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Abstract. We study, locally on a curve of characteristic p > 0,
the relation between the log-growth filtration and the Frobenius slope
filtration for F -isocrystals, which we will indicate as ϕ-∇-modules,
both at the generic point and at the special point. We prove that a
bounded ϕ-∇-module at the generic point is a direct sum of pure ϕ-
∇-modules. By this splitting of Frobenius slope filtration for bounded
modules we will introduce a filtration for ϕ-∇-modules (PBQ filtra-
tion). We solve our conjectures of comparison of the log-growth filtra-
tion and the Frobenius slope filtration at the special point for particu-
lar ϕ-∇-modules (HPBQ modules). Moreover we prove the analogous
comparison conjecture for PBQ modules at the generic point. These
comparison conjectures were stated in our previous work [CT09]. Us-
ing PBQ filtrations for ϕ-∇-modules, we conclude that our conjecture
of comparison of the log-growth filtration and the Frobenius slope fil-
tration at the special point implies Dwork’s conjecture, that is, the
special log-growth polygon is above the generic log-growth polygon
including the coincidence of both end points.
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1 Introduction

The local behavior of p-adic linear differential equations is, in one sense, very
easy. If the equation has a geometric origin (i.e., if it is furnished with a Frobe-
nius structure), then the radius of convergence of solutions at any nonsigular
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point is at least 1. In general, the p-adic norm of the coefficients an in the Tay-
lor series of a solution is an increasing function on n. However, one knows that
some solutions are p-adically integral power series. B.Dwork discovered these
mysterious phenomena and introduced a measure, called logarithmic growth
(or log-growth, for simplicity), for power series in order to investigate this del-
icate difference systematically (see [Dw73] and [Ka73, Section 7]). He studied
the log-growth of solutions of p-adic linear differential equations both at the
generic point and at special points (see [Ro75], [Ch83]), and asked whether the
behaviors are similar to those of Frobenius slopes or not. He conjectured that
the Newton polygon of log-growth of solutions at a special point is above the
Newton polygon of log-growth of solutions at the generic point [Dw73, Con-
jecture 2]. We refer to it as Conjecture LGDw when there are not Frobenius
structures, and as Conjecture LGFDw where there are Frobenius structures
(see Conjecture 2.7). He also proved that the Newton polygon of log-growth of
solutions at the generic (resp. special) point coincides with the Newton polygon
of Frobenius slopes in the case of hypergeometric Frobenius-differential systems
if the systems are nonconstant, thus establishing the conjecture in these cases
[Dw82, 9.6, 9.7, 16.9].
On the other hand P.Robba studied the generic log-growth of differential mod-
ules defined over the completion of Q(x) under the p-adic Gauss norm by intro-
ducing a filtration on them via p-adic functional analysis [Ro75] (see Theorem
2.2). His theory works on more general p-adically complete fields, for example
our field E .
Let k be a field of characteristic p > 0, let V be a discrete valuation ring with
residue field k, and let K be the field of fractions of V such that the charac-
teristic of K is 0. In [CT09] we studied Dwork’s problem on the log-growth
for ϕ-∇-modules over E or K[[x]]0 which should be seen as localizations of F -
isocrystals on a curve over k with coefficients in K. Here K[[x]]0 is the ring
of bounded functions on the unit disk around x = 0, E is the p-adically com-
plete field which is the field of fractions of K[[x]]0, and ϕ (resp. ∇) indicates
the Frobenius structure (resp. the connection) (See the notation and terminol-
ogy introduced in Section 2). We gave careful attention to Dwork’s result on
the comparison between the log-growth and the Frobenius slopes of hypergeo-
metric Frobenius-differential equations. We compared the log-growth and the
Frobenius slopes at the level of filtrations.
Let M be a ϕ-∇-module over K[[x]]0. Let Mη = M ⊗K[[x]]0 E be a ϕ-∇-module
over E which is the generic fiber of M and let V (M) be the ϕ-module over K
consisting of horizontal sections on the open unit disk. Denote by Mλ

η the log-

growth filtration on Mη at the generic point indexed by λ ∈ R, and by V (M)λ

be the log-growth filtration with real indices on the ϕ-module V (M). Further-
more, let Sλ( · ) be the Frobenius slope filtration such that Sλ( · )/Sλ−( · ) is
pure of slope λ.
We proved that the log-growth filtration is included in the orthogonal part
of the Frobenius slope filtration of the dual module under the natural perfect
pairing Mη ⊗E M∨

η → E (resp. V (M) ⊗K V (M∨) → K) at the generic point
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(resp. the special point) [CT09, Theorem 6.17] (see the precise form in Theorem
2.3):

Mλ
η ⊂ (Sλ−λmax

(M∨
η ))

⊥ (resp. V (M)λ ⊂ (Sλ−λmax
(V (M∨)))⊥)

for any λ ∈ R if λmax is the highest Frobenius slope of Mη. We then conjec-
tured: (a) the rationality of log-breaks λ (both at the generic and special fibers)
and (b) if the bounded quotient Mη/M

0
η is pure as a ϕ-module then the inclu-

sion relation becomes equality both at the generic and special points [CT09,
Conjectures 6.8, 6.9]. The hypothesis of (b) will be called the condition of
being “pure of bounded quotient” (PBQ) in Definition 5.1. Note that there are
examples with irrational breaks, and that both Mλ− ) Mλ and Mλ ) Mλ+

can indeed occur for log-growth filtrations in absence of Frobenius structures
[CT09, Examples 5.3, 5.4]. We state the precise forms of our conjectures in
Conjecture 2.4 on E and Conjecture 2.5 on K[[x]]0, and denote the conjectures
by LGFE and LGFK[[x]]0, respectively. We have proved our conjectures LGFE

and LGFK[[x]]0 if M is of rank ≤ 2 [CT09, Theorem 7.1, Corollary 7.2], and
then we established Dwork’s conjecture LGFDw if M is of rank ≤ 2 [CT09,
Corollary 7.3].
Let us now explain the results in the present paper. First we characterize
bounded ϕ-∇-modules over E by using Frobenius structures (Theorem 4.1):

(1) A bounded ϕ-∇-module M over E (i.e., M0 = 0, which means that all
the solutions on the generic disk are bounded) is isomorphic to a direct
sum of several pure ϕ-∇-modules if the residue field k of V is perfect.

Note that the assertion corresponding to (1) is trivial for a ϕ-∇-module M
over K[[x]]0 such that Mη is bounded by Christol’s transfer theorem (see
[CT09, Proposition 4.3]). This characterization implies the existence of a
unique increasing filtration {Pi(M)} of ϕ-∇-modules M over E such that
Pi(M)/Pi−1(M) is the maximally PBQ submodule of M/Pi−1(M) (Corollary
5.5). This filtration is called the PBQ filtration. When we start with a ϕ-∇-
module M over K[[x]]0, we can introduce a similar PBQ filtration for M , i.e.,
a filtration consisting of ϕ-∇-submodules over K[[x]]0 whose generic fibers will
induce the PBQ filtration of the generic fiber Mη (Corollary 5.10). To this end
we use an argument of A.J. de Jong in [dJ98] establishing the full faithfulness
of the forgetful functor from the category of ϕ-∇-modules over K[[x]]0 to the
category of ϕ-∇-modules over E .
The need to study horizontality behavior for the PBQ condition with respect
to the special and generic points leads us to introduce a new condition for
ϕ-∇-modules over K[[x]]0, namely, the property of being “horizontally pure of
bounded quotient ” (which, for simplicity, we abbreviate as HPBQ, cf. Defini-
tion 6.1). Then in Theorem 6.5 we prove that

(2) our conjecture LGFK[[x]]0 (see 2.5) on the comparison between the log-
growth filtration and the Frobenius slope filtration at the special point
holds for a HPBQ module.
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A HPBQmodule should be understood as a ϕ-∇-module for which the bounded
quotient is horizontal and pure with respect to the Frobenius. Our method of
proof will lead us to introduce the related definition of equislope ϕ-∇-modules
overK[[x]]0 (Definition 6.7): they admit a filtration as ϕ-∇-modules overK[[x]]0
which induces the Frobenius slope filtration at the generic point. Note that a
PBQ equislope object is HPBQ. Using this result, we prove in Theorem 7.1
that

(3) our conjecture LGFE (see 2.4) on comparison between the log-growth
filtration and the Frobenius slope filtration at the generic point holds for
PBQ modules over E .

Indeed, for a ϕ-∇-module M over E , the induced ϕ-∇-module Mτ = M ⊗E

Et[[X − t]]0 (where Et[[X − t]]0 is the ring of bounded functions on the open unit
disk at generic point t) is equislope. For the proof of comparison for HPBQ
modules, we use an explicit calculation of log-growth for solutions of certain
Frobenius equations (Lemma 4.8) and a technical induction argument.
For a submodule L of a ϕ-∇-module M over E with N = M/L, the induced
right exact sequence

L/Lλ →M/Mλ → N/Nλ → 0

is also left exact for any λ if L is a maximally PBQ submodule of M by Propo-
sition 2.6. Since there do exist PBQ filtrations, the comparison between the
log-growth filtrations and the Frobenius slope filtrations for PBQ modules both
at the generic point and at the special point implies the rationality of breaks
(Theorem 7.2 and Proposition 7.3) as well as Dwork’s conjecture (Theorem 8.1)
that the special log-growth polygon lies above the generic log-growth polygon
(including the coincidence of both end points):

(4) Our conjecture of comparison between the log-growth filtration and the
Frobenius slope filtration at the special point (Conjecture LGFK[[x]]0, 2.5)
implies Dwork’s conjecture (Conjecture LGFDw, 2.7).

As an application, we have the following theorem (Theorem 8.8) without any
assumptions.

(5) The coincidence of both log-growth polygons at the generic and special
points is equivalent to the coincidence of both Frobenius slope polygons
at the generic and special points.

Let us also mention some recent work on log-growth. Y.André ([An08]) proved
the conjecture LGDw of Dwork without Frobenius structures, that is, the log-
growth polygon at the special point is above the log-growth filtration at the
generic point for∇-modules, but without coincidence of both end points. (Note
that his convention on the Newton polygon is different from ours, see Remark
2.8). He used semi-continuity of log-growth on Berkovich spaces. K.Kedlaya
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defined the log-growth at the special point for regular singular connections and
studied the properties of log-growth [Ke09, Chapter 18].

This paper is organized in the following manner. In Section 2 we recall our
notation and results from [CT09]. In Section 3 we establish the independence
of the category of ϕ-∇-modules over E (resp. K[[x]]0) of the choices of Frobenius
on E (resp. K[[x]]0). In Section 4 we study when the Frobenius slope filtration
of ϕ-∇-modules over E is split and prove (1) above. In Section 5 we introduce
the notion of PBQ and prove the existence of PBQ filtrations. In Section 6 we
study the log-growth filtration for HPBQ ϕ-∇-modules over K[[x]]0 and prove
the comparison (2) between the log-growth filtration and the Frobenius slope
filtration. This comparison implies the comparison (3) for PBQ ϕ-∇-modules
over E in Section 7. In Section 8 we show that (4) our conjecture of comparison
at the special point implies Dwork’s conjecture.

2 Preliminaries

We fix notation and recall the terminology in [CT09]. We also review Dwork’s
conjecture and our conjectures.

2.1 Notation

Let us fix the basic notation which follows from [CT09].

p : a prime number.

K : a complete discrete valuation field of mixed characteristic (0, p).

V : the ring of integers of K.

k : the residue field of V .

m : the maximal ideal of V .

| | : a p-adically absolute value on K and its extension as a valuation field,
which is normalized by |p| = p−1.

q : a positive power of p.

σ : (q-)Frobenius on K, i.e., a continuous lift of q-Frobenius endomorphism
(a 7→ aq on k). We suppose the existence of Frobenius on K. We also
denote by σ a K-algebra endomorphism on AK(0, 1−), which is an exten-
sion of Frobenius on K, such that σ(x) is bounded and |σ(x)− xq|0 < 1.
Then K[[x]]λ is stable under σ. We also denote by σ the unique extension
of σ on E , which is a Frobenius on E . In the case we only discuss ϕ-∇-
modules over E , one can take a Frobenius σ on K such that σ(x) ∈ E
with |σ(x) − xq|0 < 1.
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K̂perf : the p-adic completion of the inductive limit Kperf of K
σ
→K

σ
→· · · .

Then K̂perf is a complete discrete valuation field such that the residue

field of the ring of integers of K̂perf is the perfection of k and that the

value group of K̂perf coincides with the value group of K. The Frobenius

σ uniquely extend to K̂perf . Moreover, taking the p-adic completion

K̂al of the maximally unramified extension Kal of Kperf , we have a
canonical extension of K as a discrete valuation field with the same value
group such that the residue field of the ring of integers is algebraically
closed and the Frobenius extends on it. We use the same symbol σ for
Frobenius on the extension.

qλ : an element of K with logq|q
λ| = −λ for a rational number λ such that

σ(qλ) = qλ. Such a qλ always exists if the residue field k is algebraically
closed and λ ∈ logq|K

×|. In particular, if k is algebraically closed, then
there exists an extension L of K as a discrete valuation field with an
extension of Frobenius such that qλ is contained in L for a fix λ. In this
paper we freely extend K as above.

AK(c, r−) : the K-algebra of analytic functions on the open disk of radius r
at the center c, i.e.,

AK(c, r−) =

{
∞∑

n=0

an(x − c)n ∈ K[[x− c]]

∣∣∣∣∣
|an|γ

n → 0 asn→∞
for any 0 < γ < r

}
.

K[[x]]0 : the ring of bounded power series over K, i.e.,

K[[x]]0 =

{
∞∑

n=0

anx
n ∈ AK(0, 1−)

∣∣∣∣∣ supn
|an| <∞

}
.

An element of K[[x]]0 is said to be a bounded function.

K[[x]]λ : the Banach K-module of power series of log-growth λ in AK(0, 1−)
for a nonnegative real number λ ∈ R≥0, i.e.,

K[[x]]λ =

{
∞∑

n=0

anx
n ∈ AK(0, 1−)

∣∣∣∣∣ supn
|an|/(n+ 1)λ <∞

}
,

with a norm |
∑∞

n=0 anx
n|λ = supn |an|/(n + 1)λ. K[[x]]λ is a K[[x]]0-

modules. K[[x]]λ = 0 for λ < 0 for the convenient. An element f ∈ K[[x]]λ
which is not contained in K[[x]]γ for γ < λ is said to be exactly of log-
growth λ.

E : the p-adic completion of the field of fractions of K[[x]]0 under the Gauss
norm | |0, i.e.,

E =

{
∞∑

n=−∞

anx
n

∣∣∣∣∣ an ∈ K, sup
n
|an| <∞, |an| → 0 (asn→ −∞)

}
.
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E is a complete discrete valuation field under the Gauss norm | |0 in fact
K is discrete valuated. The residue field of the ring OE of integers of E
is k((x)).

t : a generic point of radius 1.

Et : the valuation field corresponding to the generic point t, i.e., the same
field as E in which x is replaced by t: we emphasize t in the notation with
the respect to [CT09]. We regard the Frobenius σ as a Frobenius on Et.

Et[[X − t]]0 : the ring of bounded functions in AEt
(t, 1−). Then

τ : E → Et[[X − t]]0 τ(f) =

∞∑

n=0

1

n!
(
dn

dxn
f)|x=t(X − t)n

is a K-algebra homomorphism which is equivariant under the derivations
d
dx and d

dX . The Frobenius σ on Et[[X − t]]0 is defined by σ on Et and
σ(X − t) = τ(σ(x)) − σ(x)|x=t. τ is again σ-equivariant.

For a function f on R and for a matrix A = (aij) with entries in R, we define
f(A) = (f(aij)). In case where f is a norm | |, then |A| = supi,j |aij |. We use
1 (resp. 1r) to denote the unit matrix of suitable degree (resp. of degree r).
For a decreasing filtration {V λ} indexed by the set R of real numbers, we put

V λ− = ∩µ<λ V
µ, V λ+ = ∪µ>λ V

µ.

We denote by Wλ− = ∪µ<λ Wµ and Wλ+ = ∩µ>λ Wµ the analogous objects
for an increasing filtration {Wλ}λ, respectively.

2.2 Terminology

We recall some terminology and results from [CT09].
Let R be either K (K might be E) or K[[x]]0. A ϕ-module over R consists of a
free R-module M of finite rank and an R-linear isomorphism ϕ : σ∗M → M .
For a ϕ-module over K, there is an increasing filtration {Sλ(M)}λ∈R which is
called the Frobenius slope filtration. Then there is a sequence λ1 < · · · < λr of
real numbers, called the Frobenius slopes of M , such that Sλi

(M)/Sλi−(M) is

pure of slope λi and M ⊗ K̂al ∼= ⊕i Sλi
(M) ⊗K K̂al/Sλi−(M) ⊗K K̂al is the

Dieudonné-Manin decomposition as ϕ-modules over K̂al. We call λ1 the first
Frobenius slope and λr the highest Frobenius slope, respectively.
Let R be either E or K[[x]]0. A ϕ-∇-module over R consists of a ϕ-module
(M,ϕ) over R and a K-connection ∇ : M →M ⊗RΩR, where ΩR = Rdx, such
that ϕ ◦ σ∗(∇) = ∇ ◦ ϕ. For a basis (e1, · · · , er), the matrices A and G with
entries R,

ϕ(1 ⊗ e1, · · · , 1⊗ er) = (e1, · · · , er)A, ∇(e1, · · · , er) = (e1, · · · , er)Gdx
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are called the Frobenius matrix and the connection matrix of R, respectively.
Then one has

d

dx
A+GA = (

d

dx
σ(x))Aσ(G) (FC)

by the horizontality of ϕ. We denote the dual of M by M∨ .
Let M be a ϕ-∇-module over K[[x]]0. We define the K-space

V (M) = {s ∈M ⊗K[[x]]0 AK(0, 1−) | ∇(s) = 0}

of horizontal sections and the K-space of solutions,

Sol(M) = HomK[[x]]0[∇](M,AK(0, 1−)),

on the unit disk. Both dimK V (M) and dimK Sol(M) equal to rankK[[x]]0 M by
the solvability. If one fixes a basis of M , the solution Y of the equations





A(0)σ(Y ) = Y A
d
dxY = Y G
Y (0) = 1

in AK(0, 1−) is a solution matrix of M , where A(0) and Y (0) are
the constant terms of A and Y , respectively. The log-growth filtration
{V (M)λ}λ∈R is defined by the orthogonal space of the K-space Solλ(M) =
HomK[[x]]0[∇](M,K[[x]]λ) under the natural bilinear perfect pairing

V (M)× Sol(M)→ K.

Then V (M)λ = 0 for λ >> 0 by the solvability of M and the log-growth
filtration is a decreasing filtration of V (M) as ϕ-modules overK. The following
proposition allows one to change the coefficient field K to a suitable extension
K ′.

Proposition 2.1 ([CT09, Proposition 1.10]) Let M be a ϕ-module over
K[[x]]0. For any extension K ′ over K as a complete discrete valuation field
with an extension of Frobenius, there is a canonical isomorphism V (M ⊗K[[x]]0

K ′[[x]]0) ∼= V (M)⊗K K ′ as log-growth filtered ϕ-modules.

The induced ϕ-∇-module Mη = M ⊗K[[x]]0 E over E is said to be the generic
fiber of M , and the K-module V (M) is called the special fiber of M .

Let M be a ϕ-∇-module over E . We denote by Mτ the induced ϕ-∇-module
M ⊗E Et[[X − t]]0 over Et[[X − t]]0. Applying the theory of Robba [Ro75], we
have a decreasing filtration {Mλ}λ∈R of M as ϕ-∇-modules over E which is
characterized by the following universal property.

Theorem 2.2 [Ro75, 2.6, 3.5] (See [CT09, Theorem 3.2].) For any real num-
ber λ, M/Mλ is the maximum quotient of M such that all solutions of log-
growth λ of Mτ on the generic unit disk come from the solutions of (M/Mλ)τ .
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The filtration {Mλ} is called the log-growth filtration of M . Note that Mλ =
M for λ < 0 by definition and Mλ = 0 for λ >> 0 by the solvability. The
quotient module M/M0 is called the bounded quotient, and, in particular, if
M0 = 0, then M is called bounded.

Our main theorem in [CT09] is the following:

Theorem 2.3 ([CT09, Theorem 6.17])

(1) Let M be a ϕ-∇-module over E. If λmax is the highest Frobenius slope of
M , then Mλ ⊂ (Sλ−λmax

(M∨))⊥.

(2) Let M be a ϕ-∇-module over K[[x]]0. If λmax is the highest Frobenius
slope of Mη, then V (M)λ ⊂ (Sλ−λmax

(V (M∨)))⊥.

Here S⊥ denotes the orthogonal space of S under the natural bilinear perfect
pairing

M ⊗E M∨ → E or V (M)⊗K V (M∨)→ K.

We conjectured that equalities hold in Theorem 2.3 if M is PBQ (Definition
5.1) in [CT09], and proved them if M is of rank ≤ 2 [CT09, Theorem 7.1,
Corollary 7.2].

Conjecture 2.4 ([CT09, Conjectures 6.8]) Let M be a ϕ-∇-module over E.

(1) All breaks of log-growth filtration of M are rational and Mλ = Mλ+ for
any λ.

(2) Let λmax be the highest Frobenius slope of M . If M/M0 is pure as ϕ-
module (PBQ in Definition 5.1 (1)), then Mλ = (Sλ−λmax

(M∨))⊥.

We denote Conjecture 2.4 above by LGFE .

Conjecture 2.5 ([CT09, Conjectures 6.9]) Let M be a ϕ-∇-module over
K[[x]]0.

(1) All breaks of log-growth filtration of V (M) are rational and V (M)λ =
V (M)λ+ for any λ.

(2) Let λmax be the highest Frobenius slope of Mη. If Mη/M
0
η is

pure as ϕ-module (PBQ in Definition 5.1 (2)), then V (M)λ =
(Sλ−λmax

(V (M)∨))⊥.

We denote Conjecture 2.5 above by LGFK[[x]]0.

Note that we formulate the theorem and the conjecture in the case where
λmax = 0 in [CT09]. However, the theorem holds for an arbitrary λmax by
Proposition 2.1 (and the conjecture should also hold). Moreover, it suffices to
establish the conjecture when the residue field k of V is algebraically closed.
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In section 7 we will reduce the conjecture LGFE (1) (resp. LGFK[[x]]0 (1)) to
the conjecture LGFE (2) (resp. LGFK[[x]]0 (2)) by applying the proposition
below to the PBQ filtration which is introduced in section 5. The following
proposition is useful for attacking log-growth questions by induction.

Proposition 2.6 Let 0 → L → M → N → 0 be an exact sequence of ϕ-∇-
modules over E (resp. K[[x]]0) and let λmax be the highest Frobenius slope of M
and L (resp. Mη and Lη).

(1) Suppose that Lλ = (Sλ−λmax
(L∨))⊥ for λ. Then the induced sequence

0→ L/Lλ →M/Mλ → N/Nλ → 0

is exact.

(2) Suppose that V (L)λ = (Sλ−λmax
(V (L)∨))⊥ for λ. Then the induced se-

quence

0→ V (L)/V (L)λ → V (M)/V (M)λ → V (N)/V (N)λ → 0

is exact.

Proof. (1) Since

L/Lλ →M/Mλ → N/Nλ → 0

is right exact by [CT09, Proposition 3.6], we have only to prove the injectivity
of the first morphism. There is an inclusion relation

Mλ ⊂ (Sλ−λmax
(M∨))⊥ = S(λmax−λ)−(M)

by Theorem 2.3 and the equality

Lλ = (Sλ−λmax
(L∨))⊥ = S(λmax−λ)−(L).

holds by our hypothesis on L. Since the Frobenius slope filtrations are strict for
any morphism, the bottom horizontal morphism in the natural commutative
diagram

L/Lλ −→ M/Mλ

=↓ ↓
L/S(λmax−λ)−(L) −→ M/S(λmax−λ)−(M)

is injective. Hence we have the desired injectivity.

(2) The proof here is similar to that of (1) on replacing [CT09, Proposition 3.6]
by [CT09, Proposition 1.8]. 2
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2.3 Dwork’s conjecture

We recall Dwork’s conjecture. We have proved it in the case where M is of
rank ≤ 2 [CT09, Corollary 7.3].

Conjecture 2.7 ([Dw73, Conjecture 2], [CT09, Conjecture 4.9]) Let M be a
ϕ-∇-module over K[[x]]0. Then the special log-growth is above the generic log-
growth polygon (with coincidence at both endpoints).

We denote Conjecture 2.7 above by LGFDw. We will prove that the conjecture
LGFDw follows from the conjectures LGFE and LGFK[[x]]0 in section 8. There
is also a version of Dwork’s conjecture without Frobenius structures, we denote
it by LGDw.
Let us recall the definition of the log-growth polygon: the generic log-growth
polygon is the piecewise linear curve defined by the vertices

(0, 0), (dimE
Mη

M
λ1+
η

, λ1 dimE
Mλ1−

η

M
λ1+
η

), · · · , (dimE
Mη

M
λi+
η

,
∑i

j=1 λj dimE
M

λj−

η

M
λj+

η

),

· · · , (dimE Mη,
∑r

j=1 λj dimE
M

λj−

η

M
λj+

η

),

where 0 = λ1 < · · · < λr are breaks (i.e., Mλ− 6= Mλ+) of the log-growth
filtration of Mη. The special log-growth polygon is defined in the same way
using the log-growth filtration of V (M).

Remark 2.8 (1) The convention of André’s polygon of log-growth
[An08] is different from ours. His polygon at the generic fiber is∑r

j=1 λj dimE
Mλj−

Mλj+ below our polygon in the direction of the vertical

axis and the starting point of the polygon is (dimE M, 0), and the same
at the special fiber. André proved the conjecture LGDw except the
coincidence of both endpoints in [An08].

(2) If the special log-growth polygon lies above the generic log-growth polygon
in both conventions of André’s and ours, then both endpoints coincide with
each other. However even if this is the case, we cannot prove Mλ

η = Mλ+
η

(resp. V (M)λ = V (M)λ+) for a break λ.

3 Choices of Frobenius

Let us recall the precise form of equivalence between categories of ϕ-∇-modules
with respect to different choices of Frobenius on E (resp. K[[x]]0) (see [Ts98a,
Section 3.4] for example). We will use it in the next section.

3.1 Comparison morphism ϑσ1,σ2

Let σ1 and σ2 be Frobenius maps on E (resp. K[[x]]0) such that the restriction
of each σi to K is the given Frobenius on K. Let M be a ϕ-∇-module. We
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define an E-linear (resp. K[[x]]0-linear) morphism

ϑσ1,σ2
: σ∗

1M → σ∗
2M

by

ϑσ1,σ2
(a⊗m) = a

∞∑

n=0

(σ2(x) − σ1(x))
n ⊗

1

n!
∇(

dn

dxn
)(m).

Since M is solvable and |σ2(x) − σ1(x)| < 1, the right hand side converges in
σ∗
2M . As a matrix representation, the transformation matrix is

H =

∞∑

n=0

σ2(Gn)
(σ2(x)− σ1(x))

n

n!

for the induced basis 1 ⊗ e1, · · · , 1 ⊗ er, where G is the matrix of connection,
G0 = 1 and Gn+1 = GGn + d

dxGn for n ≥ 0.

Proposition 3.1 Let σ1, σ2, σ3, σ be Frobenius maps of E (resp. K[[x]]0) as
above. Then we have the cocycle conditions:

(1) ϑσ2,σ3
◦ ϑσ1,σ2

= ϑσ1,σ3
.

(2) ϑσ,σ = idσ∗M .

Proposition 3.2 Let M be a ϕ-∇-module pure of slope λ over E and let A be
the Frobenius matrix of M with respect to a basis. Suppose that |A−qλ1|0 ≤ q−µ

for µ ≥ λ. Then the representation matrix H of the comparison morphism
ϑσ1,σ2

with respect to the bases which are the pull-backs by σ1 and σ2 respec-
tively, satisfies |H − 1|0 < qλ−µ.

Proof. By replacing the Frobenius ϕ by q−λϕ, we may assume that λ = 0.
The assertion then follows from the fact that under these assumptions the
solution matrix Y at the generic point satisfies Y ≡ 1 (mod (X−t)mnOEt

[[X−
t]]). Here n is the least integer such that |mn| ≤ q−µ. 2

3.2 Equivalence of categories

Let R be either E or K[[x]]0 and let σ1 and σ2 be Frobenius maps on R as in
the previous subsection. We define a functor

ϑ∗
σ1,σ2

: (ϕ-∇-modules over (R, σ2))→ (ϕ-∇-modules over (R, σ1))

by (M,∇, ϕ) 7→ (M,∇, ϕ ◦ ϑσ1,σ2
). Here ϑσ1,σ2

is defined as in the previous
section. The propositions of the previous subsection then give

Theorem 3.3 ϑ∗
σ1,σ2

is an equivalence of categories which preserves tensor
products and duals. Moreover, ϑ∗

σ1,σ2
preserves the Frobenius slope filtration

and the log-growth filtration of M (resp. V (M)) for a ϕ-∇-module M over E
(resp. K[[x]]0).
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4 Boundedness and splitting of the Frobenius slope filtration

4.1 Splitting theorem

Theorem 4.1 Suppose that the residue field k of V is perfect. A ϕ-∇-module
M over E is bounded if and only if M is a direct sum of pure ϕ-∇-modules,
that is,

M ∼= ⊕r
i=1 Sλi

(M)/Sλi−(M)

as ϕ-∇-modules, where λ1 < λ2 < · · · < λr are Frobenius slopes of M .

Since any pure ϕ-∇-module over E is bounded by [CT09, Corollary 6.5]. Hence,
Theorem 4.1 above follows from the next proposition.

Proposition 4.2 Suppose that the residue field k of V is perfect. Let 0 →
L → M → N → 0 be an exact sequence of ϕ-∇-modules over E such that
both L and N are pure of Frobenius slope λ and ν, respectively. If one of the
conditions

(1) ν − λ < 0;

(2) ν − λ > 1;

(3) M is bounded and 0 < ν − λ ≤ 1,

holds, then the exact sequence is split, that is, M ∼= L⊕N as ϕ-∇-modules.

In the case (1) the assertion easily follows from the fact that, for a ∈ E with
|a|0 < 1, aσ is a contractive operator on the p-adic complete field E . The rest
of this section will be dedicated to proving the assertion in cases (2) and (3).

4.2 Descent of splittings

Proposition 4.3 Let 0 → L → M → N → 0 be an exact sequence of ϕ-
modules over E such that L and N are pure and the two slopes are different.
Let E ′ be one of the following:

(i) E ′ is a p-adic completion of an unramified extension of E;

(ii) E ′ is the p-adic completion of E ⊗K K ′ for some extension K ′ of K as
a complete discrete valuation field with an extension σ′ of σ such that,
if G is the group of continuous automorphisms of K ′ over K, then the
invariant subfield of K ′ by the action of G is K.

If the exact sequence is split over E ′, then it is split over E. The same holds
for ϕ-∇-modules over E.
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Proof. In each case we may assume that E is the invariant subfield of E ′ by
the action of continuous automorphism group G. Let e1, · · · , er, er+1, · · · , er+s

be a basis of M over E such that e1, · · · , er is a basis of L. Put

ϕ(e1, · · · , er, er+1, · · · , er+s) = (e1, · · · , er, er+1, · · · , er+s)

(
A11 A12

0 A22

)
,

where A11 is of degree r and A22 is of degree s, respectively, and all entries
of A11, A12 and A22 are contained in E . By the hypothesis of splitting over E ′

there exists a matrix Y with entries in E ′ such that

A11σ(Y )− Y A22 +A12 = 0.

For any ρ ∈ G, ρ(Y ) also gives a splitting. Hence A11σ(Y − ρ(Y )) = (Y −
ρ(Y ))A22. By the assumption on slopes, ρ(Y ) = Y . Therefore, all entries of Y
are contained in E and the exact sequence is split over E . 2

Definition 4.4 An extension E ′ (resp. K ′) of E (resp. K) is allowable if E ′

is a finitely successive extension of E (resp. K) of type in (i) or (ii) (resp. (ii))
of Proposition 4.3.

4.3 Preparations

In this subsection we assume that the residue field k of V is algebraically closed.
Moreover we assume that the Frobenius on E (resp. K[[x]]0) is defined by
σ(x) = xq. For an element a =

∑
n anx

n in E (resp. K[[x]]) we define the
subseries a(q) by

∑
n aqnx

qn.

Lemma 4.5 Let

(
A11 A12

0 A22

)
be an invertible matrix of degree r + s over E

(resp. K[[x]]0) with A11 of degree r and A22 of degree s such that the matrix
satisfies the conditions:

(i) A11 = A
(q)
11 and A11 = P−1 for a matrix P over E (resp. K[[x]]0) with

|P |0 < 1,

(ii) A22 = A
(q)
22 and |A22 − 1s|0 < 1.

Suppose that A
(q)
12 6= 0. Then there exists an r × s matrix Y over E (resp.

K[[x]]0) with |Y |0 < |A
(q)
12 |0 such that, if one puts B = A11σ(Y )− Y A22 +A12,

then |B(q)|0 < |A
(q)
12 |0. Moreover, there exists an r × s matrix Y over E (resp.

K[[x]]0) such that if one defines B12 by

(
A11 B12

0 A22

)
=

(
1r −Y
0 1s

)(
A11 A12

0 A22

)(
1r σ(Y )
0 1s

)
,

then B
(q)
12 = 0.
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Proof. Take a matrix Y such that σ(Y ) = −PA
(q)
12 . Such a Y exists since

the residue field k of V is perfect. Then |Y |0 < |A
(q)
12 |0 and B = A11σ(Y ) −

Y A22 +A12 = A11PA
(q)
12 − Y A22 +A12 = A12 −A

(q)
12 − Y A22. Hence |B

(q)|0 =

|Y A
(q)
22 |0 < |A

(q)
12 |0 and we have the first assertion. Applying the first assertion

inductively on the value |A
(q)
12 |0, we have a desired matrix Y of the second

assertion since E (resp. K[[x]]0) is complete under the norm | |0. 2

We give a corollary of the preceding lemma for ϕ-∇-modules over E .

Proposition 4.6 Let 0 → L → M → N → 0 be an exact sequence of ϕ-∇-
modules over E. Suppose that N is pure of Frobenius slope ν and all Frobenius
slopes of L are less than ν. Then there exist an allowable extension E ′ of E and
a basis e1, · · · , er, er+1, · · · , er+s of M ⊗E E

′ with respect to the exact sequence
such that, if one fixes an element x′ in the ring OE′ of integers of E ′ whose
image gives a uniformizer of the residue field of OE′ and a Frobenius σ′ on E ′

with σ′(x′) = x′q, then the Frobenius matrix

(
A11 A12

0 A22

)
of M ⊗E E

′ with

respect to σ′ (here we use Theorem 3.3) has the following form:

(i) A11 = A
(q)
11 and A11 = P−1 for a matrix |P |0 < qν ,

(ii) A22 = A
(q)
22 and |A22 − qν1s|0 < q−ν ,

(iii) A
(q)
12 = 0,

where a(q) is defined by using the parameter x′. Moreover, one can replaces the
inequality |A22 − qν1s|0 < q−ν in (ii) by the inequality |A22 − qν1s|0 < q−νη
for a given 0 < η ≤ 1 (the extension E ′ depends on η).

Proof. Since k is algebraically closed, there is a uniformizer π of K such
that σ(π) = π. Let Km be a Galois extension K(π1/m, ζm) of K for a positive
integer m, where ζm denotes a primitive m-th root of unity. Then σ on K
extends on Km. If we choose a positive integer m such that m/logq|π| is a
common multiple of denominators of ν and the highest Frobenius slope of L,
then ν and the highest Frobenius slope of L are contained in logq|K

×
m|. Hence

we may assume that ν = 0 and all Frobenius slopes of the twist πϕL of the
Frobenius ϕL of L are less than or equal to 0.

Let A =

(
A11 A12

0 A22

)
be a Frobenius matrix of M with respect to the

given exact sequence. Since any ϕ-module over E has a cyclic vector [Ts96,
Proposition 3.2.1], we may assume that A22 ∈ GLs(OE) by ν = 0. Then there
is a matrix X ∈ GLs(OE′) such that X−1A22σ(X) ≡ 1s (modmOE′) for some
finite unramified extension E ′ over E by [Ts98b, Lemma 5.2.2]. By applying
the existence of a cyclic vector again, we may assume that the all entries of
Frobenius matrix of L∨ are contained in mOE by the hypothesis on Frobenius
slopes of L.

Documenta Mathematica 16 (2011) 33–69



Log-growth Filtration and Frobenius Slope Filtration 49

Now we fix a parameter x′ of E ′ and change a Frobenius σ′ on E ′ such that
σ′(x′) = x′q. The the hypothesis of the matrices A11 and A12 are stable by
Theorem 3.3. If one replaces the basis (e1, · · · , er+s) by (e1, · · · , er+s)A, then
the Frobenius matrix becomes σ′(A). Since the hypothesis in Lemma 4.5 hold
in our Frobenius matrix A, we have the assertion. 2

Now a variant of Proposition 4.6 for ϕ-∇-modules over K[[x]]0, which we use it
in section 6, is given.

Proposition 4.7 Let 0 → L → M → N → 0 be an exact sequence of ϕ-
∇-modules over K[[x]]0. Suppose that Nη is pure of Frobenius slope ν and all
Frobenius slopes of Lη are less than ν. Then there exist an allowable extension
K ′ of K with an extension of Frobenius σ′ and a basis e1, · · · , er, er+1, · · · , er+s

of M ⊗K[[x]]0 K
′[[x]]0 with respect to the exact sequence such that the Frobenius

matrix

(
A11 A12

0 A22

)
of M ⊗K[[x]]0 K

′[[x]]0 with respect to σ′ has the following

form:

(i) A11 = A
(q)
11 and A11 = P−1 for a matrix |P |0 < qν ,

(ii) A22 = qν1s,

(iii) A
(q)
12 = 0

Proof. We may assume µ = 0 and the highest Frobenius slope of Lη is
contained in logq|K

×
m| as in the proof of Proposition 4.6. Then N is a direct

sum of copies of the unit object (K[[x]]0, d, σ)’s since k is algebraically closed.
In order to find the matrix P , we apply the isogeny theorem [Ka79, Theorem
2.6.1] and the existence of a free lattice over V [[x]] in [dJ98, Lemma 6.1] for L∨.
The rest is again same as the proof of Proposition 4.6. 2

Lemma 4.8 Let ν be a nonnegative rational number. Suppose that y ∈ xK[[x]]
satisfies a Frobenius equation

y − q−νaσ(y) = f.

for a ∈ K with |a| = 1 and for f =
∑

n fnx
n ∈ xK[[x]].

(1) Suppose that f (q) = 0. If f ∈ K[[x]]ν \ {0}, then y ∈ K[[x]]ν \K[[x]]ν−, and
if f ∈ K[[x]]λ \K[[x]]λ− for λ > ν, then y ∈ K[[x]]λ \K[[x]]λ−.

(2) Let l be a nonnegative integer with q 6 | l. If f ∈ K[[x]]0 and |fl| > |q
νf |0 =

q−ν |f |0 6= 0, then y ∈ K[[x]]ν \K[[x]]ν−.

Proof. Since the residue field k of V is algebraically closed, we may assume
that a = 1. Formally in K[[x]],

y =
∑

n

∞∑

m=0

(q−ν)mσm(fn)x
qmn
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is a solution of the equation.
(1) If qmn = qm

′

n′, then m = m′ and n = n′ because q 6 |n, n′. Hence,
y 6= 0. By considering a subseries

∑∞
m=0 (q

−ν)mσm(fn)x
qmn for fn 6= 0, y is of

log-growth equal to or greater than ν. Moreover, we have

|(q−ν)mσm(fn)|/(q
mn+ 1)ν = |fn|/(n+ 1/qm)ν

Hence, if f ∈ K[[x]]ν , then y is exactly of log-growth ν. Suppose f ∈ K[[x]]λ \
K[[x]]λ−. Since for each m,n

|(q−ν)mσm(fn)|/(q
mn+ 1)λ = |fn|/(q

m(1−ν/λ)n+ 1/qmν/λ)λ,

the log-growth of y is exactly λ.
(2) There exists z ∈ xK[[x]]0 with |z|0 ≤ |q

νf |0 = q−ν |f |0 such that, if g =
f−z+q−νσ(z) =

∑
n gnx

n, then g(q) = 0 and gl 6= 0 by the same construction
of the proof of Lemma 4.5. The assertion now follows from (1). 2

4.4 Proof of Proposition 4.2

Replacing K by an extension, we may assume that k is algebraically closed
and that λ = 0, ν > 0 and ν ∈ logq|K

×| by Proposition 4.3 (see the beginning
of proof of Proposition 4.6). We may also assume σ(x) = xq by Theorem 3.3.

Let A =

(
A11 A12

0 A22

)
be a Frobenius matrix of M with respect to the basis

which is compatible with the given extension (i.e., the (1, 1)-part (resp. (2, 2)-

part) corresponds to L (resp. N)) and let G =

(
G11 G12

0 G22

)
be the matrix of

the connection, respectively. The commutativity of Frobenius and connection
(the relation (FC) in section 2.2) gives the relation

1◦
d

dx
A12 +G11A12 +G12A22 = qxq−1(A11σ(G12) +A12σ(G22))

of the (1, 2)-part of the matrix. We may assume that

2◦ A11 = A
(q)
11 , |A11 − 1r|0 ≤ q−1 and hence |G11|0 < q−1 (r is rank of L);

3◦ A22 = A
(q)
22 , |A22 − qν1s|0 ≤ q−ν−1 and |G22|0 < q−1 (s is rank of N);

4◦ A
(q)
12 = 0.

by Proposition 4.6 Note that both inequalities |G11|0 < q−1 and |G11|0 < q−1

above follow from the relation (FC) in section 2.2 for L and N , respectively.
When ν 6= 1, we will first prove A12 = 0 and then prove G12 = 0. When ν = 1,
we will first prove G12 = 0 and then prove A12 = 0. Hence, we will have a
splitting in all cases.
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4.4.1 The case where ν > 1

Suppose ν > 1 (and λ = 0). Assume that A12 6= 0. By 4◦ we have
| ddxA12|0 > |qA12|0 = q−1|A12|0. Then |G11A12|0 < q−1|A12|0 < | ddxA12|0 and

|qxq−1A12σ(G22)|0 < q−1|A12|0 < | ddxA12|0. On the other hand, |G12A22|0 <
|qxq−1A11σ(G12)|0 by ν > 1 since A11 (resp. A22) is a unit matrix (resp. a
unit matrix times qν) modulo mOE (resp. qνmOE) by 2◦ (resp. 3◦). So we
have

d

dx
A12 ≡ qxq−1A11σ(G12) (mod q−logq|

d
dx

A12|0
mOE)

But, on comparing the x-adic order of both sides, this is seen to be impossible
by 2◦, 3◦ and 4◦. Hence A12 = 0. Now the commutativity of Frobenius and
connection (the relation 1◦) is just

G12A22 = qxq−1A11σ(G12).

Since any morphism between pure ϕ-modules with different Frobenius slopes
are 0, we have G12 = 0 by ν > 1.

4.4.2 The case where 0 < ν < 1

Suppose 0 < ν < 1 (and λ = 0). Assuming that A12 6= 0, we will show the
existence of unbounded solutions on the generic disk by applying Lemma 4.8
(2). This is a contradiction to our hypothesis of boundedness of M , and thus
we must have A12 = 0. Since ν 6= 1, we again have G12 = 0 by the slope reason.
Therefore, the extension is split.
Assume that A12 =

∑
n A12,nx

n 6= 0. Since |G12A22|0 = q−ν |G12|0,
|qxq−1A11σ(G12)|0 = q−1|G12|0, and |

d
dxA12|0 > q−1|A12|0 by 3◦, 2◦ and our

hypothesis, respectively, the formula 4◦ gives estimates

5◦ q−1|A12|0 < q−ν |G12|0 = |G12A22|0 = | ddxA12|0 ≤ |A12|0.

We also claim that

6◦ there is a positive integer m with q 6 |m such that | 1m!
dm

dxmA12|0 =
|A12|0

by 1◦. Indeed, let l be an integer such that |A12,l| = |A12|0. When l > 0, we

put m = l. Then the coefficient of 1
m!

dl

dxlA12 in the 0-th term x0 is A12,l and we

have | 1l!
dl

dxlA12|0 = |A12,l| = |A12|0. When l < 0, we put m = q−l + l (remark

that any sufficient large power of q can be replaced by q−l). Then the coefficient

of 1
m!

dm

dxmA12 in the l−m(= −q−l)-th term xl−m is (−1)m
(

m− l − 1
m

)
A12,l

and we have | 1m!
dm

dxmA12|0 = |A12,l| = |A12|0 since (−1)m
(

m− l − 1
m

)
is a

p-adic unit.
In proving the assertion, we will consider the following two cases for A12:
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(i) | ddxA12|0 > q−ν |A12|0.

(ii) | ddxA12|0 ≤ q−ν |A12|0. (Hence we have |G12|0 ≤ |A12|0 by 5◦)

In order to prove the existence of unbounded solutions above, let us reorganize
the matrix representation by using changes of basis ofM , a change of Frobenius
and an extension of scalar field. Let us consider the induced ϕ-∇-module
Mτ = M ⊗E Et[[X − t]]0 over the bounded functions Et[[X − t]]0 at the generic
disk. Since Lτ and Nτ are pure, we have bounded solution matrices Y11 of L
and Y22 of N , that is,

7◦

L :





A11(t)σ(Y11) = Y11τ(A11)
d

dX
Y11 = Y11τ(G11)

Y11 ∈ 1r + q(X − t)Matr(OEt
[[X − t]])

N :





A22(t)σ(Y22) = Y22τ(A22)
d

dX
Y22 = Y22τ(G22)

Y22 ∈ 1s + q(X − t)Mats(OEt
[[X − t]])

by 2◦ and 3◦. Note that τ(f) =
∑

n
1
n! (

dn

dxn f)(t)(X − t)n for f ∈ E and
it is an isometry. Consider a change of basis of Mτ by the matrix Y −1 =(

Y −1
11 0
0 Y −1

22

)
. Then the new Frobenius matrix and the new connection

matrix are as follows:

Aτ = Y Aσ(Y )−1 =

(
A11(t) Y11τ(A12)σ(Y22)

−1

0 A22(t)

)

Gτ = Y d
dXY −1 + Y GY −1 =

(
0 Y11τ(G12)Y

−1
22

0 0

)
.

Let us put Aτ
12 =

∑
n Aτ

12,n(X − t)n (resp. Gτ
12) to be the (1, 2)-part of the

Frobenius matrix Aτ (resp. Gτ ), and define Bτ
12 =

∑
n>0 Aτ

12,n(X− t)n by the
subseries of positive powers. Then we have

8◦ |Bτ
12|0 = |A12|0

9◦ |Gτ
12|0 = |τ(G12)|0 = |G12|0.

by 6◦ and Y ≡ 1r+s (mod q(X − t)OEt
[[X − t]]).

Now we consider a change of Frobenius. At first our Frobenius on E is given
by σ(x) = xq. Hence the induced Frobenius on the generic disk is given by
σ(X − t) = ((X − t) + t)q − tq. Let us replace σ by the Frobenius σ̃ defined by
σ̃(X − t) = (X − t)q. Note that

10◦ σ(X − t)− σ̃(X − t) ≡ qtq−1(X − t) (mod p(X − t)2OEt
[[X − t]]).

Since | 1n!
dn−1

dXn−1G
τ
12|0 ≤ |n|

−1|G12|0 and |pn/n| ≤ |p| for all n ≥ 1, the matrix
H of comparison transform ϑ∗

σ̃,σ(Mτ ) in section 3.1 satisfies the congruence
relation
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11◦

H = 1r+s +

∞∑

n=1

1

n!

(
0 σ( dn−1

dXn−1G
τ
12)

0 0

)
(σ(X − t)− σ̃(X − t))n

≡ 1r+s + qtq−1

(
0 σ(G12(t))
0 0

)
(X − t)

(mod pq−logq|G12|0(X − t)2OEt
[[X − t]])

by 9◦ and 10◦. Our Frobenius matrix of Mτ with respect to the Frobenius σ̃ is

Ã = AτH =

(
A11(t) Aτ

12 +A11(t)H12

0 A22(t)

)

by the definition of the equivalence (Theorem 3.3), whereH12 =
∑

n H12,n(X−

t)n is the (1, 2)-part of H . If we put Ã12 =
∑

n Ã12,n(X − t)n to be the (1, 2)-

part of Ã and put B̃12 =
∑

n>0 Ã12,n(X − t)n, then

12◦ there is a positive integer m with q 6 |m such that |Ã12,m|0 >

q−ν |B̃12|0.

Indeed, in the case (i) for A12, since Ã12,1 = Aτ
12,1+A11(t)H12,1 and |H12,1|0 ≤

q−1|G12|0, we have |Ã12,1|0 = |Aτ
12,1|0 = | ddxA12|0 by 5◦ and 11◦. On the other

hand, |B̃12|0 ≤ max{|Bτ
12|0, |H12|0} ≤ max{|A12|0, |p||G12|0} < qν | ddxA12|0 by

5◦, 8◦ and 11◦ because of our hypothesis (i), | ddxA12|0 > q−ν |A12|0. Hence we
can take m = 1. In the case (ii), we take a positive integer m such as 6◦. Since

|G12|0 ≤ |A12|0 by the hypothesis (ii), we have |B̃12|0 ≤ max{|Bτ
12|0, |H12|0} =

|A12|0 by 8◦ and 11◦.

By Proposition 2.1 we may replace Et by the p-adic completion Êurt of the

maximally unramified extension of Et. Then we may assume that Ã11 = 1r and
Ã22 = qν1s since the solutions of both (1, 1)-part and (2, 2)-part is 1 modulo q

by 2◦ and 3◦. The solution matrix of Mτ ⊗Et
Êurt has a form Z =

(
1r Z12

0 1s

)

satisfying Ã|X=tσ̃(Z) = ZÃ and Z12|X=t = 0. In particular, Z12 satisfies the
relation

σ̃(Z12) = qνZ12 + B̃12.

On applying Lemma 4.8 (2) to Z12, one sees that one of entries of Z12 must be
exactly of log-growth ν by 12◦. Hence the non-vanishing of A12 implies that
M is unbounded.
This completes the proof for the case 0 < ν < 1.

4.4.3 The case where ν = 1

Suppose that ν = 1. Suppose that G12 6= 0. Let us develop G12 =
∑

n G12,nx
n

and let m be the least integer such that |G12,m| = |G12|0. If A12 6= 0, we have
| ddxA12|0 > q−1|A12|0 by 4◦. So the relation 1◦ induces a congruence
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13◦
d

dx
A12 + qG12 ≡ qxq−1σ(G12) (mod q1+logq|G12|0

mOE)

by 2◦ and 3◦. This congruence 13◦ also holds when A12 = 0.
Suppose that m < −1. The least power of x which should appear in the right
hand side of the congruence 13◦ above is qm + q − 1. Since qm + q − 1 < m,
this is precluded by 4◦.
Suppose that m = −1. Then

14◦
τ(G12) =

∞∑

n=0

1

n!
(
dn

dxn
G12)(t)(X − t)n

=

∞∑

n=0

(G12,−1
(−1)n

tn
+ q−logq|G12|0Mat(t1−nV [[t]]0 +mOE))(X − t)n.

Let us calculate the solution matrix of Mτ by using 7◦ as in the previous case.

By changing a basis of Mτ by the invertible matrix Y =

(
Y −1
11 0
0 Y −1

22

)
as

before, our differential equation becomes

d

dX

(
1 Z
0 1

)
=

(
1 Z
0 1

)(
0 Y11τ(G12)Y

−1
22

0 0

)
.

in Z, that is, d
dXZ = Y11τ(G12)Y

−1
22 . Since all the coefficients of all the power

series which appear on the entries of Y11τ(G12)Y
−1
22 do not vanish modulo

q−logq|G12|0
mOE by 7◦ and 14◦, at least one of entries of Z is exactly of log-

growth 1. This contradicts to our hypothesis of boundness of M . Hence,
m 6= −1.
Suppose that m > 0. Then we have

G12 ≡ −q
−1x−1

(
x d
dxA12 + σ(x d

dxA12) + σ2(x d
dxA12) + · · ·

)

(mod q−logq|G12|0
mOE)

by 4◦ and 13◦. The case where A12 = 0 is impossible since G12 6= 0. If
A12 6= 0, then we have a solution exactly of log-growth 1 on the generic disk by
the similar construction in the case m = −1. This contradicts our hypothesis.
Therefore, we have G12 = 0 in any case.
Now we prove A12 = 0. Suppose that A12 6= 0. Then the relation 1◦ is

d

dx
A12 +G11A12 = qxq−1A12σ(G22).

This is impossible by 2◦, 3◦ and 4◦. Hence, A12 = 0.
This completes the proof of Proposition 4.2. 2

Remark 4.9 There is another proof of Proposition 4.2: one can reduce Propo-
sition 4.2 to the case where q = p, that is, the Frobenius σ is a p-Frobenius.
Then, in the proof of the case 0 < ν < 1, it is enough to discuss only in the
case | ddxA12|0 = |A12|0.
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5 PBQ ϕ-∇-modules

5.1 Definition of PBQ ϕ-∇-modules

Definition 5.1 (Definition of “PBQ” ϕ-∇-modules)

(1) A ϕ-∇-module M over E is said to be pure of bounded quotient (called
PBQ for simplicity) if M/M0 is pure as a ϕ-module.

(2) A ϕ-∇-module M over K[[x]]0 is said to be pure of bounded quotient (called
PBQ for simplicity) if the generic fiber Mη of M is PBQ as a ϕ-∇-module
over E.

The notion “PBQ” depends only on the Frobenius slopes of the bounded quo-
tient of the generic fiber of ϕ-∇-modules. As we saw in Theorem 4.1, the
bounded quotient of the generic fiber always admits a splitting by Frobenius
slopes when it has different slopes.

Example 5.2 (1) A bounded ϕ-∇-module M over E is PBQ if and only if
M is pure as a ϕ-module. In particular, any ϕ-∇-module M over E of
rank 1 is PBQ.

(2) Any ϕ-∇-module M over E of rank 2 which is not bounded is PBQ [CT09,
Theorem 7.1].

(3) Let us fix a Frobenius on σ with σ(x) = xq. Let M be a ϕ-∇-module over
K[[x]]0 with a basis (e1, e2, e3) such that the Frobenius matrix A and the
connection matrix G are defined by

A =




1 −q1/2x −qx

0 q1/2 0
0 0 q


 , G =




0

∞∑

n=0

qn/2xqn−1
∞∑

n=0

xqn−1

0 0 0
0 0 0


 .

Then Mη is not bounded and M is not PBQ. Indeed, the K[[x]]0-submodule
L generated by e1 is a ϕ-∇-submodule of M such that the quotient (M/L)η
is bounded and (M/L)η is not pure. On the other hand the dual M∨ of
M is PBQ.

Proposition 5.3 Any quotient of PBQ ϕ-∇-modules over E (resp. K[[x]]0) is
PBQ.

Proof. Let M be a PBQ ϕ-∇-module over E and let M ′ be a quotient of M .
The assertion follows from that the natural morphism M/M0 → M ′/(M ′)0 is
surjective by [CT09, Corollary 3.5]. 2
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5.2 Existence of the maximally PBQ ϕ-∇-submodules over E

Proposition 5.4 Suppose that the residue field k of V is perfect. Let M be
a ϕ-∇-module over E with highest Frobenius slope λmax and let N ′ be a ϕ-∇-
submodule of M/Sλmax−(M). Then there is a unique ϕ-∇-submodule N of M
such that N is PBQ and the natural morphism N/N0 → M/Sλmax−(M) gives
an isomorphism between N/N0 and N ′. When N ′ = M/Sλmax−(M), we call
the corresponding N the maximally PBQ submodule of M .

Proof. First we prove the uniqueness of N . Let N1 and N2 be a PBQ sub-
module of M such that both natural morphisms N1/N

0
1 → M/Sλmax−(M) ←

N2/N
0
2 give isomorphisms with N ′. Let N be the image of N1 ⊕ N2 →

M (a, b) 7→ a+b. Then N is PBQ by Proposition 5.3. Since N1/N
0
1 ⊕N2/N

0
2 →

N/N0 is surjective by [CT09, Proposition 3.6], the natural morphism N/N0 →
M/Sλmax−(M) gives an isomorphism with N ′. If N1 (resp. N2) is not N , then
the quotient N/N1 (resp. N/N2) has a bounded solution at the generic disk
whose Frobenius slope is different from λmax. But this is impossible because
N is PBQ. Hence N = N1 = N2.
Now we prove the existence of N . We use the induction on the dimension of
M . Let f : M → M/M0 be a natural surjection. Since M/M0 is bounded,
M/Sλmax−(M) is a direct summand of M/M0 by the maximality of slopes by
Theorem 4.1. Put L = f−1(N ′). If L is PBQ, then one can put N = L. If L is
not PBQ, then L is a proper submodule of M and there is a PBQ submodule
L′ of L such that L′/(L′)0 ∼= L/Sλmax−(L) = N ′ by the induction hypothesis.

2

Corollary 5.5 Suppose that the residue field k of V is perfect. Let M be a
ϕ-∇-module over E. Then there is a unique filtration 0 = P0(M) ( P1(M) (
· · · ( Pr(M) = M of ϕ-∇-modules over E such that Pi(M)/Pi−1(M) is the
maximally PBQ submodule of M/Pi−1(M) for any i = 1, · · · , r. We call
{Pi(M)} the PBQ filtration of M .

5.3 Existence of the maximally PBQ ϕ-∇-submodules over K[[x]]0

Theorem 5.6 Suppose that the residue field k of V is perfect. Let M be a
ϕ-∇-module over K[[x]]0. Then there is a unique ϕ-∇-submodule N of M over
K[[x]]0 such that the generic fiber Nη of N is the maximally PBQ submodule of
the generic fiber Mη of M . We call N the maximally PBQ submodule of M .

Proof. The proof of uniqueness of the maximally PBQ submodules is same
to the proof of Proposition 5.4.
We prove the existence of the maximally PBQ submodules by induction on the
rank of M . If M is of rank 1, then the assertion is trivial. For general M ,
if M is PBQ, then there is nothing to prove. Suppose that M is not PBQ.
Then there is a direct summand Lη of Mη/M

0
η such that Lη is pure with the

Frobenius slope which is less than the highest slope λmax of M by Theorem
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4.1. Consider the composite of natural morphisms M → Mη/M
0
η → Lη. It

is not injective by Lemma 5.7 below. Put M ′ to be the kernel. Then M ′ is
a ϕ-∇-submodule of M such that M ′

η/Sλmax
(M ′

η)
∼= Mη/Sλmax

(Mη). By the
induction hypothesis there is a maximally PBQ submodule N of M ′ which
becomes the maximally PBQ submodule N of M . 2

Lemma 5.7 Suppose that the residue field k of V is perfect. Let M be a ϕ-
module over K[[x]]0 such that the highest Frobenius slope of the generic fiber
Mη of M is λmax. Suppose that there exists an injective K[[x]]0-homomorphism
f : M → Lη which is ϕ-equivariant, i.e., ϕ ◦ f = f ◦ ϕ for a pure ϕ-module Lη

over E. Then the Frobenius slope of Lη is λmax.

Proof. In [dJ98, Corollary 8.2] A.J. de Jong proved this assertion when Lη is
a generic fiber of a rank 1 pure ϕ-∇ module L over K[[x]]0. (Indeed, he proved
a stronger assertion.) We give a sketch of the proof which is due to [dJ98,

Propositions 5.5, 6.4 and 8.1]. Our E (resp. E†, resp. Ẽ , resp. Ẽ† introduced
below) corresponds to Γ (resp. Γc, resp. Γ2, resp. Γ2,c) in [dJ98]. We also

remark that Ẽ† is the extended bounded Robba ring R̃bd in [Ke08, 2.2].
We may assume that the residue field k of V is algebraically closed and all
slopes of M are contained in the value group of logq|K

×|. We may also assume
that σ(x) = xq by Theorem 3.3. Let us define K-algebras

Ẽ =




∑

n∈Q

anx
n

∣∣∣∣∣∣

an ∈ K, supn|an| <∞, |an| → −∞ (n→ −∞),
{n | |an| ≥ α} is a well-ordered set with respect to
the order ≤ for anyα ∈ R.





Ẽ† =





∑

n∈Q

anx
n ∈ Ẽ

∣∣∣∣∣∣
|an|η

n → 0 (n→ −∞) for some 0 < η < 1.



 .

Both Ẽ and Ẽ† are discrete valuation fields such that both ring of integers have
a same residue field

k((xQ)) =





∑

n∈Q

anx
n

∣∣∣∣∣∣
an ∈ k, {n | an 6= 0} is a well-ordered set
with respect to the order ≤ .



 ,

which includes an algebraic closure of k((x)) [Ke01], and that the p-adic com-

pletion of Ẽ† is Ẽ . Ẽ is naturally an E-algebra and σ naturally extends to Ẽ by
σ(
∑

n anx
n) =

∑
n σ(an)x

qn. Put

E† = Ẽ† ∩ E .

Then E† is stable under σ and the K-derivation d/dx. We also denote by OẼ†

the ring of integer of Ẽ†.
By explicit calculations we have the following sublemmas.
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Sublemma 5.8 For 0 < η < 1 and for
∑

n∈Q

anx
n ∈ Ẽ†, let us consider a

condition:

(∗)η : supn|an|max{ηn, 1} ≤ 1.

If f and g in Ẽ† satisfy the condition (∗)η, then so are f+g and fg. Moreover,
if f =

∑
n anx

n satisfies the condition (∗)η and |a0| = 1, then so is f−1.

Note that, if η < µ, then the condition (∗)η implies the condition (∗)µ.

Sublemma 5.9 (1) Let A = 1+B be a square matrix such that 1 is the unit
matrix and all entries of B contained in m

nOẼ† for a positive integer n.
Suppose that all entries of A satisfy the condition (∗)η in Sublemma 5.8.
Then there is a matrix Y = 1 + Z with Aσ(Y ) = Y such that all entries
of Z are contained in m

nOẼ† and satisfy the condition (∗)ηq .

(2) Let C be a matrix such that all entries are contained in m
nOẼ† for a

nonnegative integer n and satisfy the condition (∗)η. Then there is a
matrix Z satisfying σ(Z)−Z = C such that all entries of Z are contained
in m

nOẼ† and satisfy the condition (∗)ηq .

Proof. (1) follows from (2) by considering a congruence equation Aσ(Y ) ≡
Y (modmlOẼ†) inductively on l.

(2) Since the residue field k of V is perfect, σ is bijective. Put C =∑
n Cnx

n = C− + C0 + C+, where they are subseries of negative powers,
a constant term, and subseries of positive powers, respectively. The series
Z− =

∑
n<0

∑∞
i=1 σ−i(Cn)x

n/qi converges and all entries of Z− satisfies the
condition (∗)ηq , and the equation σ(Z−) − Z− = C− holds. Since k is al-
gebraically closed, there is a matrix Z0 over V with |Z0| ≤ |C0| such that
σ(Z0) − Z0 = C0. The series Z+ = −

∑∞
i=0 σ(C+) converges and satisfies

σ(Z+)− Z+ = C+. Hence, Z = Z− + Z0 + Z+ is the desired solution. 2

If N † is a ϕ-∇-submodule of M ⊗K[[x]]0 E
† over E†, then there is a ϕ-∇-

submodule N of M over K[[x]]0 with N ⊗K[[x]]0 E
† ∼= N by [dJ98, Proposition

6.4]. Hence, the induced morphism M ⊗K[[x]]0 E
† → Lη is also injective. More-

over, since Ẽ† ⊗E† E → Ẽ is injective (the similar proof of [dJ98, Proposition

8.1] works), the induced morphism M ⊗K[[x]]0 Ẽ
† → Lη ⊗E Ẽ is again injective.

Let λ1 < · · · < λr(= λmax) be Frobenius slopes of Mη. One can prove that

there exists an increasing filtration 0 = M̃0 ( M̃1 ( · · · ( M̃r = M ⊗K[[x]]0 Ẽ
†

of ϕ-modules over Ẽ† such that (M̃i/M̃i−1)⊗Ẽ† Ẽ is pure of slope λr−i+1. This
existence of filtration of opposite direction corresponds to Proposition 5.5 in
[dJ98]. Indeed, since the residue field k((xQ)) includes an algebraic closure

of k((x)), there is a basis of M ⊗K[[x]]0 Ẽ
† such that the Frobenius matrix of

Documenta Mathematica 16 (2011) 33–69



Log-growth Filtration and Frobenius Slope Filtration 59

M ⊗K[[x]]0 Ẽ
† has a form




qλ11
. . .

qλr1


+ (a square matrix with entries in m

nOẼ)

by Dieudonné-Manin classification of ϕ-modules and the density of Ẽ† in Ẽ .
Here qλ is a element ofK with logq|q

λ| = −λ, 1 is the unit matrix with a certain
size (the first matrix is a diagonal matrix), and n is sufficiently large. One can

find a basis of M ⊗K[[x]]0 Ẽ
† such that the Frobenius matrix of M ⊗K[[x]]0 Ẽ

† is
a lower triangle matrix 


qλ11 0

. . .

∗ qλr1




by Sublemmas 5.8 and 5.9. Hence, one has a filtration of opposite direction.
Since M̃1 is pure of slope λr = λmax and the inclusion M̃1 ⊂ Lη ⊗E Ẽ is ϕ-
equivariant, the slope of Lη must be λmax. 2

Corollary 5.10 Suppose that the residue field k of V is perfect. Let M be a ϕ-
∇-module over K[[x]]0. Then there is a unique filtration 0 = P0(M) ( P1(M) (
· · · ( Pr(M) = M as ϕ-∇-modules over K[[x]]0 such that Pi(M)/Pi−1(M) is
the maximally PBQ submodule of M/Pi−1(M) for any i = 1, · · · , r. We call
{Pi(M)} the PBQ filtration of M .

Example 5.11 Let M be a ϕ-∇-module over K[[x]]0 which is introduced in
Example 5.2 (3). If P1(M) is a ϕ-∇-submodule of M over K[[x]]0 generated
by e1 and e3, the sequence 0 = P0(M) ( P1(M) ( P2(M) = M is the PBQ
filtration of M .

6 Log-growth and Frobenius slope for HPBQ ϕ-∇-modules over

K[[x]]0

6.1 Log-growth for HPBQ ϕ-∇-modules

Definition 6.1 (1) A ϕ-∇-module M over K[[x]]0 is horizontal of bounded
quotient (HBQ for simplicity) if there is a quotient N of M as a ϕ-∇-
module over K[[x]]0 such that the canonical surjection induces an isomor-
phism Mη/M

0
η
∼= Nη at the generic fiber.

(2) A ϕ-∇-module M over K[[x]]0 is horizontally pure of bounded quotient
(HPBQ for simplicity) if M is PBQ and HBQ.

Example 6.2 (1) A bounded ϕ-∇-module M over K[[x]]0 is HBQ. A bounded
ϕ-∇-module M over K[[x]]0 is HPBQ if and only if Mη is pure as a ϕ-
module.
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(2) Let M be a ϕ-∇-module M over K[[x]]0 of rank 2 which arises from the
first crystalline cohomology of a projective smooth family E of elliptic
curves over Spec k[[x]]. Then M is HBQ if and only if either (i) E is
a non-isotrivial family over Spec k[[x]] and the special fiber Es of E is
ordinary or (ii) E is an isotrivial family over Spec k[[x]]. In the case (i)
M is HPBQ, but in the case (ii) M is HPBQ if and only if E is an
isotrivial family of supersingular elliptic curves.

(3) Let M be a ϕ-∇-module over K[[x]]0 which is introduced in Example 5.2
(3). Then M is HBQ but is not HPBQ. The dual M∨ of M is HPBQ.

Proposition 6.3 Let M be a ϕ-∇-module over K[[x]]0. Then M is HBQ if
and only if

dimK V (M)/V (M)0 = dimEMη/M
0
η .

Moreover, when M is HBQ, the natural pairing M ⊗K Sol0(M) → K[[x]]0
induces an isomorphism

Mη/M
0
η
∼= V (M)/V (M)0 ⊗K E

as ϕ-∇-modules.

Proof. Suppose that M is HBQ. Let N be the quotient as in Defi-
nition 6.1 (1). Since Nη is bounded, we have V (N)0 = 0 by Christol’s
transfer theorem (see [CT09, Proposition 4.3]) and dimK V (M)/V (M)0 ≥
dimK V (N)/V (N)0 = rankK[[x]]0 N = dimEMη/M

0
η . On the other hand, one

knows an inequality dimK V (M)/V (M)0 ≤ dimEMη/M
0
η by [CT09, Proposi-

tion 4.10]. Hence, we have an equality dimK V (M)/V (M)0 = dimEMη/M
0
η .

Now we prove the inverse. The natural pairing M ⊗K Sol0(M) → K[[x]]0 in-
duces the surjection M → V (M)/V (M)0⊗K K[[x]]0. If dimK V (M)/V (M)0 =
dimEMη/M

0
η , we have an isomorphism Mη/M

0
η
∼= V (M)/V (M)0 ⊗K E since

V (M)/V (M)0 ⊗K E is bounded. 2

Since any quotient of bounded ϕ-∇-modules over E is again bounded, the
proposition below follows from the chase of commutative diagrams.

Proposition 6.4 Any quotient of HBQ ϕ-∇-modules over K[[x]]0 is HBQ. In
particular, any quotient of HPBQ modules is HPBQ.

Proof. We may assume that the residue field of V is algebraically closed and
qλmax ∈ K. Since M is HBQ, there is a surjection M → V (M)/V (M)0 ⊗K

K[[x]]0 by Propoition 6.3 whose kernel is denoted by L. Then M0
η = Lη. If

f : M → N be the given surjection, N/f(L) is a quotient of V (M)/V (M)0⊗K

K[[x]]0 and hence a direct sum of copies of (K[[x]]0, q
λσ, d) for some λ. Since f

gives a surjection from M0
η to N0

η by [CT09, Proposition 3.6], we have

dimK V (N)/V (N)0 ≥ rankK[[x]]0 N/f(L) = Nη/N
0
η .
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On the other hand, dimK V (N)/V (N)0 ≤ dimE Nη/N
0
η by [CT09, Proposition

4.10]. Hence dimK V (N)/V (N)0 = dimE Nη/N
0
η . The rest follows from Propo-

sition 5.3. 2

Note that the notion PBQ is determined only by the generic fiber. On the
other hand, for ”HPBQ”, the bounded quotient is horizontal.

Theorem 6.5 Let M be a ϕ-∇-module M over K[[x]]0 which is HPBQ. Then
the conjecture LGFK[[x]]0 (see 2.5) holds for M .

Proof. We have only to prove the conjecture LGFK[[x]]0 (2) for M .
Then the property of Frobenius slopes implies the conjecture the conjecture
LGFK[[x]]0 (1) for M . We may assume that the residue field of V is alge-
braically closed and all Frobenius slopes of V (M) are contained in the valued
group logq|K

×| by Proposition 2.1. We may also assume that our Frobenius
σ is defined by σ(x) = xq by Theorem 3.3. Let us denote by λmax the high-
est Frobenius slope of Mη (= the highest Frobenius slope of V (M)). Let
0 = M0 ( M1 ( · · · ( Mr = M be a filtration of M as ϕ-∇-modules over
K[[x]]0 such that Mi/Mi−1 (i = 1, · · · , r) is irreducible (i.e., it has no nontrivial
ϕ-∇-submodule over K[[x]]0). We will prove the induction on r. If r = 1, then
M ∼= (K[[x]]0, q

λmaxσ, d) and the assertion is trivial.
Now suppose r > 1. We may also assume dimK V (M)/V (M)0 =
1, hence Mr/Mr−1

∼= (K[[x]]0, q
λmaxσ, d). Indeed, suppose that s =

dimK V (M)/V (M)0 > 1. By our assumption, there is a ϕ-∇-submodule L′

over K[[x]]0 such that the highest Frobenius slope of L′ is λmax with multi-
plicity 1 (note that L′ is Mr−s+1). Take the maximally PBQ submodule L
of L′. Then L is HPBQ such that the highest Frobenius slope is λmax with
multiplicity 1. Since both highest Frobenius slopes of L and M/L are λmax, the
assertion follows from the induction hypothesis by Propositions 2.6 and 6.4.
Since all Frobenius slopes of (Mr−1)η are less than λmax, one can take a basis

e1, · · · , es of M such that the Frobenius matrix A =

(
A1 B
0 qλmax

)
(A1 is

the Frobenius matrix of Mr−1) satisfies (i) all entries of A1 are contained in
K[[x]]0∩x

qK[[xq]] and (ii) all entries ofB are contained in xK[[x]]0\x
qK[[xq]]∪{0}

by Proposition 4.7. Moreover B 6= 0 by Lemma 6.6 below since M is PBQ. Let
G be the matrix of connection of M . Then the identification

Sol(M) =

{
y ∈ AK(0, 1−)

∣∣∣∣
d

dx
y = yG

}

is given by f 7→ (f(e1), · · · , f(es)). The inclusion relation in Theorem 2.3 for
the solution space is

Solλ(M) ⊃ Sλ−λmax
(Sol(M)).

Then it is sufficient to prove the inclusion is equal for all λ. The ϕ-module is a
direct sum of 1-dimensional ϕ-spaces, on which ϕ acts by qδσ for some rational
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number δ such that λmax − δ is a Frobenius slope of M , by our assumption of
K. Let f ∈ Solλ(M) with ϕ(f) = qδf . Then the restriction of f on Mr−1 gives
a (ϕ, d

dx)-equivariant morphism

Mr−1 → (AK(0, 1−), q−δσ, d).

The kernel L of f is a ϕ-∇-module over K[[x]]0 and f is a solution of M/L of
log-growth λ.

Suppose that L 6= 0. Then the length of M/L is smaller than M and M/L
is HPBQ by Proposition 6.4. Considering f as a solution of M/L, we have
δ ≤ λ− λmax by the hypothesis of induction.

Suppose that L = 0. The Frobenius relation ϕ(f) = qδf is equivalent to

q−δσ(f(e1), · · · , f(es)) = (f(e1), · · · , f(es))A.

By the assumption of A1 we have f(ei) ∈ AK(0, 1−) ∩ xqK[[xq]]. Let us focus
on the s-th entry, then it is

q−δσ(f(es)) = qλmaxf(es) + (f(e1), · · · , f(es−1))B.

Since the highest Frobenius slope of Mr−1 is less than λmax, the log-growth
of the restriction of f on Mr−1 is of log-growth less than λmax + δ, and
so is (f(e1), · · · , f(es−1))B. Since f is injective, (f(e1), · · · , f(es−1))B ∈
AK(0, 1−) \ xqK[[xq]] is not 0. Hence, f(es) is exactly of log-growth λmax + δ
by Lemma 4.8 (1). This provides an inequality λmax + δ ≤ λ, and we have
δ ≤ λ− λmax.

Therefore, f ∈ Sλ−λmax
(Sol(M)). This completes the proof of Theorem 6.5.

2

Lemma 6.6 Let 0 → L → M → N → 0 be an exact sequence of ϕ-∇-modules
over K[[x]]0. If the exact sequence is split as ϕ-modules, then it is split as
ϕ-∇-modules.

Proof. Let A =

(
A1 B
0 A2

)
and G =

(
G1 H
0 G2

)
be the matrices of

Frobenius and connection, respectively. We should prove that B = 0 implies
H = 0. It is sufficient to prove the assertion above as AK(0, 1−)-modules with
Frobenius and connection. Solving the differential modules L and N , we may
assume that A1 and A2 are constant regular matrices and G1 = G2 = 0. Then
the horizontality of Frobenius structure means he relation

HA2 = qxq−1A1σ(H).

Then we have H = 0 by comparing the x-adic order of both sides. 2
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6.2 Equislope ϕ-∇-modules over K[[x]]0

Definition 6.7 A ϕ-∇-module M over K[[x]]0 is equislope if there is an in-
creasing filtration {Sλ(M)}λ∈R of ϕ-∇-module over K[[x]]0 such that Sλ(M)⊗E
gives the Frobenius slope filtration of the generic fiber Mη of M . We also call
{Sλ(M)}λ∈R the Frobenius slope filtration of M .

By [Ka79, 2.6.2] (see [CT09, Theorem 6.21]) we have

Proposition 6.8 A ϕ-∇-module M over K[[x]]0 is equislope if and only if both
the special polygon and generic polygon of Frobenius slopes of M coincides with
each other.

Corollary 6.9 Any subquotients, direct sums, extensions, tensor products,
duals of equislope ϕ-∇-modules over K[[x]]0 are equislope.

Proposition 6.10 Let M be an equislope ϕ-∇-module over K[[x]]0.

(1) M is HBQ. In particular, if M is PBQ, then M is HPBQ.

(2) If V (M)/V (M)0 is pure as a ϕ-module, then M is HPBQ.

Proof. (1) We may assume that the residue field of V is algebraically closed
and all slopes of Mη is contained in the value group logq|K

×| of K× by Propo-
sition 2.1. Let us take a ϕ-∇-submodule L such that its generic fiber Lη is M0

η .
Such an L exists by Lemma 6.11 below. Since (M/L)η ∼= Mη/Lη is bounded,
M is HBQ by definition.
(2) The assertion follows from (1) and Proposition 6.3. 2

Lemma 6.11 Let M be an equislope ϕ-∇-module over K[[x]]0. Suppose that the
residue field of V is algebraically closed and all slopes of Mη are contained in
the valued group logq|K

×|. The map taking generic fibers gives a bijection from
the set of ϕ-∇-submodules of M to the set of ϕ-∇-submodules of Mη.

Proof. Since the functor from the category ϕ-∇-module over K[[x]]0 to the
category ϕ-∇-module over E is fully faithful, it is sufficient to prove the surjec-
tivity [dJ98, Theorem 1.1].
We may assume that σ(x) = xq by Theorem 3.3. We use the induction on
the number of Frobenius slopes of M in order to prove the existence of a
submodule N over K[[x]]0 for a given submodule Nη over E . Suppose that M
is pure of slope λ. There are a basis e1, · · · , er of M such that the Frobenius
matrix is qλ1r since M is bounded. Let Nη be a ϕ-∇-submodule of Mη over
E which is generated by (e1, · · · , er)P for P ∈ Matrs(E) with s = dimC Nη.
Since Nη is a ϕ-submodule, there is a B ∈ GLs(E) such that qλσ(P ) = PB.
Since rank(P ) = s, there is a regular minor Q of P of degree s such that
qλσ(Q) = QB. If one puts R = PQ−1 ∈ Matrs(E), then σ(R) = R. Hence,
R ∈ Matrs(K). Since (e1, · · · , er)R is a basis of Nη such that (e1, · · · , er)R
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are included in M , the submodule N is given by the K[[x]]0-submodule of M
generated by (e1, · · · , er)R.

Let λ1 be the first slopes of Mη. By the induction hypothesis there are a ϕ-
∇-submodule N1 of Sλ1

(M) such that the generic fiber (N1)η of N1 is Nη ∩
Sλ1

(Mη) and a ϕ-∇-submodule N2 of M/Sλ1
(M) such that the generic fiber

of N2 is Nη/(Sλ1
(Mη) ∩Nη) = Nη/(N1)η. Let N3 be the inverse image of N2

by the surjection M/N1 → M/Sλ1
(M). Since the intersection of Nη/(N1)η

and Sλ1
(Mη)/(N1)η is 0 in Mη/(N1)η, (N3)η is a direct sum of Nη/(N1)η

and Sλ(Mη)/(N1)η. By applying the fully faithfulness of the functor from the
category of ϕ-∇-modules over K[[x]]0 to the category of ϕ-∇-modules over E
[dJ98, Theorem 1.1], there is a direct summand N4 of N3 as ϕ-∇-module over
K[[x]]0 such that the generic fiber of N4 is Nη/(N1)η. Then the inverse image
N of N4 by the surjection M →M/N1 is our desired one. 2

Theorem 6.12 The conjecture LGFK[[x]]0 (see 2.5) holds for any equislope
and PBQ ϕ-∇-module over K[[x]]0.

Proof. The assertion follows from Theorem 6.5 and Proposition 6.10 (1). 2

7 Log-growth filtration and Frobenius filtration at the generic

point

7.1 The log-growth of PBQ ϕ-∇-modules over E

Theorem 7.1 The conjecture LGFE (see 2.4) holds for any PBQ ϕ-∇-module
over E.

Proof. Let M be a PBQ ϕ-∇-module over E such that λmax is the highest
Frobenius slope of M , and let us consider a ϕ-∇-module Mτ = M⊗E Et[[X−t]]0
over the Et-algebra Et[[X − t]]0 of bounded functions on the generic disk. Then
Mτ is equislope since {(Sλ(M))τ} gives a Frobenius slope filtration of Mτ .
Moreover, since M is PBQ, Sol0(M,AEt

(t, 1−)) is a pure ϕ-module. Hence
V (Mτ )/V (Mτ )

0 is pure, and Mτ is HPBQ by Proposition 6.10 (2). Applying
Theorem 6.5 to Mτ , we have

dimE M/Mλ = dimEt
Solλ(M,AEt

(t, 1−)) = dimEt
V (Mτ )/V (Mτ )

λ

= dimEt
V (M∨

τ )− dimEt
(Sλ−λmax

(V (M∨
τ )))

⊥

= dimE M
∨ − dimE (Sλ−λmax

(M∨))⊥

= dimE M
∨/(Sλ−λmax

(M∨))⊥

for any λ. Hence, Mλ = (Sλ−λmax
(M∨))⊥ by Theorem 2.3. Therefore, the

conjecture LGFE holds for M . 2
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7.2 Rationality of breaks of log-growth filtrations

Theorem 7.2 Let M be a ϕ-∇-module over E and let λ be a break of log-
growth filtration of M , i.e., Mλ− ) Mλ+. Then λ is rational and Mλ = Mλ+.
In other words, the conjecture LGFE (1) (see 2.4) holds for any ϕ-∇-modules
over E.

Proof. We may assume that the residue field k of V is perfect by Proposition
2.1. Suppose that λmax be the maximal Frobenius slope of M . If M is PBQ,
then Mλ = (Sλ−λmax

(M∨))⊥ = S(λmax−λ)−(M) for any λ by Theorem 7.1.
Then we have

Mλ+ = ∪µ>λ S(λmax−µ)−(M) = ∪µ>λ S(λmax−µ)(M) = S(λmax−λ)−(M) = Mλ.

If λ is a break of log-growth filtration, then

Sλmax−λ(M) = S(λmax−λ)+(M) = Mλ− ) Mλ = S(λmax−λ)−(M)

and λ is also a Frobenius slope filtration. Hence λ is rational.

For a generalM , we use the induction on the length of the PBQ filtration ofM .
Let L be the maximally PBQ submodule of M and suppose N = M/L. Then
we have the assertion by Proposition 2.6 (1), the PBQ case and the induction
hypothesis on L and N . 2

Proposition 7.3 Suppose that the residue field of V is perfect. Let M be a ϕ-
∇-module over K[[x]]0 and let λ be a break of log-growth filtration of V (M), i.e.,
V (M)λ− ) V (M)λ+, and let {Pi(M)} be the PBQ filtration of M . Suppose that
the conjecture LGFK[[x]]0 (2) (see 2.5) holds for all Pi(M)/Pi−1(M). Then λ

is rational and V (M)λ = V (M)λ+. In particular, the conjecture LGFK[[x]]0 (2)
implies the conjecture LGFK[[x]]0 (1) for any ϕ-∇-modules over K[[x]]0.

Proof. The proof is similar to that of Theorem 7.2 by replacing Proposition
2.6 (1) by Proposition 2.6 (2). 2

8 Toward Dwork’s conjecture LGFDw

8.1 The comparison at the special point and Dwork’s conjecture

LGFDw

Theorem 8.1 The conjecture LGFK[[x]]0 (2) (see 2.5) implies the conjecture
LGFDw (see 2.7), that is, the special log-growth polygon lies above the generic
log-growth polygon (and they have the same endpoints).

The theorem above follows from the proposition below by Proposition 2.1.
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Proposition 8.2 Suppose that the residue field k of V is perfect. Let M be a
ϕ-∇-module over K[[x]]0 and let {Pi(M)} be the PBQ filtration of M . Suppose
that the conjecture LGFK[[x]]0 (2) (see 2.5) holds for all Pi(M)/Pi−1(M). Then
the special log-growth polygon of M lies above the generic log-growth polygon of
M (and they have the same endpoints).

Proof. For the PBQ ϕ-∇-modules arising from the PBQ filtration of M ,
the log-growth polygons at the generic (resp. special) fiber coincides with the
Newton polygon of Frobenius slopes of the dual at the generic (resp. special)
fiber under the suitable shifts of Frobenius actions by Theorem 7.1 (resp. our
hypothesis). The assertion follows from Proposition 2.6, Lemma 8.3 below
and the fact that the special Newton polygon of Frobenius slopes is above the
generic Newton polygon of Frobenius slopes and they have the same endpoints.

2

Lemma 8.3 Let 0 → L → M → N → 0 be an exact sequence of ϕ-∇-modules
over K[[x]]0 such that the induced sequences

0 → Lη/L
λ
η → Mη/M

λ
η → Nη/N

λ
η → 0

0 → V (L)/V (L)λ → V (M)/V (M)λ → V (N)/V (N)λ → 0

on both the generic fiber and the special fiber are exact for any λ.

(1) If the special log-growth polygon lies above the generic log-growth polygon
(the endpoints might be different) for both L and N , then the same holds
for M .

(2) If the special log-growth polygon and the generic log-growth polygon have
the same endpoints for both L and N , then the same holds for M .

(3) Suppose that the special log-growth polygon lies above the generic log-
growth polygon for both L and N . Then both the special and the generic
log-growth polygons coincide with each other for M if and only if the same
hold for L and N .

Proof. Let r be the rank of M . Let λ1 ≤ λ2 ≤ · · · ≤ λr be breaks of
log-growth filtration of Mη with multiplicities, and put b0(Mη) = 0 and

bj(Mη) = λ1 + · · ·+ λj

for 1 ≤ j ≤ r. Then the generic log-growth polygon of M is a polygon which
connects points (0, b0(Mη)), (1, b1(Mη)), · · · , (r, br(Mη)) by lines. We also de-
fine bj(V (M)) for the special log-growth of M . Then the exactness for any λ
implies the equality

bj(Mη) = min

{
bi(Lη) + bk(Nη)

∣∣∣∣
0 ≤ i ≤ rankL, 0 ≤ k ≤ rankN,

i+ k = j

}
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for all 0 ≤ j ≤ r, and the same holds for the special log-growth. The special
log-growth polygon lies above the generic log-growth polygon for M if and only
if bj(Mη) ≤ bj(V (M)) for all j, the special log-growth polygon and the generic
log-growth polygon have the same endpoints for M if and only if br(Mη) =
br(V (M)), and both the special and the generic log-growth polygons coincide
with each other for M if and only if bj(Mη) = bj(V (M)) for all j. Hence we
have the assertions. 2

Remark 8.4 If L is supposed to be HPBQ in the short exact sequence of the
previous lemma, then the induced sequences are automatically exact for all λ:
in fact one has Theorems 7.1 and 6.5 and can apply Proposition 2.6.

Remark 8.5 If one assumes that the conjecture LGFK[[x]]0 (2) (see 2.5) for
any PBQ ϕ-∇-module over K[[x]]0 of rank ≤ r, then the proofs of Proposition
7.3 and Theorem 8.1 works for any ϕ-∇-module over K[[x]]0 of rank ≤ r.

8.2 Dwork’s conjecture in the HBQ cases

Lemma 8.6 Let M be a HBQ ϕ-∇-module over K[[x]]0 and let N be a ϕ-∇-
submodule of M over K[[x]]0 which is PBQ. Then N is HPBQ. In particular,
suppose that the residue field of V is perfect and let {Pi(M)} be the PBQ
filtration of M , then Pi(M)/Pi−1(M) is HPBQ for all i.

Proof. We have dimK V (M)/V (M)0 = dimE Mη/M
0
η and

dimK V (M/N)/V (M/N)0 = dimE (M/N)η/(M/N)0η by Proposition 6.3
since the quotient M/N is HBQ by Proposition 6.4. Comparing the in-
duced exact sequence 0 → Nη/N

0
η → Mη/M

0
η → (M/N)η/(M/N)0η → 0

at the generic point by Theorem 7.1 and Proposition 2.6 (1) to the corre-
sponding right exact sequence at the special point, we have an inequality
dimK V (N)/V (N)0 ≥ dimE Nη/N

0
η . On the contrary, we know the inequality

dimK V (N)/V (N)0 ≤ dimE Nη/N
0
η by [CT09, Proposition 4.10]. Hence,

dimK V (N)/V (N)0 = dimE Nη/N
0
η and N is HPBQ.

The rest follows from the first part and Proposition 6.4. 2

Theorem 8.7 Let M be a HBQ ϕ-∇-module over K[[x]]0. Then the conjecture
LGFK[[x]]0 (1) (see 2.5) and the conjecture LGFDw (see 2.7) hold for M .

Proof. The assertions follows from the similar arguments of Theorems 7.2
and 8.1, respectively, by using Theorem 6.5 and Lemma 8.6. 2

8.3 When do the generic and special log-growth polygons coin-

cide?

Theorem 8.8 Let M be a ϕ-∇-module over K[[x]]0. The special log-growth
polygon and the generic log-growth polygon coincide with each other if and only
if M is equislope.
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Proof. We may assume that the residue field of V is algebraically closed by
Proposition 2.1. Let {Pi(M)} be the PBQ filtration of M (Theorem 5.6). Each
condition (i) the coincidence of special and generic log-growth polygons or (ii)
equislope implies that Pi(M)/Pi−1(M) is HPBQ and M/Pi(M) is HBQ for all
i by Propositions 6.3, 6.4, and Lemma 8.6 for (i) and by Corollary 6.9 and
Proposition 6.10 (1) for (ii). Then we can apply Lemma 8.3 (3) inductively on
i by Remark 8.4 and Theorem 8.7. Hence it is sufficient to prove the assertion
when M is HPBQ by Corollary 6.9. Then the coincidence of the log-growth
filtration and the Frobenius slope filtration both at the special point (Theorem
8.7) and at the generic point (Theorem 7.1) implies our desired equivalence.

2

Example 8.9 (1) Let M be a ϕ-∇-module over K[[x]]0 such that Mη is
bounded. Then there is a ϕ-module L over K such that M ∼= L⊗KK[[x]]0
by Christol’s transfer theorem (see [CT09, Proposition 4.3]). Hence, M
is equislope.

(2) Let M be a ϕ-∇-module over K[[x]]0 of rank 2 such that Mη is not
bounded. Then we have identities Mλ = (Sλ−λmax

(M∨))⊥ and V (M)λ =
(Sλ−λmax

(V (M∨)))⊥ for any λ [CT09, Theorem 7.1], where λmax is the
highest Frobenius slope of Mη. Hence the special log-growth polygon and
the generic log-growth polygon coincide with each other if and only if M
is equislope.
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