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0. Introduction

Let F be a field of characteristic 6= 2 and let ϕ be a regular quadratic form over
F . Then ϕ is said to be excellent if, for any field extension E/F , the anisotropic
part of ϕE := ϕ ⊗F E is defined over F . This notion was introduced by M.
Knebusch in [Kn1, Kn2]. In [KR], a similar notion for semisimple algebraic
groups was introduced and studied for special linear and special orthogonal
groups. Let us recall that the main result of [KR] says that the following
conditions are equivalent.

Documenta Mathematica 6 (2001) 385–412



386 Oleg H. Izhboldin and Ina Kersten

(i) The special orthogonal group SO(ϕ) is excellent.
(ii) For every field extension E/F there is an element a ∈ E∗ and a form ψ

over F such that the anisotropic part of ϕE is isomorphic to aψE .

In general, if ϕ is excellent SO(ϕ) is also excellent. The converse holds for odd-
dimensional forms (see [KR]). For even-dimensional forms there are examples
of non-excellent forms ϕ such that the group SO(ϕ) is excellent.

We say that the form ϕ is quasi-excellent if the group SO(ϕ) is excellent.
Taking into account the criterion mentioned above, we can rewrite the definition
as follows: ϕ is quasi-excellent if for any field extension E/F there exists a form
ψ over F such that (ϕE)an is similar to ψE . In this case we write (ϕE)an ∼ ψE .

To study even-dimensional quasi-excellent forms, it is very convenient to give
another definition.

Definition 0.1. We say that a sequence of quadratic forms ϕ0, ϕ1, . . . , ϕh
over F is quasi-excellent if the following conditions hold:

• the forms ϕ0, . . . , ϕh−1 are regular and of dimension > 0 ;
• the form ϕ0 is anisotropic and the form ϕh is zero;
• for i = 1, . . . , h, we have ((ϕ0)Fi

)an ∼ (ϕi)Fi
where Fi = F (ϕ0, . . . , ϕi−1).

Then the number h is called the height of the sequence. (It coincides with the
height of ϕ0 defined by Knebusch in [Kn1], 5.4.)

It is not difficult to show that we have a surjective map (see Lemma 2.2 and
Corollary 2.4 below):

{quasi-excellent sequences} → {even-dim. quasi-excellent anisotropic forms}

(ϕ0, ϕ1, . . . , ϕh) 7→ ϕ0

Any regular quadratic form of dimension n > 0 over F is isomorphic to a
diagonal form 〈a1, . . . , an〉 := a1X

2
1 + . . . + anX

2
n with a1, . . . , an ∈ F ∗ and

variables X1, . . . , Xn . A d-fold Pfister form is a form of the type

〈〈a1, . . . , ad〉〉 := 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−ad〉 .

Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence. We prove in Lemma 2.5
that ϕh−1 is similar to some d-fold Pfister form, and then say that d is the
degree of the sequence.

Example 0.2. Let a1, a2, . . . , ad, k0, k1, k2, u, v, c ∈ F
∗. Set

φ0 = k0 〈〈a1, a2, . . . , ad−1〉〉 ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈ad〉〉) ,

φ1 = k1 〈〈a1, a2, . . . , ad−1〉〉 ⊗ 〈−u,−v, uv, ad〉 ,

φ2 = k2 〈〈a1, a2, . . . , ad〉〉 ,

φ3 = 0 .

Suppose that φ0 , φ1 and φ2 are anisotropic. Then the sequence (φ0, φ1, φ2, φ3)
is quasi-excellent of degree d (see Lemma 9.1). We notice that dimφh−1 = 2d ,
dimφh−2 = 2d+1 and dimφh−3 = 3 · 2d.
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Clearly, the sequences (φ1, φ2, φ3) and (φ2, φ3) are also quasi-excellent. In
particular, the forms φ0, φ1, φ2, and φ3 are quasi-excellent.

Definition 0.3. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence of degree d .
We say that the sequence is of the

• “first type” if dimϕh−2 6= 2d+1 or h = 1
• “second type” if dimϕh−2 = 2d+1 and, if h ≥ 3 , dimϕh−3 6= 3 · 2d

• “third type” if dimϕh−2 = 2d+1 and dimϕh−3 = 3 · 2d , (here h ≥ 3) .

Example 0.4. Let (φ0, φ1, φ2, φ3) be the sequence constructed in Example 0.2.
Assume that φ0 , φ1 and φ2 are anisotropic.

• The sequence (φ2, φ3) is of the first type,
• The sequence (φ1, φ2, φ3) is of the second type,
• The sequence (φ0, φ1, φ2, φ3) is of the third type.

According to Knebusch [Kn2], 7.4, a regular quadratic form ψ is called a
Pfister neighbor, if there exist a Pfister form π , some a ∈ F ∗, and a form η with
dim η < dimψ , such that ψ⊥η ' aπ . The form η is called the complementary
form of the Pfister neighbor ψ .

Example 0.5. Let (ϕ1, . . . , ϕh) be a quasi-excellent sequence. Let ϕ0 be an
anisotropic Pfister neighbor whose complementary form is similar to ϕ1. Then
the sequence (ϕ0, ϕ1, . . . , ϕh) is quasi-excellent. Moreover, this sequence is of
the same type as the sequence (ϕ1, . . . , ϕh). (Note that ((ϕ0)F1

)an ∼ (ϕ1)F1

by [Kn2], p. 3.)

Clearly, Examples 0.4 and 0.5 give rise to the construction of many examples
of quasi-excellent sequences of prescribed type: We start with a quasi-excellent
sequence given in Example 0.4. We can then apply the construction presented
in Example 0.5 to obtain a new quasi-excellent sequence. Since we can apply
the construction in Example 0.5 many times, we get quasi excellent sequences
of arbitrary height.

The main goal of this paper is to prove (under certain assumptions) that all
quasi-excellent sequences can be constructed by using this recursive procedure.
To be more accurate, for sequences of the first type, we prove the following
classification result:

Theorem 0.6. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence of the first type.
Then for any i < h the form ϕi is a Pfister neighbor whose complementary
form is similar to ϕi+1.

For sequences of the second and the third type, we state our classification
results as conjectures which we will prove for sequences of degree 1 . For se-
quences of arbitrary degree we will deduce our conjectures from some classical
conjectures which now seem to be settled for all fields of characteristic 0 , cf.
[Vo, OVV].
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Conjecture 0.7. Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence of the
second type. Then for any i < h − 2 the form ϕi is a Pfister neighbor whose
complementary form is similar to ϕi+1. Besides, the forms ϕh−2 and ϕh−1

look as follows:

ϕh−2 ∼ 〈〈a1, . . . , ad−1〉〉 ⊗ 〈−u,−v, uv, ad〉 ,

ϕh−1 ∼ 〈〈a1, . . . , ad−1, ad〉〉 .

(For d = 1 we put 〈〈a1, . . . , ad−1〉〉 = 〈1〉 .)

Conjecture 0.8. Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence of the
third type. Then for any i < h − 3 the form ϕi is a Pfister neighbor whose
complementary form is similar to ϕi+1. Besides, the forms ϕh−3 , ϕh−2 and
ϕh−1 look as follows:

ϕh−3 ∼ 〈〈a1, . . . , ad−1〉〉 ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈ad〉〉),

ϕh−2 ∼ 〈〈a1, . . . , ad−1〉〉 ⊗ 〈−u,−v, uv, ad〉 ,

ϕh−1 ∼ 〈〈a1, . . . , ad−1, ad〉〉 .

The main results of this paper are Theorem 0.6 and the following two theorems.

Theorem 0.9. Conjectures 0.7 and 0.8 are true for quasi-excellent sequences
of degree 1. The well-known so far unpublished result by Rost, that the Milnor
invariant e4 is bijective, implies that 0.7 and 0.8 are also true for sequences of
degree 2 .

Theorem 0.10. Modulo results proved in [Vo, OVV] both Conjectures 0.7 and
0.8 are true over any field of characteristic 0.

All results of this paper are due to the first-named author Oleg Izhboldin. The

second-named author is responsible for a final version of Oleg’s beautiful draft

which he could not complete because of his sudden death on April 17, 2000.

1. Notation and background material

We fix a ground field F of characteristic different from 2 and set F ∗ = F\{0} .
If two quadratic forms ϕ and ψ are isomorphic we write ϕ ' ψ . We say that
ϕ and ψ are similar if ϕ ' aψ for some a ∈ F ∗, and write ϕ ∼ ψ . A regular
quadratic form ϕ of dimension dimϕ > 0 is said to be isotropic if there is a
non-zero vector v in the underlying vector space of ϕ such that ϕ(v) = 0 , and
anisotropic otherwise. The zero form 0 is assumed to be anisotropic. As has
been shown by Witt [W], any regular quadratic form ϕ has a decomposition

ϕ ' i× 〈1,−1〉 ⊥ ϕan

where ϕan is anisotropic and i ≥ 0 . Moreover, the number i =: i(ϕ) and, up
to isomorphism, the form ϕan are uniquely determined by ϕ . We call i(ϕ) the
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Witt index of ϕ . If i(ϕ) > 0 then ϕ is isotropic. A form ϕ 6= 0 is said to be
hyperbolic if ϕan = 0 . We have a Witt equivalence relation ϕ ∼w ψ defined by

ϕ ∼w ψ ⇐⇒ ϕan ' ψan

The Witt equivalence classes [ϕ] of regular quadratic forms ϕ over F form a
commutative ring W (F ) with zero element [0] and unit element [〈1〉] . The
operations in this Witt ring W (F ) are induced by:
〈a1, . . . , am〉⊥ 〈b1, . . . , bn〉 = 〈a1, . . . , am, b1, . . . , bn〉
〈a1, . . . , am〉 ⊗ 〈b1, . . . , bn〉 = 〈a1b1, . . . , a1bn, . . . , amb1, . . . , ambn〉 .

In particular, there is a surjective ring homomorphism

e0 :W (F )→ Z/2Z , [ϕ] 7→ (dimϕ) mod 2Z .

Its kernel I(F ) := ker(e0) is called the fundamental ideal of W (F ). Since
〈a, b〉 ∼w 〈〈−a〉〉⊥−〈〈b〉〉 the ideal I(F ) is generated by the classes of the 1-fold
Pfister forms 〈〈a〉〉 = 〈1,−a〉 with a ∈ F ∗. Consequently, the nth power ideal
In(F ) of I(F ) is generated by the classes of n-fold Pfister forms 〈〈a1, . . . , an〉〉 =
〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉 . We will use the Arason-Pfister Hauptsatz [AP]:

Theorem 1.1. (Arason-Pfister) If [ϕ] ∈ In(F ) and dimϕan < 2n then ϕ ∼w 0 .

Put F ∗2 = {x2 ∈ F ∗ |x ∈ F ∗} and d(ϕ) := (−1)(
m

2 ) det(ϕ) with m = dimϕ .
Then there is a surjective group homomorphism

e1 : I(F )→ F ∗/F ∗2, [ϕ] 7→ d(ϕ)F ∗2,

satisfying ker(e1) = I2(F ) , see [Pf1], 2.3.6. For any ideal I in W (F ) we write
ϕ ≡ ψ mod I when [ϕ⊥−ψ] ∈ I . Let µ = 〈a1, . . . , am〉 with a1, . . . , am ∈ F

∗.
If m is odd then d

(

〈a1, . . . , am,−d(µ)〉
)

=
∏m
i=1 a

2
i ∈ F ∗2, and we obtain the

following remark which will be used for the classification of quasi-excellent
sequences of the first type.

Remark 1.2. If dimµ is odd then µ ≡ 〈 d(µ) 〉 mod I2(F ) .

Of special interest for us is the function field F (ϕ) of a regular quadratic form
ϕ . Assuming that dimϕ ≥ 2 and ϕ 6' 〈1,−1〉 we let F (ϕ) be the function field
of the projective variety defined by ϕ . Its transcendence degree is (dimϕ)− 2
and ϕF (ϕ) is isotropic. Moreover, F (ϕ) is purely transcendental over F iff ϕ
is isotropic (cf. [Kn1], 3.8). We denote by F (ϕ,ψ) the function field of the
product of the varieties defined by the forms ϕ and ψ .

We say that ϕ is a subform of ψ, and write ϕ ⊂ ψ , if ϕ is isomorphic to an
orthogonal summand of ψ . We will use the following two consequences of the
Cassels-Pfister Subform Theorem [Pf1], 1.3.4:

Theorem 1.3. ([Kn1], 4.4, and [S], 4.5.4 (ii)) Let λ be an anisotropic form and
ρ be a Pfister form. Then the following conditions are equivalent:

• there exists a form µ such that λ ' ρ⊗ µ ,
• there exists a form ν such that λ ∼w ρ⊗ ν ,
• λF (ρ) is hyperbolic.

Moreover, in these cases kρ ⊂ λ for any k ∈ D(λ) := {a ∈ F ∗ | 〈a〉 ⊂ ϕ} .
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Theorem 1.4. ([Kn1], 4.5) Let ϕ and ψ be forms of dimension ≥ 2 satisfying
ϕ 6' 〈1,−1〉 and ψ 6∼w 0 . If ψF (ϕ) ∼w 0 then ϕ is similar to a subform of ψ ,
hence dimϕ ≤ dimψ .
Consequently, if dimϕ > dimψ then ψF (ϕ) is not hyperbolic.

If, in addition, ϕ and ψ are anisotropic and the dimensions of ϕ and ψ are
separated by a 2-power, then ψF (ϕ) is not isotropic as Hoffmann has shown.

Theorem 1.5. (Hoffmann ([H1], Theorem 1) Let ϕ and ψ be anisotropic forms
with dimψ ≤ 2n < dimϕ for some n > 0 . Then ψF (ϕ) is anisotropic.

In accordance with the definition given in the introduction, a form ϕ is a
Pfister neighbor of a d-fold Pfister form π if dimϕ > 2d−1 and ϕ is similar to
a subform of π .

Theorem 1.6. (Hoffmann [H1], Corollaries 1, 2) Let ϕ be an anisotropic form
of dimension 2n +m with 0 < m ≤ 2n. Then dim(ϕF (ϕ))an ≥ 2n −m.

If, in addition, ϕ is a Pfister neighbor then dim(ϕF (ϕ))an = 2n −m.

The following theorem is a result by Izhboldin on “virtual Pfister neighbors”,
cf. [Izh], Theorem 3.5.

Theorem 1.7. (Izhboldin) Let ϕ be an anisotropic form of dimension 2n +m
with 0 < m ≤ 2n. Assume that there is a field extension E/F such that
ϕE is an anisotropic Pfister neighbor. Then either dim(ϕF (ϕ))an ≥ 2n or
dim(ϕF (ϕ))an = 2n −m .

Theorem 1.8. (Knebusch [Kn2], 7.13) Let ϕ and ψ be anisotropic forms such
that (ϕF (ϕ))an ' ψF (ϕ). Then ϕ is a Pfister neighbor and −ψ is the comple-
mentary form of ϕ.

The following theorem is a special case of the Knebusch-Wadsworth Theorem
[Kn1], 5.8. It will be used in Lemma 2.5 below.

Theorem 1.9. (Knebusch-Wadsworth) Let ϕ be an anisotropic form such that
ϕF (ϕ) is hyperbolic. Then ϕ is similar to a Pfister form.

Knebusch introduced in [Kn1] a generic splitting tower K0 ⊂ K1 ⊂ · · · ⊂ Kh

of a form ψ 6∼w 0 which is easily described as follows. LetK0 = F and ψ0 ' ψan

and proceed inductively by letting Ki = Ki−1(ψi−1) and ψi ' ((ψi−1)Ki
)an .

Then h is the height of ψ , that is the smallest number such that dimψh ≤ 1 .
The form ψ is excellent iff all forms ψi are defined over F (that is, for each

i there exists a form ηi over F such that ψi ' (ηi)Ki
), cf. [Kn2], 7.14.

Now assume that dimψ is even. Then ψh−1 ' aπ for some a ∈ K∗

h−1 and
some d-fold Pfister form π over Kh−1 by Theorem 1.9. The form π is called
the leading form of ψ and the number d =: degψ the degree of ψ . We say that
ψ is a good form if π is defined over F . Then there is, up to isomorphism, a
unique d-fold Pfister form τ over F such that π ' τKh−1

, cf. [Kn2], 9.2, and
we will refer to this Pfister form over F as the leading form of a good form.
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Saying that all odd-dimensional forms have degree 0 and that the zero form
has degree ∞ we get a degree function, cf. [Kn1], p. 88:

deg :W (F )→ N ∪ {0} ∪ {∞} , [ψ] 7→ [degψ] .

For every n ≥ 0 let Jn(F ) := { [ψ] ∈ W (F ) | degψ ≥ n }. Then Jn(F ) is an
ideal in the Witt ring W (F ) and J1(F ) = I(F ) is the fundamental ideal. We
are now prepared to formulate the next result we will need later.

Theorem 1.10. (Knebusch [Kn2], 9.6, 7.14, and 10.1; Hoffmann [H2])
Let ψ be an anisotropic good form of degree d ≥ 1 with leading form τ . Then

ψ ≡ τ mod Jd+1(F ) .

If, in addition, ψ is of height 2 then one of the following conditions holds.

• The form ψ is excellent. In this case, ψ is a Pfister neighbor whose
complementary form is similar to τ . In particular, dimψ = 2N − 2d with
N ≥ d+ 2 , and ψF (τ) is hyperbolic.

• The form ψ is non-excellent and good. In this case dimψ = 2d+1 and
ψF (τ) is similar to an anisotropic (d+ 1)-fold Pfister form.

We denote by Pd(F ) (resp. GPd(F )) the set of all quadratic forms over F
which are isomorphic (resp. similar) to d-fold Pfister forms.

Finally, we mention the following well-known facts (e.g., [L], IX.1.1, X.1.6).

Remark 1.11. (i) Anisotropic forms over F remain anisotropic over purely
transcendental extensions of F .

(ii) Isotropic Pfister forms are hyperbolic.

2. Elementary properties of quasi-excellent forms and sequences

Lemma 2.1. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence. Then

• all forms ϕi are forms of even dimension,
• all forms ϕi are anisotropic,
• dimϕ0 > dimϕ1 > · · · > dimϕh = 0,
• for all s = 1, . . . , h, we have

((ϕ0)Fs
)an ∼ ((ϕ1)Fs

)an ∼ · · · ∼ ((ϕs−1)Fs
)an ∼ (ϕs)Fs

where Fs = F (ϕ0, . . . , ϕs−1).

Proof. Obvious from Definition 0.1.

Lemma 2.2. Let ϕ be an anisotropic even-dimensional quasi-excellent form
over F . Then there exists a quasi-excellent sequence (ϕ0, ϕ1, . . . , ϕh) such that
ϕ0 = ϕ.

Proof. Let us define the forms ϕi recursively. We set ϕ0 = ϕ . Now, we suppose
that i > 0 and that all forms ϕ0, . . . , ϕi−1 are already defined. Also, we can
suppose that these forms are of dimension > 0. Put Fi = F (ϕ0, . . . , ϕi−1).
Since ϕ is quasi-excellent, there exists a form ψ over F such that (ϕFi

)an is
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similar to ψFi
. We put ϕi = ψ . If ϕi = 0 then we are done by setting h = i .

If ϕi 6= 0 we repeat the above procedure.

Lemma 2.3. Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence. Let E/F be a
field extension such that (ϕ0)E is isotropic, and let i be the maximal integer
such that all forms (ϕ0)E , . . . , (ϕi−1)E are isotropic. Then ((ϕ0)E)an ∼ (ϕi)E .

Proof. Since the forms (ϕ0)E , . . . , (ϕi−1)E are isotropic, the field extension
Ei := E(ϕ0, . . . , ϕi−1) is purely transcendental over E . Since Fi ⊂ Ei and
((ϕ0)Fi

)an ∼ (ϕi)Fi
, it follows that ((ϕ0)Ei

)an ∼ ((ϕi)Ei
)an . Since Ei/E is

purely transcendental we can use Springer’s theorem (e.g., [L], 6.1.7) to obtain
((ϕ0)E)an ∼ ((ϕi)E)an . By definition of i, the form (ϕi)E is anisotropic.

Corollary 2.4. Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence. Then the
form ϕ0 is a quasi-excellent even-dimensional form.

Proof. Obvious from Lemmas 2.1 and 2.3.

Lemma 2.5. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence. Then the form
ϕh−1 is similar to a Pfister form.

Proof. By Definition 0.1, we have ϕh = 0 and ((ϕh−1)Fh
)an ∼ (ϕh)Fh

, where
Fh = F (ϕ0, . . . , ϕh−1). Therefore, (ϕh−1)Fh

is hyperbolic. Note that Fh '
F (ϕh−1)(ϕ0, . . . , ϕh−2) . Since the dimensions of the forms ϕ0, . . . , ϕh−2 are
strictly greater than dimϕh−1 and (ϕh−1)F (ϕh−1)(ϕ0,...,ϕh−2) is hyperbolic, it
follows from Theorem 1.4 that (ϕh−1)F (ϕh−1) is hyperbolic. By Theorem 1.9,
ϕh−1 is similar to a Pfister form.

Definition 2.6. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence.

• By Lemma 2.5, the form ϕh−1 is similar to some Pfister form τ ∈ Pd(F ) .
We say that τ is the leading form and d is the degree of the sequence.
Besides, we say that h is the height of the sequence.

• The form ϕh−2 is called the pre-leading form of the sequence. Clearly,
here we assume that h ≥ 2.

Remark 2.7. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence. Then its leading
form is the leading form of ϕ0 as well. In particular, ϕ0 is a good form whose
height and degree coincide with the height and degree of the sequence.

We finish this section with a lemma which we will need for the classification
of quasi-excellence sequences of the second and third type.

Lemma 2.8. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence with h ≥ 2. Let
E/F be an extension such that (ϕ0)E is an anisotropic Pfister neighbor whose
complementary form is similar to (ϕ2)E . Then dimϕ1 is a power of 2 and
dimϕ0 = 2dimϕ1 − dimϕ2.
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Proof. Let us write dimϕ0 in the form dimϕ0 = 2n + m with 0 < m ≤ 2n.
Since (ϕ2)E is similar to the complementary form of (ϕ0)E , we have dimϕ2 =
2n+1−dimϕ0 = 2n−m. Since dimϕ1 = dim((ϕ0)F (ϕ0))an, Theorem 1.7 shows
that either dimϕ1 ≥ 2n or dimϕ1 = 2n −m. The equality dimϕ1 = 2n −m
is obviously false because dimϕ2 = 2n − m. Therefore, dimϕ1 ≥ 2n. If
dimϕ1 = 2n then dimϕ0 = 2n +m = 2 · 2n − (2n −m) = 2 dimϕ1 − dimϕ2

and the proof is complete. Hence, we can assume that dimϕ1 > 2n. Then
2n < dimϕ1 < dimϕ0 = 2n +m. Therefore dimϕ1 can be written in the form
2n + m1 with 0 < m1 < m ≤ 2n. Let K = F (ϕ0). Then Lemma 2.1 shows
that ((ϕ1)K(ϕ1))an is similar to (ϕ2)K(ϕ1). Hence, dim((ϕ1)K(ϕ1))an = dimϕ2.
Since dimϕ1 = 2n+m1, Theorem 1.6 shows that dimϕ2 = dim((ϕ1)K(ϕ1))an ≥
2n − m1. Since dimϕ2 = 2n − m, we get m1 ≥ m. This contradicts to the
inequality m1 < m proved earlier.

3. Inductive properties of quasi-excellent sequences

In this section we study further properties of a quasi-excellent sequence
(ϕ0, . . . , ϕh) of degree d with leading form τ . Then we derive some results
on its pre-leading form γ := ϕh−2. In particular, we show that dim γ is ei-
ther 2d+1 or 2N − 2d with N ≥ d + 2 and that (ϕi)F (γ,τ) is hyperbolic for all
i = 0, . . . , h− 1 .

Lemma 3.1. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence and let E = F (ϕ1) .

• If (ϕ0)E is isotropic then (ϕ1, ϕ2, . . . , ϕh) is a quasi-excellent sequence
and ((ϕ0)E)an ∼ (ϕ2)E .

• If (ϕ0)E is anisotropic then
(

(ϕ0)E , (ϕ2)E , (ϕ3)E , . . . , (ϕh)E
)

is a quasi-
excellent sequence.

Proof. Let Fi = F (ϕ0, . . . , ϕi−1) and F0,i = F (ϕ1, . . . , ϕi−1). Assume that ϕ0

is isotropic over F (ϕ1) . Then the extension Fi/F0,i is purely transcendental
for all i ≥ 2. By Lemma 2.1, we have ((ϕ1)Fi

)an ∼ (ϕi)Fi
for all i ≥ 1. Since

Fi/F0,i is purely transcendental for i ≥ 2, we have ((ϕ1)F0,i
)an ∼ (ϕi)F0,i

for all
i ≥ 2. This means that the sequence (ϕ1, ϕ2, . . . , ϕh) is quasi-excellent. Now
Lemma 2.3 implies that ((ϕ0)E)an ∼ (ϕ2)E . The last statement is obvious
from Definition 0.1.

Lemma 3.2. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence. Suppose that ϕ0

is a Pfister neighbor whose complementary form is similar to ϕ1 . Then the
sequence (ϕ1, ϕ2, . . . , ϕh) is quasi-excellent.

Proof. By Lemma 3.1, it suffices to show that (ϕ0)F (ϕ1) is isotropic. By as-
sumption, there is a form η ∼ ϕ1 and a Pfister form π such that ϕ0⊥η ∼ π .
Since ηF (ϕ1) is isotropic, the form πF (ϕ1) must be hyperbolic. Since dimϕ0 >
dim η it follows that (ϕ0)F (ϕ1) is isotropic.
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Lemma 3.3. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence of height h ≥ 2 with
leading form τ ∈ Pd(F ) and let Fi = F (ϕ0, . . . , ϕi−1) . Then the sequence

(

(ϕi)Fi
, (ϕi+1)Fi

, . . . , (ϕh)Fi

)

is quasi-excellent of height h− i with leading form τFi
∈ Pd(Fi) for 1 ≤ i < h .

Proof. By Lemma 2.1, the forms (ϕs)Fs
are anisotropic for s = 1, . . . , h . Thus

(ϕs)Fi
is anisotropic for fixed i < h and s = i, . . . , h . In particular, τFi

is
anisotropic since τFi

∼ (ϕh−1)Fi
by Definition 2.6. Now the result is obvious.

Lemma 3.4. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence of degree d with
leading form τ . Then for all i = 0, . . . , h − 1, we have ϕi ≡ τ mod Jd+1(F ) .
In particular, deg(ϕi) = deg(τ) = d for all i = 0, . . . , h− 1 .

Proof. By Remark 2.7 and Theorem 1.10, we have ϕ0 ≡ τ mod Jd+1(F ) . Using
Lemma 3.3 we obtain from Remark 2.7 and Theorem 1.10 that

(ϕi)Fi
≡ τFi

mod Jd+1(Fi)

for all i = 1, . . . , h − 1 . Since dimϕ0 > . . . > dimϕh−2 > 2d = dimϕh−1 ,
the canonical map Jd(Fi−1)/Jd+1(Fi−1)→ Jd(Fi)/Jd+1(Fi) is injective for i =
1, . . . , h − 1 and F0 = F as Knebusch [Kn1], 6.11, has shown. Thus the
composed map Jd(F )/Jd+1(F ) → Jd(Fi)/Jd+1(Fi) is also injective. Hence
ϕi ≡ τ mod Jd+1(F ) for i = 1, . . . , h − 1 . The second statement follows from
the first since Jd(F ) is an ideal in the Witt ring W (F ) .

Lemma 3.5. Let γ and τ be anisotropic forms. Suppose that dim γ = 2d+1 and
τ ∈ Pd(F ) for suitable d. Suppose also that γF (γ) is not hyperbolic and γF (γ,τ)

is hyperbolic. Then the form (γF (γ))an is similar to τF (γ) .

Proof. Let K = F (γ). By assumption, the form γK(τ) is hyperbolic. Thus
Theorem 1.3 implies that there exists a K-form µ such that (γK)an ' τK ⊗ µ .
Since dim τ = 2d and dim(γK)an = dim(γF (γ))an < dim γ = 2d+1, it follows

that dimµ < 2d+1/2d = 2 . Hence, dimµ = 0 or 1.
If dimµ = 0 then (γK)an = 0 . Then γF (γ) = γK is hyperbolic. We get

contradiction to the hypothesis of the lemma.
If dimµ = 1, then the isomorphism (γK)an ' τK ⊗ µ shows that (γK)an is

similar to τK . The lemma is proved.

Proposition 3.6. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence with leading
form τ ∈ Pd(F ) and pre-leading form γ = ϕh−2 . Then

(1) dim γ = 2d+1 or dim γ = 2N − 2d with N ≥ d+ 2.

(2) If dim γ = 2d+1 then γ is a good non-excellent form of height 2 and degree
d with leading form τ .

(3) If dim γ 6= 2d+1 then γ is excellent and γF (τ) is hyperbolic.
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Proof. (1). Let E = Fh−2 = F (ϕ0, . . . , ϕh−3). By Lemma 3.3 with i = h − 2,
the sequence (γE , (ϕh−1)E , (ϕh)E) is quasi-excellent of height 2 with leading
form τE ∈ Pd(E) . Thus Remark 2.7 implies that γE is a good form of height
2 , degree d , and leading form τE . By Theorem 1.10, there are two types of
good forms of height 2 , non-excellent and excellent.

If γE is good non-excellent of height 2 and degree d, then dim γ = 2d+1.
If γE is excellent form of height 2 and degree d, then dim γ = 2N − 2d with

N ≥ d+ 2 .
(2). Assume that dim γ = 2d+1. We have to prove that (γF (γ))an is similar

to τF (γ). By Lemma 3.5, it suffices to verify that γF (γ) is not hyperbolic and
γF (γ,τ) is hyperbolic.

Since E(γ) = Fh−1 , we have (γE(γ))an ∼ (ϕh−1)E(γ) ∼ τE(γ) by Lemma 2.1
and Definition 2.6. This shows that γF (γ) is not hyperbolic and that γE(γ,τ) is
hyperbolic. Since E = F (ϕ0, . . . , ϕh−3) is the function field of forms of dimen-
sion > dimϕh−2 = dim γ and γE(γ,τ) is hyperbolic, it follows from Theorem
1.4 that γF (γ,τ) is also hyperbolic. By Lemma 3.5, we are done.

(3). If dim γ 6= 2d+1 then γE is an excellent form of height 2 and degree d
with the leading form τE . In this case γE(τ) is hyperbolic by Theorem 1.10.
Hence γF (τ) is also hyperbolic by Theorem 1.4.

Proposition 3.7. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence with leading
form τ ∈ Pd(F ) and pre-leading form γ = ϕh−2 . Then (ϕi)F (γ,τ) is hyperbolic
for all i = 0, . . . , h− 1.

Proof. If h = 1 then ϕ0 ∼ τ by Definition 2.6, hence (ϕ0)F (τ) is hyperbolic. If
h = 2 then the statement is obvious as well. Thus, we can assume that h ≥ 3.
We use induction on h.

Let E = F (ϕ0). By Lemma 3.3, ((ϕ1)E , (ϕ2)E , . . . , (ϕh)E) is quasi-excellent.
By induction assumption, (ϕi)E(γ,τ) is hyperbolic for all i = 1, . . . , h−1. Since
E(γ, τ) = F (γ, τ, ϕ0) and dimϕ0 is strictly greater than the dimensions of all
forms ϕ1, . . . , ϕh−1, Theorem 1.4 shows that the forms (ϕi)F (γ,τ) are hyperbolic
for all i = 1, . . . , h− 1.

Now, it suffices to prove that (ϕ0)F (γ,τ) is hyperbolic. We consider three
cases and use the following observation. Since (ϕ1)F (γ,τ) is hyperbolic, hence
isotropic, it follows that F (γ, τ, ϕ1) is purely transcendental over F (γ, τ).

Case 1. The form (ϕ0)F (ϕ1) is isotropic.
Then (ϕ0)F (γ,τ,ϕ1) is isotropic. Thus (ϕ0)F (γ,τ) is isotropic too by the above

observation. Since the forms (ϕi)F (γ,τ) are hyperbolic for all i = 1, . . . , h− 1 ,
Lemma 2.3 applies with i = h so that ((ϕ0)F (γ,τ))an ∼ (ϕh)F (γ,τ) = 0 .

Case 2. The form (ϕ0)F (ϕ1) is anisotropic and h = 3.
In this case γ = ϕ1 . Let E = F (ϕ1) = F (γ) . By Lemma 3.1, the sequence

((ϕ0)E , (ϕ2)E , 0) is quasi-excellent of height 2.
Clearly, dimϕ2 = dim τ = 2d , and dimϕ0 > dimϕ1 = dim γ ≥ 2d+1 by

Proposition 3.6. Since dim(ϕ0)E 6= 2d+1 it follows that (ϕ0)E is excellent of
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height 2 with leading form τE . Hence (ϕ0)E(τ) is hyperbolic (see Theorem
1.10). Since E(τ) = F (γ, τ), we are done.

Case 3. The form (ϕ0)F (ϕ1) is anisotropic and h ≥ 4.
Let E = F (ϕ1). By Lemma 3.1, the sequence

((ϕ0)E , (ϕ2)E , . . . , (ϕh−2)E , (ϕh−1)E , 0)

is a quasi-excellent of height h − 1. Clearly, τE is the leading form and γE =
(ϕh−2)E is the pre-leading form of this sequence (we note, that here we use
the condition h ≥ 4). Applying the induction hypothesis, we see that the
form (ϕ0)E(γ,τ) is hyperbolic. Therefore, (ϕ0)F (γ,τ) is hyperbolic by the above
observation.

4. Classification theorem for sequences of the first type

Recall that a quasi-excellent sequence (ϕ0, . . . , ϕh) of degree d is of the first
type if dimϕh−2 6= 2d+1 or if h = 1 .

Lemma 4.1. Let (ϕ0, . . . , ϕh) be a quasi-excellent sequence of the first type with
leading form τ ∈ Pd(F ) . Then

(i) the form (ϕi)F (τ) is hyperbolic for all i = 0, . . . , h− 1,
(ii) for every i = 0, . . . , h − 1 there exists an odd-dimensional form µi such

that ϕi ' µi ⊗ τ ,
(iii) ϕ0 is a Pfister neighbor, whose complementary form is similar to ϕ1 .

Proof. (i). For h = 1 the statement follows from Remark 1.11. Now assume
that h ≥ 2 , and put γ = ϕh−2 . By Proposition 3.6 (3), the form γF (τ) is
isotropic. Hence, the extension F (γ, τ)/F (τ) is purely transcendental. This
implies, since (ϕi)F (γ,τ) is hyperbolic by 3.7, that (ϕi)F (τ) is hyperbolic.

(ii). By Theorem 1.3 and (i), there exists a form µi such that ϕi ' µi ⊗ τ .
Thus it suffices to prove that dimµi is odd. If we assume that µi is an even-
dimensional form, then we get [ϕi] ∈ I(F ) · I

d(F ) = Id+1(F ). This contradicts
to Lemma 3.4, where we have proved that deg(ϕi) = d for all i = 0, . . . , h− 1 ,
since Id+1(F ) ⊂ Jd+1(F ) by [Kn1], 6.6.

(iii). Let K = F (ϕ0). By Definition 0.1, there exists x ∈ K∗ such that
((ϕ0)K)an ' x (ϕ1)K . By (ii), this implies

(∗) (µ0 ⊗ τ)K ∼w x (µ1 ⊗ τ)K .

Let s0 = d(µ0) and s1 = d(µ1). Since µ0 and µ1 are both of odd dimension,
we have µ0 ≡ 〈s0〉 mod I2(F ) and µ1 ≡ 〈s1〉 mod I2(F ) by Remark 1.2. Thus
s0τK ≡ (µ0⊗τ)K mod Id+2(K) and x(µ1⊗τ)K ≡ xs1τK mod Id+2(K) , since
τ ∈ Id(F ). This yields s0τK ≡ xs1τK mod Id+2(K) by (∗). Setting s = s0s1
we obtain sτK ≡ xτK mod Id+2(K) . Theorem 1.1 now shows that sτK ' xτK .

Therefore, (ii) and the above yield ((ϕ0)K)an ' x(ϕ1)K ' x(µ1 ⊗ τ)K '
(µ1)K ⊗ xτK ' s(µ1 ⊗ τ)K ' (sϕ1)K . Theorem 1.8 now shows that ϕ0 is a
Pfister neighbor whose complementary form is isomorphic to −sϕ1 .
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The following theorem proves Theorem 0.6.

Theorem 4.2. Let (ϕ0, . . . , ϕh) be a sequence of anisotropic forms. Then this
sequence is a quasi-excellent sequence of the first type if and only if the following
two conditions hold.

• For any i = 0, . . . , h− 1, the form ϕi is a Pfister neighbor whose comple-
mentary form is similar to ϕi+1 .

• The form ϕh is zero.

Proof. Obvious induction by using Lemma 3.2 and Lemma 4.1 (iii). The
converse direction follows from Example 0.5 starting with the sequence
{ϕh−1, ϕh = 0} .

5. Quasi-excellent sequences modulo some ideals

Let I(F ) be the ideal of classes of even-dimensional forms in the Witt ring
W (F ) , and let In(F ) denote the nth power of I(F ) . We need the following
proposition for the classification of sequences of the second and third type.

Proposition 5.1. Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence. Suppose
that there exists an integer k such that 1 ≤ k < h with the following property:
for all i = 0, . . . , k− 1, there exists fi ∈ F

∗ such that ϕi ≡ fi ϕk mod Im+1(F )
where m is a minimal integer such that dimϕk < 2m.
Then ϕ0 is a Pfister neighbor whose complementary form is similar to ϕ1 .

Proof. For convenience, we will include in our consideration also the case where
k = 0 and prove, by induction, the following two properties:

(a) If k ≥ 1 then ϕ0 is a Pfister neighbor whose complementary form is
similar to ϕ1 .

(b) If k ≥ 0 then for any x ∈ F ∗ the conditions ϕ0 ≡ xϕ0 mod Im+1(F ) and
dimϕk < 2m imply that ϕ0 ' xϕ0 .

For a given k we denote properties (a) and (b) by (a)k and (b)k correspondingly.
The plan of the proof of Proposition 5.1 will be the following.

• We start with the proof of property (b)0 .
• For k ≥ 1 , we prove that (b)k−1 ⇒ (a)k .
• For k ≥ 1, we prove that (b)k−1 ⇒ (b)k .

Lemma 5.2. Condition (b) holds in the case k = 0 .

Proof. If k = 0 we have in (b) the conditions [ϕ0 ⊥ −xϕ0] ∈ Im+1(F ) and
dimϕ0 < 2m, in particular dim(ϕ0 ⊥ −xϕ0) < 2m+1. By Theorem 1.1, the
form ϕ0 ⊥ −xϕ0 is hyperbolic. Therefore ϕ0 ' xϕ0 .

Lemma 5.3. Let k ≥ 1. Then property (b)k−1 (stated for all quasi-excellent
sequences over all fields of characteristic 6= 2) implies property (a)k .
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Proof. Consider a sequence (ϕ0, . . . , ϕh) as in Proposition 5.1. Then, by as-
sumption, there exist f0, f1 ∈ F ∗ such that ϕ0 ≡ f0ϕk mod Im+1(F ) and
ϕ1 ≡ f1ϕk mod Im+1(F ) . Hence ϕ0 ≡ f0f1ϕ1 mod Im+1(F ) .

Let E = F (ϕ0). By Definition 0.1, there exists x ∈ E∗ such that ((ϕ0)E)an '
x(ϕ1)E . Hence x(ϕ1)E ≡ (ϕ0)E ≡ f0f1(ϕ1)E mod Im+1(E) . Property (b)k−1

stated for the quasi-excellent sequence ((ϕ1)E , (ϕ2)E , . . . , (ϕk)E , . . . , (ϕh)E)
shows that x(ϕ1)E ' f0f1(ϕ1)E . Hence ((ϕ0)E)an ' x(ϕ1)E ' (f0f1ϕ1)E .
By Theorem 1.8, ϕ0 is a Pfister neighbor whose complementary form is similar
to ϕ1 .

Lemma 5.4. Let k ≥ 1 . Then property (b)k−1 (stated for all quasi-excellent
sequences over all fields of characteristic 6= 2) implies property (b)k .

Proof. Consider a sequence (ϕ0, . . . , ϕh) as in Proposition 5.1. We assume that
property (b)k−1 holds. Then property (a)k also holds (see previous lemma).
This means that there exist a, s ∈ F ∗, an integer n > 0 , and an n-fold Pfister
form π such that aπ ' ϕ0 ⊥ −sϕ1 and dimϕ1 < 2n−1.

Since 2n−1 > dimϕ1 ≥ dimϕk , the definition of m yields n − 1 ≥ m .
Therefore [aπ] ∈ In(F ) ⊂ Im+1(F ) . Hence, ϕ0 ≡ sϕ1 mod Im+1(F ) . Now,
let x ∈ F ∗ be as in (b)k . In other words, ϕ0 ≡ xϕ0 mod Im+1(F ) . Then
sϕ1 ≡ ϕ0 ≡ xϕ0 ≡ sxϕ1 mod Im+1(F ) . Hence, ϕ1 ≡ xϕ1 mod Im+1(F ) .
Property (b)k−1, applied to the quasi-excellent sequence

((ϕ1)F (ϕ0), (ϕ2)F (ϕ0), . . . , (ϕk)F (ϕ0), . . . , (ϕh)F (ϕ0))

shows that (ϕ1)F (ϕ0) ' x(ϕ1)F (ϕ0) . Hence the form ϕ1 ⊗ 〈〈x〉〉 is hyperbolic
over F (ϕ0) . Since ϕ0 is a Pfister neighbor of π, it follows that F (ϕ0, π)/F (π)
is purely transcendental. Thus ϕ1 ⊗ 〈〈x〉〉 is also hyperbolic over F (π) . Since
dim(ϕ1 ⊗ 〈〈x〉〉) < 2n−1 · 2 = dimπ , Theorem 1.4 shows that ϕ1 ⊗ 〈〈x〉〉 is
hyperbolic, hence ϕ1 ' xϕ1 . Moreover, aπ ⊗ 〈〈x〉〉 ' (ϕ0⊥ − sϕ1) ⊗ 〈〈x〉〉 is
isotropic and therefore hyperbolic (since π is a Pfister form). Hence aπ ' xaπ .
Since aπ ' ϕ0 ⊥ −sϕ1 and ϕ1 ' xϕ1 , it follows that ϕ0 ' xϕ0 .

Clearly, the three lemmas complete the proof of Proposition 5.1.

6. Five classical conjectures

Let Hn(F ) := Hn(F,Z/2Z) be the nth Galois cohomology group. Let
I0(F ) := W (F ) be the Witt ring and I1(F ) := I(F ) be the fundamental
ideal in W (F ) of classes of even-dimensional forms. In §1, we have considered
the homomorphisms

e0 : I0(F )→ Z/2Z ' H0(F ) and e1 : I1(F )→ F ∗/F ∗2 ' H1(F )

defined by the dimension and the discriminant respectively. Denoting by

2Br(F ) the 2-torsion part of the Brauer group of F we obtain a homomor-
phism e2 : I2(F )→ 2Br(F ) ' H2(F ) defined by the Clifford algebra. We have
ker(en) = In+1(F ) for n = 0, 1, 2 .
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For each integer n > 0 let (a1) · . . . · (an) denote the cup-product where (ai)
is the class of ai ∈ F

∗ in H1(F ) for i = 1, . . . , n . The following five conjectures
are believed to be true for all fields F of characteristic 6= 2 .

Conjecture 6.1. (Milnor conjecture). Let n ≥ 0 be an integer. Then there
exists a homomorphism

en : In(F )→ Hn(F )

such that 〈〈a1, . . . , an〉〉 7→ (a1) · . . . · (an) . Moreover, the homomorphism en

induces an isomorphism

en : In(F )/In+1(F ) ' Hn(F ) .

Conjecture 6.2. For any π ∈ Pm(F ) and all integers n ≥ m ≥ 0 , we have

ker(Hn(F )→ Hn(F (π))) = em(π)Hn−m(F ) .

Conjecture 6.3. We have Jn(F ) = In(F ) for all integers n ≥ 0 .

Conjecture 6.4. Let ϕ be an anisotropic form over F . If [ϕ] ∈ In(F ) and
2n ≤ dimϕ < 2n + 2n−1 then dimϕ = 2n.

Conjecture 6.5. Let γ be an even-dimensional anisotropic form. Assume
that γ is a good non-excellent form of height 2 with leading form τ ∈ Pn(F ) .
Then there exists τ0 ∈ Pn−1(F ) , (τ0 = 〈1〉 if n = 1), and a, b, c ∈ F ∗ such that

• γ is similar to τ0 ⊗ 〈−a,−b, ab, c〉 ,
• τ ' τ0 ⊗ 〈〈c〉〉 .

Remark 6.6. For proving Conjecture 6.5 it suffices to show that there exists
τ0 ∈ Pn−1(F ) such that γ ' τ0 ⊗ γ

′ where dim γ′ = 4 .

Proof. Write γ′ = 〈r, s, t, u〉 with r, s, t, u ∈ F ∗. Then setting d = rst , we
obtain dγ′ ' 〈−a,−b, ab, c〉 with a = −st , b = −rt , and c = du . This shows
γ ∼ τ0 ⊗ ψ where ψ = 〈−a,−b, ab, c〉 . Since 〈d(ψ)〉 ' 〈c〉 by definition of

d(ψ) = (−1)(
4

2) det(ψ) and since τ is the leading form of γ , it follows from
[Kn1], 6.12, that τ ' τ0 ⊗ 〈〈c〉〉 .

Remark 6.7. Recent results of Voevodsky [Vo] and Orlov-Vishik-Voevodsky
[OVV] show that Conjectures 6.1, 6.2, and 6.3 hold for all fields of character-
istic 0. These three conjectures were proved earlier in the cases n ≤ 4 and
characteristic 6= 2, (cf. [Pf2], [KRS], and [Kahn]).

Conjecture 6.4 is proved for all fields of characteristic 0 by Vishik [Vi]. In
the case n ≤ 4, it is proved for all fields of characteristic 6= 2 (see [H4]).

Conjecture 6.5 is proved in the case n ≤ 3 for all fields of characteristic 6= 2,
(see Remark 6.6 and [Kahn]). Moreover, it follows from Proposition 3.6 and
from [Kahn], Proposition 4.3 (b), that Conjectures 6.3 and 6.4 for degree n+1
imply Conjecture 6.5 for degree n .
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Definition 6.8. Let d ≥ 0 be an integer, and let F be a field. We say that
condition Ad holds for F if F is of characteristic 6= 2 and if for all field extensions
F ′/F the following conjectures hold:

• Conjecture 6.1 for all n ≤ d+ 2 ,
• Conjecture 6.2 for n ≤ d+ 2 ,
• Conjecture 6.3 for n = d+ 1 ,
• Conjecture 6.4 for n = d+ 2 ,
• Conjecture 6.5 for n = d > 0 .

Theorem 6.9. Let F be a field of characteristic 6= 2 . If d = 0 or d = 1 then
condition Ad holds for F . If d = 2 then condition Ad holds for F , possibly
with the exception of the bijectivity of the homomorphism e4 : I4(F )/I5(F )→
H4(F ) .

Proof. Conjecture 6.1 holds for n = 0 by definition of the ideal I(F ) . It has
been proved by Pfister for n = 1, cf. [Pf1], 2.3.6, and by Merkurjev for n = 2,
cf. [M1]. The existence of e3 has been proved by Arason [Ara], Satz 5.7, and
the bijectivity of e3 by Rost [R] and independently by Merkurjev-Suslin [MS].
The existence of e4 has been proved by Jacob-Rost [JR] and independently by
Szyjewsi [Sz]. The bijectivity of e4 was claimed by Rost (unpublished).
Conjecture 6.2 holds n ≤ 4 , cf. [KRS].
Conjecture 6.3. For n = 1, 2 see [Kn1], 6.2; for n = 3 (and n = 4), see

[Kahn], Théorème 2.8.
Conjecture 6.4 is trivial for n = 2. For n = 3 it is due to Pfister and for

n = 4 to Hoffmann, see [H4], Main Theorem for n = 4, and 2.9 for n = 3.
Conjecture 6.5. For n = 1 see [Kn1], 5.10. For for n = 2 see Remark 6.6 and

[Kahn], Corollaire 2.1.

Remark 6.7 gives rise to the following theorem.

Theorem 6.10. Let d ≥ 0 be an integer. Modulo results proved in [Vo, OVV]
condition Ad holds for all fields of characteristic 0 .

We are going to prove some consequences of the above conjectures.

Let GPn(F ) denote the set of quadratics forms over F which are similar to
n-fold Pfister forms, and let Hn(K/F ) = ker(Hn(F )→ Hn(K)).

Lemma 6.11. Let F be a field of characteristic 6= 2 and let π ∈ GPr(F ) for
some integer r ≥ 0 . Suppose that Conjecture 6.2 holds for n = m = r and for
all field extensions of F . Then

(1) for any extension K/F , we have
Hr(K(π)/F ) = Hr(K/F ) +Hr(F (π)/F ) ;

(2) for any form ϕ over F , we have
Hr(F (ϕ, π)/F ) = Hr(F (ϕ)/F ) +Hr(F (π)/F ) .

Proof. (1) Let u ∈ Hr(K(π)/F ). Then uK ∈ Hr(K(π)/K). Conjecture 6.2
applied with n = m = r shows that uK = ` · er(πK) with ` ∈ H0(K) ' Z/2Z .
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Hence (u − ` · er(π)) ∈ Hr(K/F ). Therefore, u ∈ Hr(K/F ) + ` · er(π) ⊂
Hr(K/F ) +Hr(F (π)/F ).

(2) It suffices to set K = F (ϕ) in (1).

Lemma 6.12. Let d > 0 be an integer and F be a field such that condition
Ad holds for F . Let γ be an even-dimensional anisotropic form which is good
non-excellent of degree d and height 2. Then

Hd+2(F (γ)/F ) = {ed+2(γ ⊗ 〈〈f〉〉) | f ∈ F ∗ with γ ⊗ 〈〈f〉〉 ∈ GPd+2(F )} .

Proof. Let τ , τ0 and a, b, c ∈ F ∗ be as in Conjecture 6.5. We can assume that
γ = τ0 ⊗ 〈−a,−b, ab, c〉. Let π = τ0 ⊗ 〈〈a, b〉〉 .

Clearly, γ ∼w π⊥− τ . Hence (γF (π))an ' (−τF (π))an. Since dim γ > dim τ ,
it follows that γF (π) is isotropic. Hence F (γ, π)/F (π) is purely transcen-

dental, forcing Hd+2(F (γ)/F ) ⊂ Hd+2(F (π)/F ). Conjecture 6.2 shows that
Hd+2(F (π)/F ) = ed+1(π)H1(F ). Hence, an arbitrary element of the group
Hd+2(F (γ)/F ) is of the form ed+1(π) · (s) = ed+2(π ⊗ 〈〈s〉〉) with s ∈ F ∗. Let
ρ = π ⊗ 〈〈s〉〉. Then ρ ∈ Pd+2(F ) and e

d+2(ρF (γ)) = 0. By Conjecture 6.1, the
form ρF (γ) is hyperbolic. Hence γ is similar to a subform of ρ of by Theorem
1.4. Let γ∗ and t ∈ F ∗ be such that tγ ⊥ −γ∗ ' ρ . The forms γ and γ∗ are
half-neighbors. By [H3, Prop. 2.8], there exists k ∈ F ∗ such that γ∗ ' kγ.
Then γ ⊗ 〈〈tk〉〉 ' tρ ∈ GPd+2(F ) . To complete the proof, it suffices to notice
that ed+2(tρ) = ed+2(ρ).

Lemma 6.13. Let d > 0 be an integer and F be a field such that condition Ad
holds for F . Assume that γ is an even-dimensional anisotropic form which is
good non-excellent of height 2 with leading form τ ∈ Pd(F ) . Now, let ϕ be a
form such that ϕ ≡ τ mod Id+1(F ) and ϕF (γ,τ) is hyperbolic. Also assume that

there exists an extension E/F such that dim(ϕE)an = 2d+1. Then the following
is true.

(1) There exists f ∈ F ∗ such that

ϕ ≡ fγ mod Id+2(F ) .

(2) If we suppose additionally that dim(ϕF (γ))an < dim γ , then there exists
f ∈ F ∗ such that

ϕ ≡ fγ mod Id+3(F ) .

Proof. (1). Let ψ = ϕ ⊥ −τ . By assumption, we have [ψ] ∈ Id+1(F ) .
Hence, we can consider the element ed+1(ψ) ∈ Hd+1(F ) . Since ϕF (γ,τ)

and τF (τ) are hyperbolic, it follows that ψF (γ,τ) is also hyperbolic. Hence,

ed+1(ψ) ∈ Hd+1(F (γ, τ)/F ). By Conjecture 6.5, we can assume that γ =
τ0 ⊗ 〈−a,−b, ab, c〉 and τ = τ0 ⊗ 〈〈c〉〉 where τ0 ∈ Pd−1(F ) .
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Let π = τ0 ⊗ 〈〈a, b〉〉 ∈ Pd+1(F ) . Then γ ∼w π⊥− τ . Hence γF (τ) ∼w πF (τ) .
Therefore, by Lemma 6.11(2) and Conjecture 6.2 we have

Hd+1(F (γ, τ)/F ) = Hd+1(F (π, τ)/F )

= Hd+1(F (π)/F ) +Hd+1(F (τ)/F )

= ed+1(π)H0(F ) + ed(τ)H1(F ) .

Since ed(τ)H1(F ) = {ed+1(τ ⊗ 〈〈s〉〉) | s ∈ F ∗}, it follows that any element of
the group Hd+1(F (γ, τ)/F ) has one of the following forms:

• either ed+1
[

π⊥(τ ⊗ 〈〈s〉〉)
]

• or ed+1(τ ⊗ 〈〈s〉〉) .

Since ed+1(ψ) ∈ Hd+1(F (γ, τ)/F ) and ψ = ϕ⊥− τ , Conjecture 6.1 shows that

• either ϕ⊥− τ ≡ π⊥(τ ⊗ 〈〈s〉〉) mod Id+2(F )
• or ϕ⊥− τ ≡ τ ⊗ 〈〈s〉〉 mod Id+2(F ) .

Consider the first case where ϕ⊥ − τ ≡ π⊥(τ ⊗ 〈〈s〉〉) mod Id+2(F ) . Clearly,
we can compute [ϕ] modulo Id+2(F ). In our computation, we note that [π]
and [τ ⊗ 〈〈s〉〉] belong to Id+1(F ) . Hence for any x ∈ F ∗, we have xπ ≡ π and
xτ ⊗〈〈s〉〉 ≡ τ ⊗〈〈s〉〉 mod Id+2(F ) . Besides, we recall that γ ∼w π⊥− τ . Now,
we have the following calculation ϕ ≡ τ⊥π⊥(τ⊗〈〈s〉〉) ≡ τ⊥−π⊥−(τ⊗〈〈s〉〉) ≡
−γ⊥((γ⊥− π)⊗ 〈〈s〉〉) ≡ sπ⊥− π⊥− sγ ≡ −sγ mod Id+2(F ) . Hence ϕ ≡ fγ
mod Id+2(F ) with f = −s .

Now we consider the second case where ϕ⊥ − τ ≡ τ ⊗ 〈〈s〉〉 mod Id+1(F ) .
Here, we get ϕ ≡ τ⊥(τ ⊗ 〈〈s〉〉) ≡ τ⊥ − (τ ⊗ 〈〈s〉〉) ≡ sτ mod Id+2(F ) .
By the assumption of the lemma there exists a field extension E/F such
that dim(ϕE)an = 2d+1. Since ϕ ≡ sτ mod Id+2(F ), we have (ϕE)an ≡
sτE mod Id+2(E) . Since dim(ϕE)an + dim τE = 2d+1 + 2d < 2d+2, Theo-
rem 1.1 shows that (ϕE)an ' s(τE)an . This contradicts to the inequality
dim(ϕE)an = 2d+1 > 2d ≥ dim(τE)an .

(2). Let f be as in (1). Set ψ = ϕ ⊥ −fγ . We have ψ ∈ Id+2(F ) . Since
dim(ϕF (γ))an < dim γ, we have dim(ψF (γ))an < 2 dim γ = 2 · 2d+1 = 2d+2. By

Theorem 1.1, the form ψF (γ) is hyperbolic. Hence ed+2(ψ) ∈ Hd+2(F (γ)/F ).
By Lemma 6.12, there exists s ∈ F ∗ such that γ ⊗ 〈〈s〉〉 ∈ GPd+2(F ) and
ed+2(ψ) = ed+2(γ⊗〈〈s〉〉) . Thus ψ ≡ γ⊗〈〈s〉〉 mod Id+3(F ) by Conjecture 6.1.
Since γ⊗〈〈s〉〉 ∈ GPd+2(F ), we have γ⊗〈〈s〉〉 ≡ −fγ⊗〈〈s〉〉 mod Id+3(F ). There-
fore, ϕ ≡ ψ⊥fγ ≡ (γ⊗〈〈s〉〉)⊥fγ ≡ −f(γ⊗〈〈s〉〉)⊥fγ ≡ fsγ mod Id+3(F ) .

Proposition 6.14. Let d > 0 be an integer and F be a field such that condition
Ad holds for F . Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence with leading
form τ ∈ Pd(F ) and pre-leading form γ = ϕh−2 . Suppose that this sequence is
of the second or third type (in particular h ≥ 2). Let ϕ = ϕi with i ≤ h− 2 .

(1) We have ϕ ≡ τ mod Id+1(F ) .
(2) There exists f ∈ F ∗ such that ϕ ≡ fγ mod Id+2(F ) .
(3) If dim(ϕF (γ))an < dim γ then there exists f ∈ F ∗ such that

ϕ ≡ fγ mod Id+3(F ) .
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Proof. (1). Follows from Lemma 3.4 and Conjecture 6.3.
(2) and (3). Definition 0.3 shows that dim γ = 2d+1. By Proposition 3.6(2),

γ is a good non-excellent form of height 2 and degree d . By Proposition 3.7,
ϕF (γ,τ) is hyperbolic. Lemma 2.1 yields dim(ϕE)an = dimϕh−2 = 2d+1 where
E = Fh−2 = F (ϕ0, . . . , ϕh−3) . Now, Lemma 6.13 completes the proof.

Corollary 6.15. Let (ϕ, γ, τ, 0) be a quasi-excellent sequence with τ ∈ Pd(F )
and dim γ = 2d+1. Then dimϕ ≥ 3 · 2d. Moreover, if dimϕ = 3 · 2d then ϕF (γ)

is anisotropic.

Proof. Let E = F (γ) . If ϕE is anisotropic, then the sequence (ϕE , τE , 0)
is quasi-excellent by Lemma 3.1. Since dimϕE = dimϕ > dim γ = 2d+1,
it follows from Proposition 3.6 that dimϕ = 2N − 2d for some N ≥ d + 2 .
Therefore, dimϕ ≥ 2d+2 − 2d = 3 · 2d.

Now, we assume that ϕE is isotropic. Then (ϕE)an ∼ τE by Lemma 3.1 and
hence dim(ϕE)an = 2d < dim γ . By Proposition 6.14, there exists f ∈ F ∗ such
that ϕ ≡ fγ mod Id+3(F ). Suppose that dimϕ ≤ 3 ·2d . Then dimϕ+dim γ ≤
3 · 2d + 2d+1 < 2d+3. By Theorem 1.1, we get ϕ ' fγ . This is a contradiction
because dimϕ > dim γ .

7. Classification theorem for sequences of the second type

In Definition 6.8 we formulated the condition Ad for a field F . We showed
that Ad is true for d = 0, 1 and char(F ) 6= 2 and that (based on results
in [Vo, OVV]) Ad is true for all d ≥ 0 and all fields of characteristic 0 , cf.
Theorems 6.9 and 6.10.

The main purpose of this section is to prove the following

Theorem 7.1. Let d > 0 be an integer and F be a field such that condition Ad
holds for F . Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence of the second
type and of degree d . Then

• for all i < h − 2 the form ϕi is a Pfister neighbor whose complementary
form is similar to ϕi+1 ,

• the sequence (ϕh−2, ϕh−1, ϕh) is quasi-excellent of the second type.

First of all, we state the following corollary (which proves Theorems 0.9 and
0.10 for the quasi-excellent sequences of second type).

Corollary 7.2. Let d > 0 be an integer and F be a field such that condition
Ad holds for F . Then Conjecture 0.7 holds for all quasi-excellent sequences of
degree d over F .

Proof. By Theorem 7.1, it suffices to consider the case h = 2 . In this case,
the required result follows immediately from Proposition 3.6(2) and Conjecture
6.5.
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Now, we return to Theorem 7.1. We will prove this theorem by using in-
duction on h. In the case where h = 2 the statement is obvious. Thus we can
assume that h ≥ 3. In what follows we will suppose that h ≥ 3 and Theorem
7.1 holds for all quasi-excellent sequences of height < h .

We start with the following lemma.

Lemma 7.3. If (ϕ0)F (ϕ1) is anisotropic then (ϕ0)F (ϕ1) is a Pfister neighbor
whose complementary form is similar to (ϕ2)F (ϕ1) .

Proof. Let E = F (ϕ1). By Lemma 3.1, the sequence ((ϕ0)E , (ϕ2)E , . . . , 0) is
quasi-excellent of height h− 1. Let us consider two cases, h ≥ 4 and h = 3.

If h ≥ 4 then the sequence ((ϕ0)E , (ϕ2)E , . . . , (ϕh)E) is of the second type.
Then Theorem 7.1 (stated for sequences of height < h) completes the proof.

If h = 3 then the quasi-excellent sequence ((ϕ0)E , (ϕ2)E , 0) is of the first
type because dimϕ0 > dimϕ1 = 2d+1. In this case, Theorem 4.2 completes
the proof.

The following lemma shows that the situation described in Lemma 7.3 is
actually impossible.

Lemma 7.4. The form (ϕ0)F (ϕ1) is isotropic.

Proof. Assume the contrary, (ϕ0)F (ϕ1) is anisotropic. Then Lemmas 7.3 and
2.8 show that dimϕ1 is a power of 2 and dimϕ0 = 2dimϕ1 − dimϕ2 . Let
K = F (ϕ0). The sequence ((ϕ1)K , . . . , (ϕh)K) is quasi-excellent of height h−1
by Lemma 3.3. Clearly, this sequence is of the second type. We consider the
two cases h ≥ 4 and h = 3. If h ≥ 4 then Theorem 7.1 (stated for sequences of
height < h) shows that (ϕ1)K is a Pfister neighbor whose complementary form
is similar to the non-zero form (ϕ2)K . This in particular shows that dimϕ1 is
not a power of 2 . We get a contradiction. Now, we assume that h = 3 . In other
words, we have the sequence (ϕ0, ϕ1, ϕ2, ϕ3) of the second type. By Definitions
0.3 and 2.6, we have dimϕ1 = 2d+1, dimϕ2 = 2d and dimϕ0 6= 3 · 2d. On the
other hand, dimϕ0 = 2dimϕ1 − dimϕ2 = 2 · 2d+1 − 2d = 3 · 2d. We get a
contradiction.

Corollary 7.5. The sequence (ϕ1, ϕ2, . . . , ϕh) is a quasi-excellent sequence
of the second type and of degree d .

Proof. Follows from Lemmas 7.4, and 3.1.

Lemma 7.6. Let γ = ϕh−2 . Then dim((ϕi)F (γ))an ≤ 2d for all i = 0, . . . , h .

Proof. Using induction and Corollary 7.5 we see that dim((ϕi)F (γ))an ≤ 2d for

all i ≥ 1. Now, it suffices to prove that dim((ϕ0)F (γ))an ≤ 2d. Since h ≥ 3, we

have dim((ϕ1)F (γ))an ≤ 2d = dimϕh−1 < dimϕ1. Hence (ϕ1)F (γ) is isotropic
forcing that F (γ, ϕ1)/F (γ) is purely transcendental. Thus 7.4 yields that
(ϕ0)F (γ) is isotropic. By Lemma 2.3, there exists i > 0 such that ((ϕ0)F (γ))an ∼

(ϕi)F (γ) = ((ϕi)F (γ))an . Hence dim((ϕ0)F (γ))an = dim((ϕi)F (γ))an ≤ 2d .
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Corollary 7.7. There exists fi ∈ F
∗ such that ϕi ≡ fiγ mod Id+3(F ) for all

i = 0, . . . , h− 2 .

Proof. Obvious consequence of Proposition 6.14 and Lemma 7.6.

Corollary 7.8. If h ≥ 3 then ϕ0 is a Pfister neighbor whose complementary
form is similar to ϕ1 .

Proof. Corollary 7.7 shows that the condition of Proposition 5.1 holds in the
case k = h− 2 and m = d+ 2.

Proof of Theorem 7.1. If h ≥ 3 , Corollaries 7.8 and 7.5 show that

• ϕ0 is a Pfister neighbor whose complementary form is similar to ϕ1 ,
• the sequence (ϕ1, ϕ2, . . . , ϕh) is quasi-excellent of the second type.

After that, an evident induction completes the proof.

8. Classification theorem for sequences of the third type

We proceed similarly as in the previous section. The main purpose is to
prove the following theorem.

Theorem 8.1. Let d > 0 be an integer and F be a field such that condition Ad
holds for F . Let (ϕ0, ϕ1, . . . , ϕh) be a quasi-excellent sequence of the third type
and of degree d. Then

• for all i < h − 3 the form ϕi is a Pfister neighbor whose complementary
form is similar to ϕi+1 ,

• the sequence (ϕh−3, ϕh−2, ϕh−1, 0) is quasi-excellent of the third type.

We will prove this theorem by using induction on h . In the case where h = 3
the statement is obvious. Thus we can assume that h ≥ 4 . In what follows we
will suppose that h ≥ 4 and Theorem 8.1 holds for all quasi-excellent sequences
of height < h .

Lemma 8.2. If (ϕ0)F (ϕ1) is anisotropic then (ϕ0)F (ϕ1) is a Pfister neighbor
whose complementary form is similar to (ϕ2)F (ϕ1) .

Proof. Let E = F (ϕ1) . By Lemma 3.1, the sequence ((ϕ0)E , (ϕ2)E , . . . , 0) is
quasi-excellent of height h− 1 . Let us consider two cases, h ≥ 5 and h = 4.

If h ≥ 5 then the sequence ((ϕ0)E , (ϕ2)E , . . . , (ϕh)E) is of the third type.
Then Theorem 8.1 (stated for sequences of height < h) completes the proof.

If h = 4 then the quasi-excellent sequence ((ϕ0)E , (ϕ2)E , (ϕ3)E , 0) has the
second type because dimϕ0 > dimϕ1 = 3 · 2d. In this case, Theorem 7.1
completes the proof.

Lemma 8.3. The form (ϕ0)F (ϕ1) is isotropic.
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Proof. Assume the contrary, (ϕ0)F (ϕ1) is anisotropic. Then Lemmas 8.2 and
2.8 show that dimϕ1 is a power of 2 . Let K = F (ϕ0) . The sequence
((ϕ1)K , . . . , (ϕh)K) is quasi-excellent of height h − 1 by Lemma 3.3. Clearly,
this sequence is of the third type. We consider two cases, h ≥ 5 and h = 4. If
h ≥ 5 then Theorem 8.1 (stated for sequences of height < h) shows that (ϕ1)K
is a Pfister neighbor whose complementary form is similar to the non-zero form
(ϕ2)K . This in particular shows that dimϕ1 is not a power of 2. We get a
contradiction. Now, we assume that h = 4. Then dimϕ1 = dimϕh−3 = 3 · 2d

is not a power of 2, a contradiction.

Corollary 8.4. The sequence (ϕ1, ϕ2, . . . , ϕh) is a quasi-excellent sequence
of the third type and of degree d .

Proof. Obvious in view of Lemmas 8.3, and 3.1.

In what follows we use the following notation:
τ is the leading form. Clearly, we can assume that ϕh−1 = τ ;
γ = ϕh−2 is the pre-leading form;
λ = ϕh−3 is “pre-pre-leading” form.
Thus, our quasi-excellent sequence looks as follows: (ϕ0, . . . , ϕh−4, λ, γ, τ, 0)

Lemma 8.5. For all i = 0, . . . , h− 1 , we have dim((ϕi)F (λ,γ))an = 2d.

Proof. It follows from Lemma 2.1 that (τ)F (λ,γ) is anisotropic.

Using induction and Corollary 8.4, we see that dim((ϕi)F (λ,γ))an = 2d for all
i = 1, . . . , h−1. In particular, (ϕ1)F (λ,γ) is isotropic. Hence F (λ, γ, ϕ1)/F (λ, γ)
is purely transcendental. Since (ϕ0)F (ϕ1) is isotropic by Lemma 8.3, it follows
that (ϕ0)F (λ,γ) is also isotropic. By Lemma 2.3, there exists i > 0 such that
((ϕ0)F (λ,γ))an ∼ (ϕi)F (λ,γ) = ((ϕi)F (λ,γ))an .

Hence dim((ϕ0)F (λ,γ))an = dim((ϕi)F (λ,γ))an = 2d.

Proposition 8.6. For any i = 0, . . . , h − 3 there exists fi ∈ F ∗ such that
ϕi ≡ fiλ mod Id+3(F ) .

Proof. There is si ∈ F
∗ such that ϕi ≡ siγ mod Id+2(F ) for i = 0, . . . , h − 3

by Proposition 6.14(2).
Changing notation ϕi := siϕi , we can assume that ϕi ≡ γ mod Id+2(F ) for

all i = 0, . . . , h− 3 . In particular, λ = ϕh−3 ≡ γ mod Id+2(F ) . Hence, we get
the element ed+2(λ⊥− γ) ∈ Hd+2(F ) .

Now, we fix an integer i ≤ h − 3 and set ϕ = ϕi . We have ϕ ≡ γ ≡
λ mod Id+2(F ) . Hence, we get the elements ed+2(ϕ⊥− γ) and ed+2(ϕ⊥− λ)
in Hd+2(F ) . Recall that Hn(F ′/F ) := ker(Hn(F )→ Hn(F ′)) .

Lemma 8.7. (1) ed+2(ϕ⊥− γ) ∈ Hd+2(F (λ, γ)/F ) ,
(2) ed+2(ϕ⊥− γ) /∈ Hd+2(F (γ)/F ) ,
(3) ed+2(ϕ⊥− λ) ∈ Hd+2(F (γ)/F ) .

Documenta Mathematica 6 (2001) 385–412



Excellent Special Orthogonal Groups 407

Proof. To prove item (1), it suffices to verify that (ϕ ⊥ −γ)F (λ,γ) is hyperbolic.

By Lemma 8.5, we have dim(ϕF (λ,γ))an ≤ 2d and dim(γF (λ,γ))an ≤ 2d. Hence,

dim((ϕ ⊥ −γ)F (λ,γ))an ≤ 2d+1 < 2d+2. Since [ϕ⊥ − γ] ∈ Id+2(F ), Theorem
1.1 shows that (ϕ ⊥ −γ)F (λ,γ) is hyperbolic.

(2) Assume that ed+2(ϕ⊥−γ) ∈ Hd+2(F (γ)/F ) . Let E = F (ϕ0, . . . , ϕh−4) .
Then (ϕE)an ∼ (ϕh−3)E = λE by Lemma 2.1. Hence, there exists s ∈ E∗ such
that (ϕE)an ' sλE . Therefore, ed+2(sλE⊥ − γE) ∈ Hd+2(E(γ)/E) . Hence
ed+2(sλE(γ)⊥− γE(γ)) = 0 .

Then Conjecture 6.1 implies that [sλE(γ) ⊥ −γE(γ)] ∈ Id+3(E(γ)) . Since

dimλ+dim γ = 3 ·2d+2d+1 < 2d+3, Theorem 1.1 shows that sλE(γ) ⊥ −γE(γ)

is hyperbolic. Thus dim(λE(γ))an ≤ dim γ < dimλ. Hence, λE(γ) is isotropic.
By Lemma 3.3, the sequence (λE , γE , τE , 0) is quasi-excellent. By Corollary
6.15, the form λE(γ) is anisotropic. We get a contradiction.

(3). Set K = F (γ) . Then we have a non-zero element ed+2(ϕK ⊥ −γK) in
the group Hd+2(K(λ)/K) by (1) and (2).

Since (γK)an is similar to τK by Lemma 3.5 and Proposition 3.7, there exists
s ∈ K∗ such that (γK)an ' sτK . Since [λ ⊥ −γ] ∈ Id+2(F ) we obtain that
[λK ⊥ −sτK ] ∈ Id+2(K) . Computing dimλ + dim τ = 3 · 2d + 2d = 2d+2, we
conclude from the Arason-Pfister Hauptsatz that there is a form π ∈ GPd+2(K)
such that π ' λK ⊥ −sτK , (see Theorem 1.1, and [AP], p. 174, Korollar 3). It
follows that λK(π) is isotropic, since dimλ > dim τ , and πK(π) is hyperbolic.
Hence, K(π, λ)/K(π) is purely transcendental. Since by (1) and (2) we have
0 6= ed+2(ϕK ⊥ −γK) ∈ Hd+2(K(π, λ)/K) we see that

0 6= ed+2(ϕK ⊥ −γK) ∈ Hd+2(K(π)/K) .

Thus Conjecture 6.2 shows that ed+2(ϕK ⊥ −γK) = ed+2(π) . Clearly, this
yields ed+2(ϕK ⊥ −γK ⊥ −π) = 0. Since π ' λK ⊥ −sτK ∼w λK ⊥ −γK
we have ϕK ⊥ −γK ⊥ −π ∼w (ϕ ⊥ −λ)K . Hence, ed+2(ϕ ⊥ −λ)K = 0 .
Therefore, ed+2(ϕ ⊥ −λ) ∈ Hd+2(K/F ).

By Proposition 3.6(2), γ is a good non-excellent form of height 2 and degree
d . Now, Lemma 6.12 and item (3) of Lemma 8.7 show that there exists f ∈ F ∗

such that ed+2(λ ⊥ −ϕ) = ed+2(γ ⊗ 〈〈f〉〉) . By Conjecture 6.1, we have

λ ⊥ −ϕ ≡ γ ⊗ 〈〈f〉〉 mod Id+3(F ) .

Since γ ≡ λ mod Id+2(F ) , it follows that λ ⊥ −ϕ ≡ λ ⊗ 〈〈f〉〉 ' λ ⊥ −fλ
(mod Id+3(F )) . Therefore, ϕ ≡ fλ mod Id+3(F ) . This completes the proof
of Proposition 8.6.

Corollary 8.8. If h ≥ 3 then ϕ0 is a Pfister neighbor whose complementary
form is similar to ϕ1.

Proof. Proposition 8.6 shows that the condition of Proposition 5.1 holds in the
case k = h− 3 and m = d+ 2.

Proof of Theorem 8.1. In case h ≥ 4 , Corollaries 8.8 and 8.4 show that
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• ϕ0 is a Pfister neighbor whose complementary form is similar to ϕ1 ,
• the sequence (ϕ1, ϕ2, . . . , ϕh) is quasi-excellent of the third type.

After that, an evident induction completes the proof.

9. Quasi-excellent sequences of type 3 and height 3

The main purpose of this section is to complete the classification of quasi-
excellent sequences of the third type. The results of the previous section show
that it suffices to consider only quasi-excellent sequences of height 3.

Lemma 9.1. The sequence (φ0, φ1, φ2, φ3) in Example 0.2 is quasi-excellent.

Proof. Set % = 〈〈a1, . . . , ad−1〉〉 and K = F (φ0) . Then (φ1)K is anisotropic by
Theorem 1.5. We have i((φ0)K) ≥ dim ρ = 2d−1 by [HR], Lemma 2.5 ii, hence
dim((φ0)K)an ≤ 2d+1 = dim(φ1)K . Set η = k0ρ⊗ 〈〈u, v, c〉〉 . Then

φ0 ⊥ −c k0k1φ1 ' k0ρ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈ad〉〉 ⊥ −c 〈−u,−v, uv, ad〉)

' k0ρ⊗ (〈〈u, v, c〉〉 ⊥ 〈c ad,−c ad〉)

' η ⊥ ρ⊗ 〈1,−1〉 .

The form ηF (η) is hyperbolic. But (φ1)F (η) is anisotropic by Theorem 1.5,
hence ((φ0)F (η))an ∼ (φ1)F (η) . Since there is an F -place K → F (η) ∪ {∞}

it follows that dim((φ0)K)an ≥ dim(φ1)F (η) = 2d+1, cf [Kn1], Proposition 3.1.

Thus dim((φ0)K)an = 2d+1 = dim(φ1)K .
If ηK is hyperbolic then it follows that ((φ0)K)an ∼ (φ1)K . Otherwise,

ηK is anisotropic, and ((φ0)K)an ⊥ −c k0k1(φ1)K ' ηK . This shows that
for every x ∈ K∗, the forms (x(φ0)K)an and (φ1)K are half-neighbors in the
sense of [H3], p. 258. Since (φ0)K is isotropic there is an x ∈ K∗ such that
x(φ0)K ' (ρ ⊗ 〈〈u, v〉〉)K ⊥ (−ρ ⊗ 〈〈ad〉〉)K , e.g., [HR], Lemma 2.5 i. Thus
(x(φ0)K)an is a (2d+1, 2d)-Pfister form in the sense of [H3], p. 262. Now, [H3],
Proposition 2.8, shows that ((φ0)K)an ∼ (φ1)K .

By Theorem 1.5, the forms φ1, φ2 remain anisotropic over K = F (φ0). Thus
we consider φ1, φ2 as forms over K and show that ((φ1)K(φ1))an) ∼ (φ2)K(φ1).
We have

φ1 ⊥ k1 k2 φ2 ' k1ρ⊗ (〈−u,−v, uv, ad〉 ⊥ 〈〈ad〉〉)

∼w k1ρ⊗ 〈〈u, v〉〉 .

Set ψ = k1ρ ⊗ 〈〈u, v〉〉 . Then dimψ = 2d+1 = dimφ1 . Since (φ2)K(ψ) is
anisotropic by Theorem 1.5 and since ψK(ψ) is hyperbolic, the form (φ1)K(ψ)

is not hyperbolic. There is a K-place K(φ1) → K(ψ) ∪ {∞} forcing that
(φ1)K(φ1) is not hyperbolic. But the form (φ1)K(φ1,φ2) is hyperbolic, for
otherwise, since (φ2)K(φ1,φ2) is hyperbolic, we would have the contradiction

dim((φ1)(K(φ1,φ2))an = dimψ = 2d+1 = dim(φ1)K(φ1,φ2) . Now Lemma 3.5
yields that ((φ1)K(φ1))an) ∼ (φ2)K(φ1) .

The main result of this section is the following
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Proposition 9.2. Let d > 0 be an integer and F be a field such that condition
Ad holds for F . Let (ϕ0, ϕ1, ϕ2, ϕ3) be a quasi-excellent sequence of degree d
and of the third type. Then this sequence looks as in Example 0.2.

Clearly, this proposition together with the results of the previous sections
completes the proof of Theorems 0.9 and 0.10.

We say that a form ϕ is divisible by a form ρ if there is a form χ such that
ϕ ' ρ⊗ χ .

Lemma 9.3. Let ϕ and ψ be anisotropic forms. Suppose that ϕ and ψ are
divisible by a Pfister form ρ (including the case ρ = 〈1〉). Then there exist
forms ϕ0, ψ0, µ such that

• ϕ0, ψ0 and µ are divisible by ρ ,
• ϕ ' ϕ0 ⊥ µ and ψ ' ψ0 ⊥ µ ,
• (ϕ ⊥ −ψ)an ' ϕ0 ⊥ −ψ0 .

Proof. Let µ be a form of maximal dimension satisfying the following condi-
tions:

(a) µ is divisible by ρ ,
(b) µ ⊂ ϕ and µ ⊂ ψ .

Then there exist forms ϕ0 and ψ0 such that ϕ ' ϕ0 ⊥ µ and ψ ' ψ0 ⊥ µ .
Since ϕ, ψ and µ are divisible by ρ, it follows from Theorem 1.3 that ϕ0 and ψ0

are also divisible by ρ. Now, it suffices to prove that (ϕ ⊥ −ψ)an ' ϕ0 ⊥ −ψ0 .
Since ϕ ⊥ −ψ ' (ϕ0 ⊥ µ) ⊥ −(ψ0 ⊥ µ) ∼w ϕ0 ⊥ −ψ0 , it suffices to prove

that the form ϕ0 ⊥ −ψ0 is anisotropic. Suppose the contrary. Then the forms
ϕ0 and ψ0 have a common value, say ` ∈ F ∗. By Theorem 1.3, we have `ρ ⊂ ϕ0

and `ρ ⊂ ψ0 . Setting µ̃ = µ ⊥ `ρ , we see that µ̃ satisfies conditions (a) and
(b). Since dim µ̃ > dimµ , we get a contradiction to the definition of µ .

Lemma 9.4. Let ϕ and ψ be anisotropic forms being divisible by a Pfister form
ρ ∈ Pd−1(F ) (where ρ = 〈1〉 if d = 1 ). Suppose that dimϕ = 3 · 2d, dimψ =
2d+1, and (ϕ ⊥ −ψ)an ∈ GPd+2(F ) . Then there exist u, v, ad, c ∈ F

∗ such that

ϕ ∼ ρ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈ad〉〉) and ψ ∼ ρ⊗ 〈−u,−v, uv, ad〉 .

Proof. Let ϕ0, ψ0 and µ be as in Lemma 9.3. We have

2 dimµ = (dimϕ+ dimψ)− (dimϕ0 + dimψ0)

= dimϕ+ dimψ − dim(ϕ ⊥ −ψ)an

= 3 · 2d + 2d+1 − 2d+2 = 2d.

Hence, dimµ = 2d−1. Since µ is divisible by ρ , there exists s ∈ F ∗ such that
µ ' sρ . Clearly, dimψ0 = dimψ− dimµ = 2d+1 − 2d−1 = 3 · 2d−1. Since ψ0 is
divisible by ρ ∈ Pd−1(F ) there exist k, u, v ∈ F ∗ such that

ψ0 ' kρ⊗ 〈1,−u,−v〉 .

Then ψ ' (kρ⊗ 〈1,−u,−v〉) ⊥ sρ ' kuvρ⊗ 〈uv,−v,−u, ad〉 with ad = skuv .
Thus ψ ∼ ρ⊗ 〈−u,−v, uv, ad〉 .
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Put π := ρ ⊗ 〈〈u, v〉〉 ∈ Pd+1(F ) . Since ψ0 ' kρ ⊗ 〈1,−u,−v〉 , it is easily
checked that kπ ' ψ0 ⊥ kuvρ . Hence, (ψ0)F (π) is isotropic.

Let η := −k(ϕ ⊥ −ψ)an ' −k(ϕ0 ⊥ −ψ0) . By the hypotheses of the lemma,
η ∈ GPd+2(F ) . Since kψ0 ' ρ ⊗ 〈1,−u,−v〉 represents 1 , it follows that η
represents 1 . Hence, η ∈ Pd+2(F ) . Since kψ0 ⊂ η and (ψ0)F (π) is isotropic, it
follows that ηF (π) is isotropic. Thus η ' π ⊗ η0 for some form η0 by Theorem
1.3. Since η ∈ Pd+2(F ) and π ∈ Pd+1(F ), it follows that η ' π ⊗ 〈〈c〉〉 for
suitable c ∈ F ∗. Hence, η ' ρ ⊗ 〈〈u, v, c〉〉. Clearly, uv ∈ D(η) . Since η is a
Pfister form, we obtain η ' uvη , (see [S], 2.10.4). By definition of η we have
kη ∼w ψ ⊥ −ϕ . Hence,

ϕ ∼w ψ ⊥ −kη ' ψ ⊥ −kuvη ' kuvρ⊗ 〈uv,−v,−u, ad〉 ⊥ −kuvρ⊗ 〈〈u, v, c〉〉

∼w kuvρ⊗ (〈〈u, v〉〉 ⊥ − 〈〈ad〉〉) ⊥ −kuvρ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈u, v〉〉)

∼w kuvρ⊗ (c 〈〈u, v〉〉 ⊥ − 〈〈ad〉〉) ' kuvcρ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈ad〉〉) .

Since dimϕ = 3 · 2d = dim ρ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈ad〉〉), we get
ϕ ' kuvcρ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈ad〉〉) .

Proof of Proposition 9.2. Let τ ∈ Pd(F ) be the leading form. Clearly, we can
assume that ϕ2 = τ . In other words, we have a quasi-excellent sequence of the
form (λ, γ, τ, 0) with dimλ = 3 · 2d, dim γ = 2d+1 and dim τ = 2d. By Proposi-
tion 6.14, there exists s ∈ F ∗ such that λ ≡ sγ mod Id+2(F ) . Replacing λ by
sλ , we can assume that λ ≡ γ mod Id+2(F ) . Let ξ := (λ ⊥ −γ)an . Clearly,
ξ 6∼w 0 and [ξ] ∈ Id+2(F ) . By Theorem 1.1, we have dim ξ ≥ 2d+2. Since
dim ξ ≤ dimλ+dim γ = 3 · 2d + 2d+1 = 5 · 2d < 3 · 2d+1 , Conjecture 6.4 yields
dim ξ = 2d+2. Hence (λ ⊥ −γ)an = ξ ∈ GPd+2(F ) , cf. [AP], Kor. 3.

By Proposition 3.6, γ is a good non-excellent form of height 2 with leading
form τ . By Conjecture 6.5, there exists ρ ∈ Pd−1(F ) such that γ and τ are
divisible by ρ . Then γF (ρ) and τF (ρ) are isotropic. Hence F (ρ, γ, τ)/F (ρ) is
purely transcendental. Since the form λF (γ,τ) is hyperbolic by Proposition 3.7,
it follows that λF (ρ) is hyperbolic. Therefore λ is divisible by ρ (see Theorem
1.3). Applying Lemma 9.4 to the forms ρ, ϕ = λ, and ψ = γ, we see that there
exists u, v, ad ∈ F

∗ such that

λ ∼ ρ⊗ (〈〈u, v〉〉 ⊥ −c 〈〈ad〉〉) and γ ∼ ρ⊗ 〈−u,−v, uv, ad〉 .

It follows that τ ∼ ρ⊗ 〈〈ad〉〉 by [Kn1], 6.12. The proof is complete.
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