a)+a(ν(n−1)(0)) = Un(a),fν(n)(x)(n(a)) = Un(a),ν(n)(x),

whence our claim. ¤

Recall that - forgetting about the special nature of our ground field - our
root system Φ in Λ∗ defines a finite set of hyperplanes in Λ∗ and therefore a
decomposition of Λ∗ into faces (see [Bou],V,1). The maximal faces are called
(spherical) chambers. Any chamber defines an order on Λ∗ ([Bou], VI, 1.6).
We denote the positive roots with respect to this order by Φ+ = Φ+(C), and
the negative roots by Φ− = Φ−(C). In fact, for any subset Ψ of Φ such that
Ψ is additively closed and Φ is the disjoint union of Ψ and −Ψ, there exists a
chamber C such that Ψ = Φ+(C) (see [Bou], VI, 1.7). In particular, Φ− is the
set of positive roots for a suitable chamber.
The following lemma will be useful to reduce claims about the groups Ua,Ω for
Ω ⊂ Λ to claims about subsets of Λ, where we can apply the “usual” theory of
the Bruhat-Tits building.

Lemma 4.5 Let Ω ⊂ Λ be a non-empty set, and fix some chamber C. Put
Φ+ = Φ+(C). Assume that for every a ∈ Φ+ we have m elements

ua,1, . . . , ua,m ∈ Ua,Ω,

such that at least one of all these ua,i’s is non-trivial. Then there exists a non-
empty subset Ω′ of Λ such that ua,i ∈ Ua,Ω′ for all i = 1, . . . ,m and such that

Ω ⊂ Ω
′
. In particular, we have Ua,Ω′ ⊂ Ua,Ω for all roots a ∈ Φ.

Proof: We denote by la the infimum of all ψa(ua,i) for i = 1, . . . ,m. If all
ua,i are trivial, then la =∞. This cannot happen for all a ∈ Φ+. Then we put

Ω′a = {z ∈ Λ : a(z) ≥ −la}.

(If la = ∞, then Ω′a = Λ.) Besides, put Ω′ = Λ ∩
⋂

a∈Φ+ Ω′a. Note that Ω′

contains the intersection of all sets {z ∈ Λ : a(z) ≥ −la} for a ∈ Φ+. If l is the
minimum of all the la, then this set contains all z ∈ Λ satisfying a(z) ≥ −l for
all a ∈ Φ+. By looking at a base of Φ corresponding to Φ+, we see that such
z’s exist. Hence Ω′ is non-empty.
By construction, fΩ′a(a) = la, and the inclusion Ω′ ⊂ Ω′a gives us fΩ′(a) ≤
fΩ′a(a). Therefore ψa(ua,i) ≥ la ≥ fΩ′(a), which implies that ua,i is indeed

contained in Ua,Ω′ for all i = 1, . . . ,m. It remains to show that Ω ⊂ Ω
′
.

Since fΩ′(a) = fΩ′(a) for all roots a, this implies that fΩ(a) ≤ fΩ′(a), hence
Ua,Ω′ ⊂ Ua,Ω for all a ∈ Φ.
We are done if we prove the following claim:

(∗) For any Ψ ⊆ Φ+ and real numbers sawe have
⋂

a∈Ψ

{a ≥ sa} =
⋂

a∈Ψ

{a ≥ sa}.
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It is clear that the right hand side is contained in the left hand side. So suppose
x is an element in

⋂

a∈Ψ{a ≥ sa}. Let I be the subset of n such that x ∈ ΛI .
We choose a system of open neighborhoods Vk of some point in Λ projecting
to x and construct CI

Uk
. We are done if we can show that any CI

Uk
intersects

⋂

a∈Ψ{a ≥ sa} non-trivially. Let zk be a point in Uk = Vk + k
∑

l/∈I(−ηl) with
rI(zk) = x. Besides, let sk be the maximum of 0 and all the numbers sa−a(zk)
for all a ∈ Ψ.
Note that Φ+ defines a linear ordering of the set n = {1, . . . , n}, namely i ≺ j,
iff aij ∈ Φ+. Hence there is a permutation π of n satisfying π(1) ≺ π(2) ≺
. . . ≺ π(n). Put z = zk −

∑

l/∈I(k + π−1(l)sk)ηl. This is an element of CI
Uk

. It
remains to show that indeed a(z) ≥ sa for all a ∈ Ψ.
Let a = aij be a root in Ψ. If both i and j are in I, we can apply 4.1 to deduce
a(z) = a(zk) = −fx(a) ≥ sa. Since x is contained in {a ≥ sa}, it cannot
happen that j is in I, but i is not. If j is not in I, we find that

a(z) =

{

a(zk) + k + π−1(j)sk ≥ sa ,if i ∈ I
a(zk) + (π−1(j)− π−1(i))sk ≥ sa ,if i /∈ I

,

since a ∈ Φ+ implies that π−1(i) < π−1(j). Hence we get a(z) ≥ sa for all
a ∈ Ψ, which proves (∗). ¤

Corollary 4.6 Assume that a and b are roots in Φ which are not linear
equivalent (i.e. a 6= ±b), and so that a+ b is in Φ. If both fΩ(a) and fΩ(b) are
real numbers, then

fΩ(a+ b) ≤ fΩ(a) + fΩ(b).

If fΩ(a) = −∞ and fΩ(b) 6=∞, then fΩ(a+ b) = −∞.

Proof: By (∗) in the proof of the preceding lemma, we have

{a ≥ s} ∩ {b ≥ r} = {a ≥ s, b ≥ r} ⊂ {a+ b ≥ s+ r},

which implies our claim. ¤

Recall that UΩ is the subgroup of G generated by all the Ua,Ω. Now we prove
a statement about the structure of these groups UΩ which will we crucial for
our later results.
For Φ+ = Φ+(C) we denote by UΦ+ the corresponding subgroup of G (see
[Bo], 21.9), and by UΦ+ the set of K-rational points. Similarly, we have UΦ−

and UΦ− . For any non-empty subset Ω of Λ define

U+Ω = UΦ+ ∩ UΩ and U−Ω = UΦ− ∩ UΩ.

Of course, these groups depend on the choice of some chamber C. We can use
them to get some information about UΩ.

Theorem 4.7 i) The multiplication map induces a bijection

∏

a∈Φ±

Ua,Ω −→ U±Ω ,
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where the product on the left hand side may be taken in arbitrary order.
ii) Ua ∩ UΩ = Ua,Ω for all a ∈ Φ.
iii) UΩ = U−Ω U

+
Ω (N ∩ UΩ).

Proof: Note that by [La], 12.5, our claim holds for all non-empty subsets
Ω ⊂ Λ. Now take Ω ⊆ Λ, and denote by La the group generated by Ua,Ω and
U−a,Ω, and by Y the subgroup of N generated by all N ∩ La for a ∈ Φ. For
all a ∈ Φ+ choose an element ua ∈ Ua,Ω. By 4.5 we find a subset Ω′ of Λ such
that ua ∈ Ua,Ω′ . Hence by [La], 12.5, the product of the ua in arbitrary order
lies in U+Ω′ ⊂ U+Ω .
A similar argument using 4.5 shows that the image of

∏

a∈Φ+ Ua,Ω under the

multiplication map is indeed a subgroup of U+Ω , which is independent of the
ordering of the factors. We denote it by H+. Similarly, we define the subgroup
H− of U−Ω as the image of

∏

a∈Φ− Ua,Ω under the multiplication map. Now
we can imitate the argument in [La], Proposition 8.9, to prove that the set
H−H+Y does not depend on the choice of the chamber defining Φ+ and is
invariant under multiplication from the left by Y and Ua,Ω for arbitrary roots
a ∈ Φ. Hence H−H+Y = UΩ.
Since UΦ+∩UΦ− = {1} and N∩UΦ+UΦ− = {1} (by [BoTi], 5.15), we find U−Ω =
(H−H+Y ) ∩ UΦ− = H− and U+Ω = H+, which proves i) and ii). Similarly,
N ∩ UΩ = Y , whence iii). ¤

For any subset Ω of Λ we write NΩ = {n ∈ N : ν(n)x = x for all x ∈ Ω}.
Besides, put

PΩ = UΩNΩ = NΩUΩ,

which is a group since as in 4.4 one can show that NΩ normalizes UΩ. If
Ω = {x} we write PΩ = Px.
We can now also describe the groups PΩ for any non-empty subset Ω of Λ:

Corollary 4.8 Fix some Φ+ = Φ+(C) as above, and let Ω be a non-empty
subset of Λ.
i) PΩ = U−Ω U

+
ΩNΩ = NΩU

+
ΩU

−
Ω .

ii) PΩ ∩ UΦ± = U±Ω and PΩ ∩N = NΩ.

Proof: i) The first equality follows from part iii) of the Theorem, if we show
that N∩UΩ ⊂ NΩ. It suffices to show for each root a that N∩La ⊂ NΩ. If both
fΩ(a) and fΩ(−a) are real numbers, this follows from [La], 12.1. If fΩ(a) =∞
of if fΩ(−a) = ∞, then our claim is trivial. Note that if fΩ(a) = −∞, then
fΩ(−a) is either ∞ (then we are done) or −∞. Hence the only remaining case
is fΩ(a) = fΩ(−a) = −∞. If a = aij , 4.1 implies that Ω∩ΛJ can then only be
non-empty if i and j are not contained in J . Now 4.2 implies our claim.
ii) Let us show first that PΩ ∩ UΦ− = U−Ω . Obviously, the right hand side is
contained in the left hand side. Take some u ∈ PΩ ∩ UΦ− . Using i), we can
write it as u−u+n for u± ∈ U±Ω and n ∈ NΩ. Then n must be in UΦ+UΦ− ∩N ,
which is trivial by [BoTi], 5.15. Hence u+ is contained in UΦ− ∩ UΦ+ , which
is also trivial. Therefore u = u− ∈ U−Ω . The corresponding statement for the
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+-groups follows by taking Φ− as the set of positive roots. It remains to show
PΩ∩N = NΩ. Take u ∈ PΩ∩N . Then we write it again as u = u−u+n. Hence
u−u+ is contained in UΦ−UΦ+ ∩ N , which is trivial, so that u = n ∈ NΩ, as
claimed. ¤

Now we can show a weak version of the mixed Bruhat decomposition for our
groups Px. (The weakness lies in the fact that we can not take two arbitrary
points in Λ in the next statement.)

Theorem 4.9 Let x ∈ Λ and y ∈ Λ. Then we have G = PxNPy.

Proof: Let ΛI be the component of Λ containing x. Then we can write
x =

∑

i∈I xiη
I
i with some real coefficients xi. We define a sequence of points

in Λ by

zk =
∑

i∈I

xiηi − k
∑

i/∈I

ηi.

Obviously, zk converges towards x. Now we choose a linear ordering ≺ on the
set n in such a way that i ∈ I and j /∈ I implies i ≺ j. The set Φ+ = {aij ∈
Φ : i ≺ j} defines an order corresponding to some chamber. Note that for any
root aij in Φ− we have

aij(zk) =







xi − xj if i, j ∈ I
−k − xj if i /∈ I, j ∈ I
0 if i, j /∈ I.

Hence aij(zk) is bounded from above by a constant c independent of k and
of the root aij ∈ Φ−. Therefore Uaij ,zk is contained in Uaij ,−c = {u ∈ Uaij :
ψa(u) ≥ −c}, which is a compact subgroup of Uaij . By 4.7, we find that all
U−zk are contained in a compact subset of UΦ− .
We have the “usual” mixed Bruhat decomposition for two points in Λ (see [La],
12.10), hence G = PzkNPy for all k. Using 4.8, we can write an element g ∈ G
as

g = u−k u
+
k nkvk

with u±k ∈ U±zk , nk ∈ N and vk ∈ Uy. Let us denote the kernel of the map
ν : T → Λ by Z ⊂ T . Then the group U∧y = UyZ is compact and open in
G by [La], 12.12. Since all vk lie in this compact subset, by switching to a
subsequence we can assume that vk converges to some element v ∈ U∧y . Hence

the sequence u−k u
+
k nk is also convergent in G. Since the Weyl group W = N/T

is finite, by passing to a subsequence we can assume that nk = tkn for some
tk ∈ T and some fixed n ∈ N . Besides, we can assume that u−k converges to
some u− ∈ UΦ− , since the u

−
k are contained in a compact subset of UΦ− . Hence

the sequence u+k tk converges in G. Its limit must be contained in the Borel
group UΦ+T . Hence u+k converges towards some u+ ∈ UΦ+ , and tk converges
towards some t ∈ T .
Using 4.7, u+k is a product of ua,k ∈ Ua,zk for all a ∈ Φ+, and, applying 4.3,
we deduce that the ua,k converge towards some element ua ∈ Ua,x. Hence
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we see that u+ is contained in UΦ+ ∩ Ux = U+x . Similarly, u− lies in U−x .
Therefore g = u−k u

+
k tknvk converges towards u−u+tnv, which is contained in

U−x U
+
x NUy ⊆ PxNPy. Hence g lies indeed in PxNPy. ¤

Recall that Z ⊂ T denotes the kernel of the map ν : T → Λ, and that the group
U∧0 = U0Z is compact. We define our compactification X of the building X as

X = U∧0 × Λ/ ∼,

where the equivalence relation ∼ is defined as follows:

(g, x) ∼ (h, y) iff there exists an element n ∈ N

such that ν(n)x = y and g−1hn ∈ Px.

(Using 4.4, it is easy to check that ∼ is indeed an equivalence relation.) We
equip X with the quotient topology. The inclusion U∧0 × Λ ↪→ G × Λ induces
a bijection (U∧0 ×Λ)/ ∼ → X, which is a homeomorphism if we endow the left
hand side with the quotient topology (see [Bo-Se], p.221). Hence X is open
and dense in X.
We have a natural action of U∧0 on X via left multiplication on the first factor,
which can be continued to an action of G in the following way: If g ∈ G and
(v, x) ∈ U∧0 ×Λ, we can use the mixed Bruhat decomposition to write gv = unh
for some u ∈ U∧0 , n ∈ N and h ∈ Px. Then we define g(v, x) = (u, ν(n)x).
Using 4.4, one can show that this induces a well-defined action on X.
Mapping x to the class of (1, x) defines a map Λ→ X. This is injective, since
by 4.8 we have Px ∩ N = Nx. The G-action on X continues the N -action on
Λ, so that we will write nx instead of ν(n)x for x ∈ X.
The following important fact follows immediately from the definition of X:

Lemma 4.10 For all x ∈ Λ the group Px is the stabilizer of x in G.

We can use the mixed Bruhat decomposition to prove the following important
fact:

Proposition 4.11 For any two points x ∈ X and y ∈ X there exists a com-
pactified apartment containing x and y, i.e. there exists some g ∈ G such that
x and y both lie in gΛ.

Proof: We can assume that y lies in Λ. The point x lies in hΛ for some
h ∈ G, so x = hx′ for some x′ ∈ Λ. By our mixed Bruhat decomposition 4.9
we can write h = qnp for q ∈ Py, n ∈ N and p ∈ Px′ . Therefore x = hx′ =
qnpx′ = qnx′ ∈ qΛ, and y = qy lies also in qΛ, whence our claim. ¤

5 Properties of X

In this section we want to check that X is compact and we want to identify it
with the set

⋃

W⊆V X(PGL(W )).
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Hence we see that we can compactify the Bruhat-Tits building for PGL(V ) by
attaching all the Bruhat-Tits buildings for PGL of the smaller subspaces at
infinity.
The following lemma is similar to [La], 8.11.

Lemma 5.1 Let z be a point in ΛI and y be a point in ΛJ for some I ⊆ J ⊆ n.
Then we find a chamber such that the corresponding set of positive roots Φ+

satisfies U+y ⊆ U+z .

Note that the assumptions are fulfilled if J = n, i.e. if y lies in Λ.
Proof: Since I ⊆ J , we can define a projection map ΛJ → ΛI , which
we also denote by rI . To be precise, rI maps a point

∑

i∈J xiη
J
i ∈ ΛJ to

∑

i∈I xiη
I
i ∈ ΛI . Put y

∗ = rI(y).
Recall that we denote by ΦI the set of roots of TI in GI = PGL(VI). There
exists a chamber in Λ∗I with respect to ΦI such that the corresponding subset
Φ+I of positive roots satisfies U I+

y∗ ⊆ U I+
z . Here U I+

z is defined exactly as the
groups U+x for x ∈ Λ in section 4, just replacing Λ by ΛI .
Now ΦI = {bij : i, j ∈ I}, where bij is the character mapping a diagonal matrix
with entries tl (for l ∈ I) to ti/tj . We define a linear ordering on I by i ≺ j iff
bij ∈ Φ+I . This can be continued to a linear ordering on n in such a way that
i ≺ j whenever i ∈ I and j /∈ I. Let us put Φ+ = {aij : i ≺ j}. We claim that
this satisfies our claim. In fact, take a = aij ∈ Φ+. If i and j are contained in I,
we use 4.2 and the construction of Φ+I to deduce that Ua,y ⊆ Ua,z. By definition
of Φ+ it cannot happen that j is in I, but i is not. Hence the only remaining
case is that j /∈ I. Then fz(a) = −∞ by 4.1, so that trivially Ua,y ⊆ Ua,z. ¤

Recall that PΩ = NΩUΩ with NΩ = {n ∈ N : nx = x for all x ∈ Ω}.

Theorem 5.2 Fix a nonempty Ω ⊂ Λ. We denote by (∗) the following condi-
tion:

(∗) The set {J ⊆ n : Ω ∩ ΛJ 6= ∅} contains a maximal element

with respect to inclusion.

If (∗) if satisfied, then PΩ = ∩x∈ΩPx. In particular, PΩ is the stabilizer of Ω.

Note that (∗) is satisfied if Ω ∩ Λ is not empty.
Proof: To begin with, the inclusion PΩ ⊆ Px for all x ∈ Ω is trivial. Let J be
the maximal subset of n satisfying Ω ∩ ΛJ 6= ∅, and choose some x0 ∈ Ω ∩ ΛJ .
We will first prove that PΩ∼ ∩ Px = PΩ∼∪{x} for all x ∈ Ω and all subsets Ω∼

of Ω containing x0. Assume that x lies in in ΛI for some I ⊆ J . By 5.1, we
find some set of positive roots Φ+ such that U+x0 ⊆ U+x , hence also U+Ω∼ ⊆ U+x .
Let now g be an element in PΩ∼ ∩Px, and write g = nu−u+ for some n ∈ NΩ∼
and some u± ∈ U±Ω∼ (using 4.8). Since g and u+ are contained in Px, this
also holds for nu−, so that we can write nu− = mv+v− for some m ∈ Nx

and v± ∈ U±x . So m−1n is contained in N ∩ UΦ+UΦ− , hence trivial by [BoTi],
5.15. We find that m = n and u− = v+v−, which implies v+ = 1. Hence n is
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contained in Nx ∩ NΩ∼ = NΩ∼∪{x}, and u
− is contained in U−x ∩ U

−
Ω∼ . Note

that for all a ∈ Φ we have the inclusion Ua,Ω∼ ∩ Ua,x ⊆ Ua,Ω∼∪{x}, so that

we can use 4.7 to deduce u− ∈ U−Ω∼∪{x}. A similar argument as above gives

u+ ∈ U+Ω∼ ∩ U
+
x ⊂ U+Ω∼∪{x}. Hence our claim is proven.

Therefore any finite subset Ω∼ ⊂ Ω containing x0 satisfies our claim, i.e. PΩ∼ =
∩x∈Ω∼Px.
We can write Ω =

⋃

σ∈Σ Ωσ, where Ωσ for σ ∈ Σ runs over all finite subsets of
Ω containing x0. Let us consider some g ∈

⋂

x∈Ω Px =
⋂

σ∈Σ PΩσ . We fix some

set of positive roots Φ+ and write g = nσu
+
σ u
−
σ for nσ ∈ NΩσ and u±σ ∈ U

±
Ωσ

by
4.8. Put Tx0 = T ∩Nx0 . Then Nx0/Tx0 is finite. By the pigeon hole principle,
there must be one class m in Nx0/Tx0 such that the set Σ′ of all the σ ∈ Σ so
that nσ is equal to m modulo Tx0 still has the property that

⋃

σ∈Σ′ Ωσ = Ω. (If
not, we could find for any class in Nx0/Tx0 an element in Ω not contained in
any Ωσ with the property that nσ lies in our class. Collecting these elements
together with x0 in some finite set gives a contradiction.)

Hence for σ ∈ Σ′ we can write nσ = mtσ for some fixed m ∈ Nx0 and some
tσ ∈ Tx0 . For σ and τ in Σ′ we get tσu

+
σ u
−
σ = tτu

+
τ u
−
τ . Using the fact that T

normalizes UΦ+ and UΦ− and that N ∩ UΦ+UΦ− is trivial, we find u−σ = u−τ ,
u+σ = u+τ and tσ = tτ . Therefore the elements t = tσ, u

± = u±σ are independent
of the choice of σ ∈ Σ′. Note that by definition of the T -action on Λ the element
t in Tx0 stabilizes not only x0, but also every point in the components ΛI for
I ⊆ J . Thus t ∈ NΩ. Besides, by 4.7 we deduce u+ ∈

⋂

σ∈Σ′ U
+
Ωσ

= U+Ω .

Similarly, u− ∈ U−Ω . Hence we find indeed that g = mtu+u− is contained in
PΩ. ¤

Corollary 5.3 Let Ω and Ω′ be two non-empty subsets of Λ such that Ω, Ω′

and Ω ∪ Ω′ satisfy condition (∗) in the Theorem. Then PΩ ∩ PΩ′ = PΩ∪Ω′ .

Proof: This is an immediate consequence from 5.2. ¤

The following result is similar to [La], 9.6.

Proposition 5.4 Let g ∈ G and let J be a subset of n so that ΛJ ∩ g
−1Λ is

not empty. Then there exists some element n ∈ N such that

gx = nx for all x ∈ g−1Λ ∩ (
⋃

I⊆J

ΛI).

Proof: Note that the set Ω = g−1Λ ∩ (
⋃

I⊆J ΛI) satisfies condition (∗) from

5.2. Fix some x0 ∈ ΛJ ∩ g
−1Λ. For all x ∈ Ω we have g−1N ∩ Px 6= ∅, since

x = g−1y for some y ∈ Λ.

We will now show that for all finite subsets ∆ of Ω containing x0 we have
g−1N ∩ P∆ 6= ∅. Let us suppose that this claim holds for some ∆ and let us
show it for ∆ ∪ {x}, where x is some point in Ω. So there is some n∆ ∈ N
with g−1n∆ ∈ P∆. We also find some nx ∈ N satisfying g−1nx ∈ Px. By 5.1,
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we find a set of positive roots Φ+ such that U+x0 ⊆ U+x , so that also U+∆ ⊆ U+x .
Hence we apply 4.8 to deduce

n−1∆ nx ∈ P∆Px = N∆U
−
∆U

+
∆U

+
x U

−
x Nx = N∆U

−
∆U

−
x U

+
x Nx ⊆ N∆UΦ−UΦ+Nx.

Since N ∩ UΦ−UΦ+ is trivial, we find n′∆ ∈ N∆ and n′x ∈ Nx such that n =
nxn

′
x = n∆n

′
∆ satisfies g−1n ∈ P∆ ∩Px, which is equal to P∆∪{x} by 5.3. This

proves our claim.
Now we write as in Theorem 5.2 Ω =

⋃

σ∈Σ Ωσ, where Ωσ runs over all finite
subsets of Ω containing x0. For all σ we choose some nσ ∈ N such that
g−1nσ ∈ PΩσ . Put nσ = n0 if Ωσ is the set {x0}. The same argument as in 5.2
shows that we can find a subset Σ′ ⊆ Σ such that Ω =

⋃

σ∈Σ′ Ωσ and such that
n−1σ n0 is equal to some fixed m ∈ Nx0 modulo Tx0 for all σ ∈ Σ′. Since any
element in Tx0 leaves the components ΛI for I ⊆ J pointwise invariant, it also
stabilizes Ω. Therefore n−1σ n0m

−1 lies in NΩ ⊂ PΩ. Since g−1nσ is contained
in PΩσ , the same holds for g−1n0m

−1, so that g−1n0m
−1 lies in

⋂

σ∈Σ′ PΩσ ,
which is equal to PΩ by 5.3. Hence n = n0m

−1 satisfies nx = gx for all x ∈ Ω,
as desired. ¤

Now we can prove

Theorem 5.5 X is compact.

By [Bou-T], I.10.4, Proposition 8, we know that since U∧0 × Λ is compact, the
quotient after ∼ is Hausdorff (hence compact), iff the relation ∼ is closed in
(U∧0 × Λ)× (U∧0 × Λ).
Let (uk)k and (vk)k be sequences in U∧0 converging to u respectively v, and let
xk and yk be sequences in Λ converging to x respectively y, so that (uk, xk) ∼
(vk, yk). We have to show that (u, x) ∼ (v, y). By definition of ∼ we have
xk = u−1k vkyk, so that both 0 and xk lie in Λ and in u−1k vkΛ. Using 5.4, we
find some nk ∈ N such that nkz = v−1k ukz for all z ∈ Λ∩u−1k vkΛ. In particular,
nk lies in N0 and nkxk = v−1k ukxk = yk.
Hence gk = u−1k vknk lies in Pxk ∩ P0 = P{0,xk}. Since N0 is compact, we can
pass to a subsequence and assume that nk converges towards some n ∈ N0, so
that gk converges towards some u−1vn.
By 4.8, we can write gk = w−k w

+
k mk for some w±k ∈ U

±
{0,xk}

and mk ∈ N{0,xk}.

We can again assume that mk converges towards some m ∈ N0. Since N acts
continuously on Λ, m lies also in Nx. Besides, U−0 is compact, so that we can
assume that w−k converges towards some w− ∈ U−0 . Using 4.7 and 4.3 we find
that w− lies in fact in U−x . Now w+k also converges towards some w+ which
lies in U+x by the same argument. Therefore u−1vn lies in Px. Since N acts
continuously on Λ, we have nx = y, so that indeed (u, x) ∼ (v, y). ¤

Theorem 5.6 The space X is contractible.

Proof: Recall from 3.4 that Λ is contractible. If x =
∑

i6=j∈J xj(−η
J
j ) is a

point in Ei ∩ ΛJ , where J contains i, then the contraction map is given by

r(x, t) =

{

x, if t = 0
∑

i6=j∈J
(1−t)xj
1+txj

(−ηj) +
∑

j /∈I
1−t
t (−ηj), if t 6= 0.
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Now we define

R : U∧0 × Λ× [0, 1] −→ U∧0 × Λ

((g, x), t) 7−→ (g, r(x, t)).

Obviously, R is continuous. In order to show that R is a contraction map for
X, it suffices to prove that it is compatible with our equivalence relation.

Let us first check that nr(x, t) = r(nx, t) for all n ∈ N0 and x ∈ Λ. Write
n = tp for t ∈ T and a permutation matrix p. Then t lies in N0, so that it
acts trivially on all points in Λ. Besides, a straightforward calculation shows
pr(x, t) = r(px, t).

Now assume that (g, x) and (h, y) in U∧0 × Λ are equivalent. Hence there is
some n ∈ N with nx = y and g−1hn ∈ Px. Using 5.4, we can assume that n
lies in fact in N0.

Now fix some t ∈ [0, 1]. We already know that r(y, t) = r(nx, t) = nr(x, t),
so that our claim, namely (g, r(x, t)) ∼ (h, r(y, t)) is proven, if we show that
g−1hn ∈ Pr(x,t). We already know that g−1hn lies in P0∩Px, which is equal to
P{0,x} by 5.3. Let us put xt = r(x, t). We are done if we show that P{0,x} ⊂ Pxt .
We can assume that t > 0. The point x is contained in some Ei ∩ ΛJ . Recall
from 4.8 that P{0,x} = U−{0,x}U

+
{0,x}N{0,x} and Pxt = U−xtU

+
xtNxt for some fixed

Φ+. A straightforward calculation yields

fxt(akl) ≤ fx(akl), if k 6= i and l are in J and fx(akl) ≥ 0,

or if k /∈ J and l ∈ J

fxt(akl) ≤ 0, if k 6= i and l are in J and fx(akl) < 0,

or if k = i and l ∈ J, or if l /∈ J

Hence for all a ∈ Φ we have Ua,0 ⊂ Ua,xt or Ua,x ⊂ Ua,xt , which implies that
U+{0,x} ⊂ U+xt and U−{0,x} ⊂ U−xt . Besides, we have N{0,x} ⊂ Nxt , since r is

compatible with the action of N0, so that our claim follows. ¤

The following result shows that the boundary of our compactificationX consists
of the Bruhat-Tits buildings of all groups PGL(W ), where W is a non-trivial
subspace of V :

Theorem 5.7 There is a bijection between X and the set

⋃

06=W⊆V

PGL(W ) = X ∪
⋃

06=W⊂V

PGL(W ).

Proof: Let us first fix some non-empty I ⊂ n. We will start by embedding
the building corresponding to GI = PGL(VI) in X. Recall that we write GVI

for the subgroup of G leaving VI invariant, and ρI for the map GVI → GI .
Then the building for GI is defined as GI ×ΛI/ ∼, where ∼ is the equivalence
relation from section 2 (replacing V by VI everywhere). Let (h, x) be an element
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of GI × ΛI . We choose an arbitrary lift h↑ of h in GVI , and map (h, x) to the
point h↑x in X. This induces a map

jI : GI × ΛI −→ X.

We claim that this is independent of the choice of a lift. We have to show that
any element g in the kernel of ρI stabilizes each x ∈ ΛI . Note that GVI is a
parabolic subgroup of G. Let us fix a Borel group B ⊃ T contained in GVI .
Then there is a set of positive roots Φ+ in Φ such that B = UΦ+T . Besides,
we can write GVI = BW ′B for some subgroup W ′ of W . Hence we find that
GVI = UΦ+N

VIUΦ+ , where N
VI = N ∩GVI . Note that since UΦ+ is contained

in GVI , no root of the form a = aij such that j ∈ I, but i /∈ I can be contained
in Φ+. We write g = u+nv+ for some n in NVI and u+, v+ in UΦ+ . Using
ρI(g) = 1, we find that ρI(n) = 1 and ρI(u

+v+) = 1. Hence n stabilizes each
x ∈ ΛI , so n ∈ Px ∩N = Nx.

Let us write [I] for the subset of all roots that are linear combinations of
roots aij with i and j in I. We write u+ = u+1 u

+
2 and v+ = v+2 v

+
1 for some

u+1 , v
+
1 ∈ m(

∏

a∈Φ+\[I] Ua) and u+2 , v
+
2 ∈ m(

∏

a∈Φ+∩[I] Ua), where m is the

multiplication map. As in 4.2, we find that ρI(u
+
1 ) and ρI(v

+
1 ) are trivial, and

that ρI is injective on all Ua for a ∈ Φ+ ∩ [I]. Hence we deduce that u+2 v
+
2

is trivial. Besides, u+2 commutes with n, so that g = u+1 u
+
2 nv

+
2 v

+
1 = u+1 nv

+
1 .

Recall that the roots aij for i /∈ I and j ∈ I do not lie in Φ+, so that by 4.1 we
have Ua = Ua,x for all a ∈ Φ+\[I] and all x ∈ ΛI . Hence g is indeed contained
in Px for all these x.

Now we claim that jI induces an injection

jI : X(GI) = GI × ΛI/ ∼ ↪→ X.

It suffices to show that for all x ∈ ΛI the map ρI induces a surjection

ρI : Px −→ P Ix ,

where P Ix is defined in the same way as Px (see section 2), just replacing V by
VI . Note that this also implies Px = ρ−1I (P Ix ).

First of all, let us show that Px is contained in GVI , so that our statement
makes sense. By 4.2, we find that Ux is contained in GVI . Besides, if n is an
element of Nx, we find that n = tp for a torus element t and a permutation
matrix p. The corresponding permutation must leave I intact, so that indeed
n ∈ NVI .

Besides, by 4.2 we know that ρI maps Ux to U I
x , and it is easy to see that ρI

also maps Nx to N I
x , so that we get a homomorphism ρI : Px → P Ix . Now

take some h = nu in P I
x = N I

xU
I
x , and choose a lift n↑ of n in NVI . Since n

stabilizes x (viewed in the apartment ΛI), the lift n
↑ stabilizes the point x ∈ Λ.

Hence n↑ lies in Px. By 4.2, the element u has a lift u↑ in Ux, hence h
↑ = n↑u↑

is an element in Px projecting to h via ρI . This proves surjectivity.
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Let now W be an arbitrary non-trivial subspace of V . Then there is a linear
isomorphism

f : VI −→W

for some I ⊂ n. Let S be the maximal torus in PGL(W ) induced by the
diagonal matrices with respect to the basis f(vi) (for all i ∈ I). Conjugation
by f induces an isomorphism PGL(W ) → PGL(VI) = GI , which maps S to
TI , and the normalizer N(S) of S to N(TI), the normalizer of TI in GI . Hence
we get an R-linear isomorphism

τ : X∗(S)R
∼
−→ X∗(TI)R = ΛI .

One can check that for all x ∈ X∗(S)R and n ∈ N(S) we have τ(nx) =
(f−1nf)τ(x).
Choose some f↑ ∈ G whose restriction to VI is given by f . Then we define a
map

jW : PGL(W )×X∗(S)R −→ GI × ΛI
jI
−→ X

f↑

−→ X,

where the first map is given by

(g, x) 7−→ (f−1gf, τ(x)).

Since this maps the equivalence relation on PGL(W ) × X∗(S)R defining the
building X(PGL(W )) to the equivalence relation on GI × ΛI defining the
building X(GI), we have an injection

jW : X(PGL(W ))
∼
−→ X(GI)

jI
−→ X

f↑

−→ X.

Of course, we have to check that this is well-defined. First of all, if f is fixed,
then jW does not depend on the choice of a lifting f ↑, since two such liftings
differ by something in the kernel of ρI , and this acts trivially on the image of
jI , as we have seen above.
What happens if we choose another isomorphism g : VJ →W for some J ⊂ n?
First let us consider the case that we construct jW using f ′ = s ◦ f for some
isomorphism s : W → W . Then we also use a different construction of the
building X(PGL(W )), since we use another torus. Following [La], 13.18, we
find that there exists a unique PGL(W )–equivariant isometry between these
two constructions (which we tacitly use to identify them). A straightforward
calculation shows that our map jW is compatible with this isometry.
Now assume that we use an isomorphism g : VJ → W to construct jW . Then
there exists some isomorphism r : VI → VJ mapping the basis vi for i ∈ I to
the basis vj for j ∈ J in some way. The map r can be lifted to a permutation
matrix n ∈ N . It is easy to see that this implies that our construction of jW
does indeed not change if we choose g◦r instead of g. Hence jW is well-defined.
We put all these maps jW together and get a map

j : X ∪
⋃

06=W⊂V

X(PGL(W )) −→ X,
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which is obviously surjective. It remains to show that j is injective. Let us first
assume that we have some (g, x) ∈ PGL(W )×X∗(S)R and (h, y) ∈ PGL(W ′)×
X∗(S

′)R such that jW (g, x) = jW ′(h, y). Hence there are isomorphisms fI :

VI → W and fJ : VJ → W ′ and points x0 ∈ ΛI , y0 ∈ ΛJ such that g↑f↑I x0 =

h↑f↑Jy0. In particular, there is some n ∈ N mapping x0 to y0. Hence n maps
ΛI to ΛJ , which implies nVI = VJ . We have already seen that Px0 ⊂ GVI , so

that h↑f↑JnVI = g↑f↑I VI , which implies W = fI(VI) = fJ (VJ) = W ′. Since we
already know that jW is injective, our claim follows. ¤

To conclude this paper, let us show that we can identify the vertices in X with
the equivalence classes {N} of R-modules of arbitrary rank in V . Together
with Proposition 3.1, this is the link to Mustafin’s paper [Mu].
We call a point x in Λ, say x ∈ ΛI , a vertex in Λ, if it is a vertex in the
apartment ΛI . By section 2 this means, that x =

∑

i∈I xiη
I
i with integer

coefficients xi. We call a point y in X a vertex if y = gx for some g ∈ G and

some vertex x ∈ Λ, and we denote the set of vertices in X by X
0
.

We call two R-lattices in V equivalent, if they differ by a factor in K×. Let
us denote by L the set of all equivalence classes of R-lattices in V of arbitrary
positive rank. We write {M} for the class of such a lattice.
Our last result shows that the vertices in X correspond to elements of L, i.e.
lattice classes of arbitrary rank, which explains the title of this paper.

Lemma 5.8 The G-equivariant bijection ϕ : L −→ X0 can be continued to a
G-equivariant bijection

ϕ : L −→ X
0

in the following way: We write {M} ∈ L as {M} = g{L}, where L =
∑

i∈I π
kiRvi for some non-empty I ⊆ n. Then

ϕ({M}) = g(
∑

i∈I

ki(−η
I
i )).

Proof: We only need to check that ϕ is injective and well-defined, which
amounts to the following claim: For the vertex x =

∑

i∈I ki(−η
I
i ) ∈ ΛI let

Lx =
∑

i∈I π
kiRvi. Then Px is the stabilizer of {Lx}. Using 4.1, it is easy to

see that all Ua,x leave {Lx} invariant. Besides, Nx leaves {Lx} invariant, so
that Px is contained in S{Lx}, the stabilizer of {Lx}.
Let now g be an element in S{Lx}. Note that Lx is a lattice of full rank in VI ,
so that g is contained in GVI , and ρI(g) ∈ PGL(VI) = GI stabilizes {Lx}. In
GI we have the (usual) Bruhat decomposition ρI(g) = pnq with p and q in P I

x

and n ∈ N(TI) (see [La], 12.10). Here P I
x is the stabilizer of x in the building

for GI , so that p and q leave the class {Lx} in VI invariant. Hence n ∈ GI also
stabilizes {Lx}. A straightforward calculation now shows that n fixes x ∈ ΛI .
Therefore ρI(g) lies in P

I
x , so that g is indeed contained in Px, as we have seen

in the proof of 5.7. ¤

Of course, one could also set up a bijection between L and
⋃

06=W⊆V X(PGL(W ))0 by using analogues of the map ϕ on every single
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building X(PGL(W )). It is easy to see that this is compatible with the map
we just described, and the identification of X and

⋃

06=W⊆V X(PGL(W ))
given in 5.7.
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