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Abstract. In a first result, we describe all finitely generated factorial
algebras over an algebraically closed field of characteristic zero that
come with an effective multigrading of complexity one by means of
generators and relations. This enables us to construct systematically
varieties with free divisor class group and a complexity one torus
action via their Cox rings. For the Fano varieties of this type that have
a free divisor class group of rank one, we provide explicit bounds for
the number of possible deformation types depending on the dimension
and the index of the Picard group in the divisor class group. As a
consequence, one can produce classification lists for fixed dimension
and Picard index. We carry this out expemplarily in the following
cases. There are 15 non-toric surfaces with Picard index at most
six. Moreover, there are 116 non-toric threefolds with Picard index
at most two; nine of them are locally factorial, i.e. of Picard index
one, and among these one is smooth, six have canonical singularities
and two have non-canonical singularities. Finally, there are 67 non-
toric locally factorial fourfolds and two one-dimensional families of
non-toric locally factorial fourfolds. In all cases, we list the Cox rings
explicitly.
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Introduction

Let K be an algebraically closed field of characteristic zero. A first aim of
this paper is to determine all finitely generated factorial K-algebras R with an
effective complexity one multigrading R = ⊕u∈MRu satisfying R0 = K; here
effective complexity one multigrading means that with d := dim R we have
M ∼= Zd−1 and the u ∈ M with Ru 6= 0 generate M as a Z-module. Our result
extends work by Mori [23] and Ishida [17], who settled the cases d = 2 and
d = 3.

An obvious class of multigraded factorial algebras as above is given by poly-
nomial rings. A much larger class is obtained as follows. Take a sequence
A = (a0, . . . , ar) of vectors ai ∈ K2 such that (ai, ak) is linearly independent
whenever k 6= i, a sequence n = (n0, . . . , nr) of positive integers and a family
L = (lij) of positive integers, where 0 ≤ i ≤ r and 1 ≤ j ≤ ni. For every
0 ≤ i ≤ r, we define a monomial

fi := T li1
i1 · · ·T

lini

ini
∈ K[Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni],

for any two indices 0 ≤ i, j ≤ r, we set αij := det(ai, aj), and for any three
indices 0 ≤ i < j < k ≤ r, we define a trinomial

gi,j,k := αjkfi + αkifj + αijfk ∈ K[Tij ; 0 ≤ i ≤ r, 1 ≤ j ≤ ni].

Note that the coefficients of gi,j,k are all nonzero. The triple (A, n, L) then
defines a K-algebra

R(A, n, L) := K[Tij ; 0 ≤ i ≤ r, 1 ≤ j ≤ ni] / 〈gi,i+1,i+2; 0 ≤ i ≤ r − 2〉.

It turns out that R(A, n, L) is a normal complete intersection, see Proposi-
tion 1.2. In particular, it is of dimension

dim R(A, n, L) = n0 + . . .+ nr − r + 1.

If the triple (A, n, L) is admissible, i.e., the numbers gcd(li1, . . . , lini
), where

0 ≤ i ≤ r, are pairwise coprime, then R(A, n, L) admits a canonical effective
complexity one grading by a lattice K, see Construction 1.7. Our first result
is the following.

Theorem 1.9. Up to isomorphy, the finitely generated factorial K-algebras
with an effective complexity one grading R = ⊕MRu and R0 = K are

(i) the polynomial algebras K[T1, . . . , Td] with a grading deg(Ti) = ui ∈ Zd−1

such that u1, . . . , ud generate Zd−1 as a lattice and the convex cone on
Qd−1 generated by u1, . . . , ud is pointed,

(ii) the (K × Zm)-graded algebras R(A, n, L)[S1, . . . , Sm], where R(A, n, L)
is the K-graded algebra defined by an admissible triple (A, n, L) and
deg Sj ∈ Zm is the j-th canonical base vector.
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The further paper is devoted to normal (possibly singular) d-dimensional Fano
varietiesX with an effective action of an algebraic torus T . In the case dim T =
d, we have the meanwhile extensively studied class of toric Fano varieties,
see [3], [27] and [4] for the initiating work. Our aim is to show that the above
Theorem provides an approach to classification results for the case dim T =
d− 1, that means Fano varieties with a complexity one torus action. Here, we
treat the case of divisor class group Cl(X) ∼= Z; note that in the toric setting
this gives precisely the weighted projective spaces. The idea is to consider the
Cox ring

R(X) =
⊕

D∈Cl(X)

Γ(X,OX(D)).

The ring R(X) is factorial, finitely generated as a K-algebra and the T -action
on X gives rise to an effective complexity one multigrading ofR(X) refining the
Cl(X)-grading, see [5] and [15]. Consequently, R(X) is one of the rings listed
in the first Theorem. Moreover, X can be easily reconstructed from R(X);
it is the homogeneous spectrum with respect to the Cl(X)-grading of R(X).
Thus, in order to construct Fano varieties, we firstly have to figure out the Cox
rings among the rings occuring in the first Theorem and then find those, which
belong to a Fano variety; this is done in Propositions 1.11 and 2.5.

In order to produce classification results via this approach, we need explicit
bounds on the number of deformation types of Fano varieties with prescribed
discrete invariants. Besides the dimension, in our setting, a suitable invariant
is the Picard index [Cl(X) : Pic(X)]. Denoting by ξ(µ) the number of primes
less or equal to µ, we obtain the following bound, see Corollary 2.2: for any pair
(d, µ) ∈ Z2

>0, the number δ(d, µ) of different deformation types of d-dimensional
Fano varieties with a complexity one torus action such that Cl(X) ∼= Z and
µ = [Cl(X) : Pic(X)] hold is bounded by

δ(d, µ) ≤ (6dµ)2ξ(3dµ)+d−2µξ(µ)2+2ξ((d+2)µ)+2d+2.

In particular, we conclude that for fixed µ ∈ Z>0, the number δ(d) of different
deformation types of d-dimensional Fano varieties with a complexity one torus
action Cl(X) ∼= Z and Picard index µ is asymptotically bounded by dAd with
a constant A depending only on µ, see Corollary 2.4.

In fact, in Theorem 2.1 we even obtain explicit bounds for the discrete input
data of the rings R(A, n, L)[S1, . . . , Sm]. This allows us to construct all Fano
varieties X with prescribed dimension and Picard index that come with an
effective complexity one torus action and have divisor class group Z. Note
that, by the approach, we get the Cox rings of the resulting Fano varieties X
for free. In Section 3, we give some explicit classifications. We list all non-toric
surfaces X with Picard index at most six and the non-toric threefolds X with
Picard index up at most two. They all have a Cox ring defined by a single
relation; in fact, for surfaces the first Cox ring with more than one relation
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occurs for Picard index 29, and for the threefolds this happens with Picard
index 3, see Proposition 3.5 as well as Examples 3.4 and 3.7. Moreover, we
determine all locally factorial fourfolds X , i.e. those of Picard index one: 67 of
them occur sporadic and there are two one-dimensional families. Here comes
the result on the locally factorial threefolds; in the table, we denote by wi the
Cl(X)-degree of the variable Ti.

Theorem 3.2. The following table lists the Cox rings R(X) of the three-
dimensional locally factorial non-toric Fano varieties X with an effective two
torus action and Cl(X) = Z.

No. R(X) (w1, . . . , w5) (−KX)3

1 K[T1, . . . , T5] / 〈T1T
5
2 + T 3

3 + T 2
4 〉 (1, 1, 2, 3, 1) 8

2 K[T1, . . . , T5] / 〈T1T2T
4
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 2, 3) 8

3 K[T1, . . . , T5] / 〈T1T
2
2 T

3
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 2, 3) 8

4 K[T1, . . . , T5] / 〈T1T2 + T3T4 + T 2
5 〉 (1, 1, 1, 1, 1) 54

5 K[T1, . . . , T5] / 〈T1T
2
2 + T3T

2
4 + T 3

5 〉 (1, 1, 1, 1, 1) 24

6 K[T1, . . . , T5] / 〈T1T
3
2 + T3T

3
4 + T 4

5 〉 (1, 1, 1, 1, 1) 4

7 K[T1, . . . , T5] / 〈T1T
3
2 + T3T

3
4 + T 2

5 〉 (1, 1, 1, 1, 2) 16

8 K[T1, . . . , T5] / 〈T1T
5
2 + T3T

5
4 + T 2

5 〉 (1, 1, 1, 1, 3) 2

9 K[T1, . . . , T5] / 〈T1T
5
2 + T 3

3 T
3
4 + T 2

5 〉 (1, 1, 1, 1, 3) 2

Note that each of these varieties X is a hypersurface in the respective weighted
projective space P(w1, . . . , w5). Except number 4, none of them is quasismooth
in the sense that SpecR(X) is singular at most in the origin; quasismooth
hypersurfaces of weighted projective spaces were studied in [21] and [7]. In
Section 4, we take a closer look at the singularities of the threefolds listed
above. It turns out that number 1,3,5,7 and 9 are singular with only canonical
singularities and all of them admit a crepant resolution. Number 6 and 8 are
singular with non-canonical singularities but admit a smooth relative minimal
model. Number two is singular with only canonical singularities, one of them
of type cA1, and it admits only a singular relative minimal model. Moreover,
in all cases, we determine the Cox rings of the resolutions.

The authors would like to thank Ivan Arzhantsev for helpful comments and
discussions and also the referee for valuable remarks and many references.
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1 UFDs with complexity one multigrading

As mentioned before, we work over an algebraically closed field K of char-
acteristic zero. In Theorem 1.9, we describe all factorial finitely generated K-
algebras R with an effective complexity one grading and R0 = K. Moreover, we
characterize the possible Cox rings among these algebras, see Proposition 1.11.
First we recall the construction sketched in the introduction.

Construction 1.1. Consider a sequence A = (a0, . . . , ar) of vectors ai =
(bi, ci) in K2 such that any pair (ai, ak) with k 6= i is linearly independent, a
sequence n = (n0, . . . , nr) of positive integers and a family L = (lij) of positive
integers, where 0 ≤ i ≤ r and 1 ≤ j ≤ ni. For every 0 ≤ i ≤ r, define a
monomial

fi := T li1
i1 · · ·T

lini

ini
∈ K[Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni],

for any two indices 0 ≤ i, j ≤ r, set αij := det(ai, aj) = bicj − bjci and for any
three indices 0 ≤ i < j < k ≤ r define a trinomial

gi,j,k := αjkfi + αkifj + αijfk ∈ K[Tij ; 0 ≤ i ≤ r, 1 ≤ j ≤ ni].

Note that the coefficients of this trinomial are all nonzero. The triple (A, n, L)
then defines a ring

R(A, n, L) := K[Tij ; 0 ≤ i ≤ r, 1 ≤ j ≤ ni] / 〈gi,i+1,i+2; 0 ≤ i ≤ r − 2〉.

Proposition 1.2. For every triple (A, n, L) as in 1.1, the ring R(A, n, L) is a
normal complete intersection of dimension

dim R(A, n, L) = n− r + 1, n := n0 + . . .+ nr.

Lemma 1.3. In the setting of 1.1, one has for any 0 ≤ i < j < k < l ≤ r the
identities

gi,k,l = αkl · gi,j,k + αik · gj,k,l, gi,j,l = αjl · gi,j,k + αij · gj,k,l.

In particular, every trinomial gi,j,k, where 0 ≤ i < j < k ≤ r is contained in
the ideal 〈gi,i+1,i+2; 0 ≤ i ≤ r − 2〉.

Proof. The identities are easily obtained by direct computation; note that for
this one may assume aj = (1, 0) and ak = (0, 1). The supplement then follows
by repeated application of the identities.

Lemma 1.4. In the notation of 1.1 and 1.2, set X := V (Kn, g0, . . . , gr−2), and
let z ∈ X. If we have fi(z) = fj(z) = 0 for two 0 ≤ i < j ≤ r, then fk(z) = 0
holds for all 0 ≤ k ≤ r.

Proof. If i < k < j holds, then, according to Lemma 1.3, we have gi,k,j(z) = 0,
which implies fk(z) = 0. The cases k < i and j < k are obtained similarly.
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Proof of Proposition 1.2. Set X := V (Kn; g0, . . . , gr−2), where gi := gi,i+1,i+2.
Then we have to show that X is a connected complete intersection with at most
normal singularities. In order to see that X is connected, set ℓ :=

∏
ni

∏
lij

and ζij := ℓn−1i l−1ij . Then X ⊆ Kn is invariant under the K∗-action given by

t · z := (tζij zij)

and the point 0 ∈ Kn lies in the closure of any orbit K∗ ·x ⊆ X , which implies
connectedness. To proceed, consider the Jacobian Jg of g := (g0, . . . , gr−2).
According to Serre’s criterion, we have to show that the set of points of z ∈ X
with Jg(z) not of full rank is of codimension at least two in X . Note that the
Jacobian Jg is of the shape

Jg =



















δ0 0 δ0 1 δ0 2 0 0
0 δ1 1 δ1 2 δ1 3 0

...

0 δr−3 r−3 δr−3 r−2 δr−3 r−1 0
0 0 δr−2 r−2 δr−2 r−1 δr−2 r



















where δti is a nonzero multiple of the gradient δi := grad fi. Consider z ∈ X
with Jg(z) not of full rank. Then δi(z) = 0 = δk(z) holds with some 0 ≤ i <
k ≤ r. This implies zij = 0 = zkl for some 1 ≤ j ≤ ni and 1 ≤ l ≤ nk. Thus,
we have fi(z) = 0 = fk(z). Lemma 1.4 gives fs(z) = 0, for all 0 ≤ s ≤ r.
Thus, some coordinate zst must vanish for every 0 ≤ s ≤ r. This shows that z
belongs to a closed subset of X having codimension at least two in X .

Lemma 1.5. Notation as in 1.1. Then the variable Tij defines a prime ideal
in R(A, n, L) if and only if the numbers gcd(lk1, . . . , lknk

), where k 6= i, are
pairwise coprime.

Proof. We treat exemplarily T01. Using Lemma 1.3, we see that the ideal of
relations of R(A, n, L) can be presented as follows

〈gs,s+1,s+2; 0 ≤ s ≤ r − 2〉 = 〈g0,s,s+1; 1 ≤ s ≤ r − 1〉.

Thus, the ideal 〈T01〉 ⊆ R(A, n, L) is prime if and only if the following binomial
ideal is prime

a := 〈αs+1 0fs + α0sfs+1; 1 ≤ s ≤ r − 1〉 ⊆ K[Tij ; (i, j) 6= (0, 1)].

Set li := (li1, . . . , lini
). Then the ideal a is prime if and only if the following

family can be complemented to a lattice basis

(l1,−l2, 0, . . . , 0), . . . , (0, . . . , 0, lr−1,−lr).

This in turn is equivalent to the statement that the numbers gcd(lk1, . . . , lknk
),

where 1 ≤ k ≤ r, are pairwise coprime.
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Definition 1.6. We say that a triple (A, n, L) as in 1.1 is admissible if the
numbers gcd(li1, . . . , lini

), where 0 ≤ i ≤ r, are pairwise coprime.

Construction 1.7. Let (A, n, L) be an admissible triple and consider the
following free abelian groups

E :=

r⊕

i=0

ni⊕

j=1

Z·eij, K :=

n0⊕

j=1

Z·u0j ⊕
r⊕

i=1

ni−1⊕

j=1

Z·uij

and define vectors uini
:= u01 + . . .+ u0r − ui1 − . . .− uini−1 ∈ K. Then there

is an epimorphism λ : E → K fitting into a commutative diagram with exact
rows

0 // E α

eij 7→lijeij //

ηeij 7→uij

��

E
eij 7→eij //

λ

��

⊕
i,j Z/lijZ //

OO
∼=

��

0

0 // K
β

// K //
⊕

i,j Z/lijZ // 0

Define a K-grading of K[Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni] by setting deg Tij :=

λ(eij). Then every fi = T li1
i1 · · ·T

lini

ini
is K-homogeneous of degree

deg fi = li1λ(ei1) + . . .+ lini
λ(eini

) = l01λ(e01) + . . .+ l0n0λ(e0n0) ∈ K.

Thus, the polynomials gi,j,k of 1.1 are all K-homogeneous of the same degree
and we obtain an effective K-grading of complexity one of R(A, n, L).

Proof. Only for the existence of the commutative diagram there is something
to show. Write for short li := (li1, . . . , lini

). By the admissibility condition, the
vectors vi := (0, . . . , 0, li,−li+1, 0, . . . , 0), where 0 ≤ i ≤ r−1, can be completed
to a lattice basis for E. Consequently, we find an epimorphism λ : E → K
having precisely lin(v0, . . . , vr−1) as its kernel. By construction, ker(λ) equals
α(ker(η)). Using this, we obtain the induced morphism β : K → K and the
desired properties.

Lemma 1.8. Notation as in 1.7. Then R(A, n, L)0 = K and R(A, n, L)∗ =
K∗ hold. Moreover, the Tij define pairwise nonassociated prime elements in
R(A, n, L).

Proof. The fact that all elements of degree zero are constant is due to the
fact that all degrees deg Tij = uij ∈ K are non-zero and generate a pointed
convex cone in KQ. As a consequence, we obtain that all units in R(A, n, L) are
constant. The Tij are prime by the admissibility condition and Lemma 1.5, and
they are pairwise nonassociated because they have pairwise different degrees
and all units are constant.
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Theorem 1.9. Up to isomorphy, the finitely generated factorial K-algebras
with an effective complexity one grading R = ⊕MRu and R0 = K are

(i) the polynomial algebras K[T1, . . . , Td] with a grading deg(Ti) = ui ∈ Zd−1

such that u1, . . . , ud generate Zd−1 as a lattice and the convex cone on
Qd−1 generated by u1, . . . , ud is pointed,

(ii) the (K ×Zm)-graded algebras R(A, n, L)[S1, . . . , Sm], where R(A, n, L) is
the K-graded algebra defined by an admissible triple (A, n, L) as in 1.1
and 1.7 and deg Sj ∈ Zm is the j-th canonical base vector.

Proof. We first show that for any admissible triple (A, n, L) the ring R(A, n, L)
is a unique factorization domain. If lij = 1 holds for any two i, j, then, by [15,
Prop. 2.4], the ring R(A, n, L) is the Cox ring of a space P1(A, n) and hence is
a unique factorization domain.

Now, let (A, n, L) be arbitrary admissible data and let λ : E → K be an epi-
morphism as in 1.7. Set n := n0 + . . . + nr and consider the diagonalizable
groups

Tn := SpecK[E], H := SpecK[K], H0 := SpecK[⊕i,jZ/lijZ].

Then Tn = (K∗)n is the standard n-torus and H0 is the direct product of the
cyclic subgroups Hij := SpecK[Z/lijZ]. Moreover, the diagram in 1.7 gives
rise to a commutative diagram with exact rows

0 Tnoo Tn
(t

lij

ij
)←[(tij)

oo H0
oo 0oo

0 Hoo

ı

OO

Hoo



OO

H0
oo

��
∼=

OO

0oo

where tij = χeij are the coordinates of Tn corresponding to the characters
eij ∈ E and the maps ı,  are the closed embeddings corresponding to the
epimorphisms η, λ respectively.

Setting deg Tij := eij defines an action of Tn on Kn = SpecK[Tij ]; in terms of
the coordinates zij corresponding to Tij this action is given by t·z = (tijzij).
The torus H acts effectively on Kn via the embedding  : H → Tn. The generic
isotropy group of H along V (Kn, Tij) is the subgroup Hij ⊆ H corresponding
to K → K/λ(Eij), where Eij ⊆ E denotes the sublattice generated by all ekl
with (k, l) 6= (i, j); recall that we have K/λ(Eij) ∼= Z/lijZ.

Now, set l′ij := 1 for any two i, j and consider the spectra X := SpecR(A, n, L)
andX ′ := SpecR(A, n, L′). Then the canonical surjectionsK[Tij ] → R(A, n, L)
and K[Tij ] → R(A, n, L′) define embeddings X → Kn and X ′ → Kn. These
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embeddings fit into the following commutative diagram

Kn oo
π

(z
lij

ij
)←[(zij)

Kn

X ′ oo

OO

X

OO

The action of H leaves X invariant and the induced H-action on X is the one
given by the K-grading of R(A, n, L). Moreover, π : Kn → Kn is the quotient
map for the induced action of H0 ⊆ H on Kn, we have X = π−1(X ′), and
hence the restriction π : X → X ′ is a quotient map for the induced action of
H0 on X .

Removing all subsets V (X ;Tij, Tkl), where (i, j) 6= (k, l) from X , we obtain an
open subset U ⊆ X . By Lemma 1.8, the complement X\U is of codimension at
least two and each V (U, Tij) is irreducible. By construction, the only isotropy
groups of the H-action on U are the groups Hij of the points of V (U, Tij). The
image U ′ := π(U) is open in X ′, the complement X ′ \U ′ is as well of codimen-
sion at least two and H/H0 acts freely on U ′. According to [22, Cor. 5.3], we
have two exact sequences fitting into the following diagram

1

��
Pic(U ′)

π∗

��
1 // X(H0)

α // PicH0(U)
β //

δ

��

Pic(U)

∏
i,jX(Hij)

Since X ′ is factorial, the Picard group Pic(U ′) is trivial and we obtain that δ
is injective. Since H0 is the direct product of the isotropy groups Hij of the
Luna strata V (U, Tij), we see that δ ◦ α is an isomorphism. It follows that
δ is surjective and hence an isomorphism. This in turn shows that α is an
isomorphism. Now, every bundle on U is H-linearizable. Since H0 acts as a
subgroup of H , we obtain that every bundle is H0-linearizable. It follows that
β is surjective and hence Pic(U) is trivial. We conclude Cl(X) = Pic(U) = 0,
which means that R(A, n, L) admits unique factorization.

The second thing we have to show is that any finitely generated factorial K-
algebra R with an effective complexity one multigrading satisfying R0 = K is
as claimed. Consider the action of the torus G on X = SpecR defined by the
multigrading, and let X0 ⊆ X be the set of points having finite isotropy Gx.
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Then [15, Prop 3.3] provides a graded splitting

R ∼= R′[S1, . . . , Sm],

where the variables Sj are identified with the homogeneous functions defining
the prime divisors Ej inside the boundary X \X0 and R′ is the ring of functions
of X0, which are invariant under the subtorus G0 ⊆ G generated by the generic
isotropy groups Gj of Ej .

Since R′0 = R0 = K holds, the orbit space X0/G has only constant functions
and thus is a space P1(A, n) as constructed in [15, Section 2]. This allows
us to proceed exactly as in the proof of Theorem [15, Thm 1.3] and gives
R′ = R(A, n, L). The admissibility condition follows from Lemma 1.5 and the
fact that each Tij defines a prime element in R′.

Remark 1.10. Let (A, n, L) be an admissible triple with n = (1, . . . , 1). Then
K = Z holds, the admissibility condition just means that the numbers lij are
pairwise coprime and we have

dim R(A, n, L) = n0 + . . .+ nr − r + 1 = 2.

Consequently, for two-dimensional rings, Theorem 1.9 specializes to Mori’s de-
scription of almost geometrically graded two-dimensional unique factorization
domains provided in [23].

Proposition 1.11. Let (A, n, L) be an admissible triple, consider the associ-
ated (K × Zm)-graded ring R(A, n, L)[S1, . . . , Sm] as in Theorem 1.9 and let
µ : K×Zm → K ′ be a surjection onto an abelian group K ′. Then the following
statements are equivalent.

(i) The K ′-graded ring R(A, n, L)[S1, . . . , Sm] is the Cox ring of a projective
variety X ′ with Cl(X ′) ∼= K ′.

(ii) For every pair i, j with 0 ≤ i ≤ r and 1 ≤ j ≤ ni, the group K ′ is
generated by the elements µ(λ(ekl)) and µ(es), where (i, j) 6= (k, l) and
1 ≤ s ≤ m, for every 1 ≤ t ≤ m, the group K ′ is generated by the
elements µ(λ(eij)) and µ(es), where 0 ≤ i ≤ r, 1 ≤ j ≤ ni and s 6= t,
and, finally the following cone is of full dimension in K ′Q:
⋂

(k,l)

cone(µ(λ(eij)), µ(es); (i, j) 6= (k, l)) ∩
⋂

t

cone(µ(λ(eij)), µ(es); s 6= t).

Proof. Suppose that (i) holds, let p : X̂ ′ → X ′ denote the universal torsor and
let X ′′ ⊆ X ′ be the set of smooth points. According to [14, Prop. 2.2], the
group H ′ = SpecK[K ′] acts freely on p−1(X ′′), which is a big open subset of
the total coordinate space SpecR(A, n, L)[S1, . . . , Sm]. This implies the first
condition of (ii). Moreover, by [14, Prop. 4.1], the displayed cone is the moving
cone of X ′ and hence of full dimension. Conversely, if (ii) holds, then the K ′-
graded ring R(A, n, L)[S1, . . . , Sm] can be made into a bunched ring and hence
is the Cox ring of a projective variety, use [14, Thm. 3.6].
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2 Bounds for Fano varieties

We consider d-dimensional Fano varieties X that come with a complexity one
torus action and have divisor class group Cl(X) ∼= Z. Then the Cox ring R(X)
ofX is factorial [5, Prop. 8.4] and has an effective complexity one grading, which
refines the Cl(X)-grading, see [15, Prop. 2.6]. Thus, according to Theorem 1.9,
it is of the form

R(X) ∼= K[Tij ; 0 ≤ i ≤ r, 1 ≤ j ≤ ni][S1, . . . , Sm] / 〈gi,i+1,i+2; 0 ≤ i ≤ r − 2〉,

gi,j,k := αjkT
li1
i1 · · ·T

lini

ini
+ αkiT

lj1
j1 · · ·T

ljnj

jnj
+ αijT

lk1

k1 · · ·T
lknk

knk
.

Here, we may (and will) assume n0 ≥ . . . ≥ nr ≥ 1. With n := n0 + . . .+ nr,
we have n + m = d + r. For the degrees of the variables in Cl(X) ∼= Z, we
write wij := deg Tij for 0 ≤ i ≤ r, 1 ≤ j ≤ ni and uk = deg Sk for 1 ≤ k ≤ m.
Moreover, for µ ∈ Z>0, we denote by ξ(µ) the number of primes in {2, . . . , µ}.
The following result provides bounds for the discrete data of the Cox ring.

Theorem 2.1. In the above situation, fix the dimension d = dim(X) and the
Picard index µ = [Cl(X) : Pic(X)]. Then we have

uk ≤ µ for 1 ≤ k ≤ m.

Moreover, for the degree γ of the relations, the weights wij and the exponents
lij, where 0 ≤ i ≤ r and 1 ≤ j ≤ ni one obtains the following.

(i) Suppose that r = 0, 1 holds. Then n+m ≤ d + 1 holds and one has the
bounds

wij ≤ µ for 0 ≤ i ≤ r and 1 ≤ j ≤ ni,

and the Picard index is given by

µ = lcm(wij , uk; 0 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ k ≤ m).

(ii) Suppose that r ≥ 2 and n0 = 1 hold. Then r ≤ ξ(µ) − 1 and n = r + 1
and m = d− 1 hold and one has

wi1 ≤ µr for 0 ≤ i ≤ r, l01 · · · lr1 | µ, l01 · · · lr1 | γ ≤ µr+1,

and the Picard index is given by

µ = lcm(gcd(wj1; j 6= i), uk; 0 ≤ i ≤ r, 1 ≤ k ≤ m).

(iii) Suppose that r ≥ 2 and n0 > n1 = 1 hold. Then we may assume l11 >
. . . > lr1 ≥ 2, we have r ≤ ξ(3dµ)− 1 and n0 +m = d and the bounds

w01, . . . , w0n0 ≤ µ, l01, . . . , l0n0 < 6dµ,

w11, l21 < 2dµ, w21, l11 < 3dµ,

Documenta Mathematica 16 (2011) 71–109



82 J. Hausen, E. Herppich, H. Süß

wi1 < 6dµ, li1 < 2dµ for 2 ≤ i ≤ r,

l11 · · · lr1 | γ < 6dµ,

and the Picard index is given by

µ = lcm(w0j , gcd(w11, . . . , wr1), uk; 1 ≤ j ≤ n0, 1 ≤ k ≤ m).

(iv) Suppose that n1 > n2 = 1 holds. Then we may assume l21 > . . . > lr1 ≥
2, we have r ≤ ξ(2(d+1)µ)− 1 and n0 + n1 +m = d+1 and the bounds

wij ≤ µ for i = 0, 1 and 1 ≤ j ≤ ni, w21 < (d+ 1)µ,

wij , lij < 2(d+ 1)µ for 0 ≤ i ≤ r and 1 ≤ j ≤ ni,

l21 · · · lr1 | γ < 2(d+ 1)µ,

and the Picard index is given by

µ = lcm(wij , uk; 0 ≤ i ≤ 1, 1 ≤ j ≤ ni, 1 ≤ k ≤ m).

(v) Suppose that n2 > 1 holds and let s be the maximal number with ns > 1.
Then one may assume ls+1,1 > . . . > lr1 ≥ 2, we have r ≤ ξ((d+2)µ)− 1
and n0 + . . .+ ns +m = d+ s and the bounds

wij ≤ µ, for 0 ≤ i ≤ s,

wij , lij < (d+ 2)µ for 0 ≤ i ≤ r and 1 ≤ j ≤ ni,

ls+1,1 · · · lr1 | γ < (d+ 2)µ,

and the Picard index is given by

µ = lcm(wij , uk; 0 ≤ i ≤ s, 1 ≤ j ≤ ni, 1 ≤ k ≤ m).

Putting all the bounds of the theorem together, we obtain the following (raw)
bound for the number of deformation types.

Corollary 2.2. For any pair (d, µ) ∈ Z2
>0, the number δ(d, µ) of different

deformation types of d-dimensional Fano varieties with a complexity one torus
action such that Cl(X) ∼= Z and [Cl(X) : Pic(X)] = µ hold is bounded by

δ(d, µ) ≤ (6dµ)2ξ(3dµ)+d−2µξ(µ)2+2ξ((d+2)µ)+2d+2.

Proof. By Theorem 2.1 the discrete data r, n, L and m occuring in R(X) are
bounded as in the assertion. The continuous data in R(X) are the coefficients
αij ; they stem from the family A = (a0, . . . , ar) of points ai ∈ K2. Varying the
ai provides flat families of Cox rings and hence, by passing to the homogeneous
spectra, flat families of the resulting Fano varieties X .
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Corollary 2.3. Fix d ∈ Z>0. Then the number δ(µ) of different deforma-
tion types of d-dimensional Fano varieties with a complexity one torus action,
Cl(X) ∼= Z and Picard index µ := [Cl(X) : Pic(X)] is asymptotically bounded

by µAµ2/ log2 µ with a constant A depending only on d.

Corollary 2.4. Fix µ ∈ Z>0. Then the number δ(d) of different deforma-
tion types of d-dimensional Fano varieties with a complexity one torus action,
Cl(X) ∼= Z and Picard index µ := [Cl(X) : Pic(X)] is asymptotically bounded
by dAd with a constant A depending only on µ.

We first recall the necessary facts on Cox rings, for details, we refer to [14].
Let X be a complete d-dimensional variety with divisor class group Cl(X) ∼=
Z. Then the Cox ring R(X) is finitely generated and the total coordinate
space X := SpecR(X) is a factorial affine variety coming with an action of
K∗ defined by the Cl(X)-grading of R(X). Choose a system f1, . . . , fν of
homogeneous pairwise nonassociated prime generators forR(X). This provides
an K∗-equivariant embedding

X → Kν , x 7→ (f1(x), . . . , fν(x)).

where K∗ acts diagonally with the weights wi = deg(fi) ∈ Cl(X) ∼= Z on Kν .

Moreover, X is the geometric K∗-quotient of X̂ := X \ {0}, and the quotient

map p : X̂ → X is a universal torsor. By the local divisor class group Cl(X, x)
of a point x ∈ X , we mean the group of Weil divisors WDiv(X) modulo those
that are principal near x.

Proposition 2.5. For any x = (x1, . . . , xν) ∈ X̂ the local divisor class group
Cl(X, x) of x := p(x) is finite of order gcd(wi; xi 6= 0). The index of the Picard
group Pic(X) in Cl(X) is given by

[Cl(X) : Pic(X)] = lcmx∈X(|Cl(X, x)|).

Suppose that the ideal of X ⊆ Kν is generated by Cl(X)-homogeneous polyno-
mials g1, . . . , gν−d−1 of degree γj := deg(gj). Then one obtains

−KX =

ν∑

i=1

wi−
ν−d−1∑

j=1

γj , (−KX)d =




ν∑

i=1

wi −
ν−d−1∑

j=1

γj




d

γ1 · · · γν−d−1
w1 · · ·wν

for the anticanonical class −KX ∈ Cl(X) ∼= Z. In particular, X is a Fano
variety if and only if the following inequality holds

ν−d−1∑

j=1

γj <

ν∑

i=1

wi.

Proof. Using [14, Prop. 2.2, Thm. 4.19], we observe that X arises from the
bunched ring (R,F,Φ), where R = R(X), F = (f1, . . . , fν) and Φ = {Q≥0}.
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The descriptions of local class groups, the Picard index and the anticanonical
class are then special cases of [14, Prop. 4.7, Cor. 4.9 and Cor. 4.16]. The anti-
canonical self-intersection number is easily computed in the ambient weighted
projective space P(w1, . . . , wν), use [14, Constr. 3.13, Cor. 4.13].

Remark 2.6. If the ideal of X ⊆ Kν is generated by Cl(X)-homogeneous poly-
nomials g1, . . . , gν−d−1, then [14, Constr. 3.13, Cor. 4.13] show that X is a well
formed complete intersection in the weighted projective space P(w1, . . . , wν) in
the sense of [16, Def. 6.9].

We turn back to the case that X comes with a complexity one torus action
as at the beginning of this section. We consider the case n0 = . . . = nr = 1,
that means that each relation gi,j,k of the Cox ring R(X) depends only on
three variables. Then we may write Ti instead of Ti1 and wi instead of wi1,
etc.. In this setting, we obtain the following bounds for the numbers of possible
varieties X (Fano or not).

Proposition 2.7. For any pair (d, µ) ∈ Z2
>0 there is, up to deformation, only

a finite number of complete d-dimensional varieties with divisor class group Z,
Picard index [Cl(X) : Pic(X)] = µ and Cox ring

K[T0, . . . , Tr, S1, . . . , Sm] / 〈αi+1,i+2T
li
i + αi+2,iT

li+1

i+1 + αi,i+1T
li+2

i+2 ; 0 ≤ i ≤ r − 2〉.

In this situation we have r ≤ ξ(µ)−1. Moreover, for the weights wi := deg Ti,
where 0 ≤ i ≤ r and uk := deg Sk, where 1 ≤ k ≤ m, the exponents li and the
degree γ := l0w0 of the relation one has

l0 · · · lr | γ, l0 · · · lr | µ, wi ≤ µξ(µ)−1, uk ≤ µ.

Proof. Consider the total coordinate space X ⊆ Kr+1+n and the universal
torsor p : X̂ → X as discussed before. For each 0 ≤ i ≤ r fix a point x(i) =

(x0, . . . , xr, 0, . . . , 0) in X̂ such that xi = 0 and xj 6= 0 for j 6= i hold. Then,
denoting x(i) := p(x(i)), we obtain

gcd(wj ; j 6= i) = |Cl(X, x(i))| | µ.

Consider i, j with j 6= i. Since all relations are homogeneous of the same degree,
we have liwi = ljwj . Moreover, by the admissibility condition, li and lj are
coprime. We conclude li|wj for all j 6= i and hence li| gcd(wj ; j 6= i). This
implies

l0 · · · lr | l0w0 = γ, l0 · · · lr | µ.

We turn to the bounds for the wi, and first verify w0 ≤ µr. Using the relation
liwi = l0w0, we obtain for every li a presentation

li = l0 ·
w0 · · ·wi−1

w1 · · ·wi
= ηi ·

gcd(w0, . . . , wi−1)

gcd(w0, . . . , wi)
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with suitable integers 1 ≤ ηi ≤ µ. In particular, the very last fraction is
bounded by µ. This gives the desired estimate:

w0 =
w0

gcd(w0, w1)
·

gcd(w0, w1)

gcd(w0, w1, w2)
· · ·

gcd(w0, . . . , wr−2)

gcd(w0, . . . , wr−1)
· gcd(w0, . . . , wr−1) ≤ µr.

Similarly, we obtain wi ≤ µr for 1 ≤ i ≤ r. Then we only have to show
that r + 1 is bounded by ξ(µ), but this follows immediately from the fact that
l0, . . . , lr are pairwise coprime.

Finally, to estimate the uk, consider the points x(k) ∈ X̂ having the (r+ k)-th
coordinate one and all others zero. Set x(k) := p(x(k)). Then Cl(X, x(k)) is
of order uk, which implies uk ≤ µ.

Lemma 2.8. Consider the ring K[Tij; 0 ≤ i ≤ 2, 1 ≤ j ≤ ni][S1, . . . , Sk]/〈g〉
where n0 ≥ n1 ≥ n2 ≥ 1 holds. Suppose that g is homogeneous with respect to a
Z-grading of K[Tij , Sk] given by deg Tij = wij ∈ Z>0 and deg Sk = uk ∈ Z>0,
and assume

deg g <
2∑

i=0

ni∑

j=1

wij +
m∑

i=1

ui.

Let µ ∈ Z>1, assume wij ≤ µ whenever ni > 1, 1 ≤ j ≤ ni and uk ≤ µ for
1 ≤ k ≤ m and set d := n0 + n1 + n2 +m − 2. Depending on the shape of g,
one obtains the following bounds.

(i) Suppose that g = η0T
l01
01 · · ·T

l0n0
0n0

+ η1T
l11
11 + η2T

l21
21 with n0 > 1 and

coefficients ηi ∈ K∗ holds, we have l11 ≥ l21 ≥ 2 and l11, l21 are coprime.
Then, one has

w11, l21 < 2dµ, w21, l11 < 3dµ, deg g < 6dµ.

(ii) Suppose that g = η0T
l01
01 · · ·T

l0n0

0n0
+ η1T

l11
11 · · ·T

l1n1

1n1
+ η2T

l21
21 with n1 > 1

and coefficients ηi ∈ K∗ holds and we have l21 ≥ 2. Then one has

w21 < (d+ 1)µ, deg g < 2(d+ 1)µ.

Proof. We prove (i). Set for short c := (n0 + m)µ = dµ. Then, using homo-
geneity of g and the assumed inequality, we obtain

l11w11 = l21w21 = deg g <

2∑

i=0

ni∑

j=1

wij +

m∑

i=1

ui ≤ c+ w11 + w21.

Since l11 and l21 are coprime, we have l11 > l21 ≥ 2. Plugging this into the
above inequalities, we arrive at 2w11 < c+w21 and w21 < c+w11. We conclude
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w11 < 2c and w21 < 3c. Moreover, l11w11 = l21w21 and gcd(l11, l21) = 1 imply
l11|w21 and l21|w11. This shows l11 < 3c and l21 < 2c. Finally, we obtain

deg g < c+ w11 + w21 < 6c.

We prove (ii). Here we set c := (n0 + n1 +m)µ = (d+ 1)µ. Then the assumed
inequality gives

l21w21 = deg g <

1∑

i=0

ni∑

j=1

wij +

m∑

i=1

ui + w21 ≤ c+ w21.

Since we assumed l21 ≥ 2, we can conclude w21 < c. This in turn gives us
deg g < 2c for the degree of the relation.

Proof of Theorem 2.1. As before, we denote byX ⊆ Kn+m the total coordinate
space and by p : X̂ → X the universal torsor.

We first consider the case that X is a toric variety. Then the Cox ring is a
polynomial ring, R(X) = K[S1, . . . , Sm]. For each 1 ≤ k ≤ m, consider the

point x(k) ∈ X̂ having the k-th coordinate one and all others zero and set
x(k) := p(x(k)). Then, by Proposition 2.5, the local class group Cl(X, x(k)) is
of order uk where uk := deg Sk. This implies uk ≤ µ for 1 ≤ k ≤ m and settles
Assertion (i).

Now we treat the non-toric case, which means r ≥ 2. Note that we have n ≥ 3.
The case n0 = 1 is done in Proposition 2.7. So, we are left with n0 > 1. For
every i with ni > 1 and every 1 ≤ j ≤ ni, there is the point x(i, j) ∈ X̂ with
ij-coordinate Tij equal to one and all others equal to zero, and thus we have
the point x(i, j) := p(x(i, j)) ∈ X . Moreover, for every 1 ≤ k ≤ m, we have the

point x(k) ∈ X̂ having the k-coordinate Sk equal to one and all others zero;
we set x(k) := p(x(k)). Proposition 2.5 provides the bounds

wij = deg Tij = |Cl(X, x(i, j))| ≤ µ for ni > 1, 1 ≤ j ≤ ni,

uk = deg Sk = |Cl(X, x(k))| ≤ µ for 1 ≤ k ≤ m.

Let 0 ≤ s ≤ r be the maximal number with ns > 1. Then gs−2,s−1,s is the last
polynomial such that each of its three monomials depends on more than one
variable. For any t ≥ s, we have the “cut ring”

Rt := K[Tij ; 0 ≤ i ≤ t, 1 ≤ j ≤ ni][S1, . . . , Sm] / 〈gi,i+1,i+2; 0 ≤ i ≤ t− 2〉

where the relations gi,i+1,i+2 depend on only three variables as soon as i > s
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holds. For the degree γ of the relations we have

(r − 1)γ = (t− 1)γ + (r − t)γ

= (t− 1)γ + lt+1,1wt+1,1 + . . .+ lr1wr1

<

r∑

i=0

ni∑

j=1

wij +

m∑

i=1

ui

=

t∑

i=0

ni∑

j=1

wij + wt+1,1 + . . .+ wr1 +

m∑

i=1

ui.

Since li1wi1 > wi1 holds in particular for t+1 ≤ i ≤ r, we derive from this the
inequality

γ <
1

t− 1




t∑

i=0

ni∑

j=1

wij +
m∑

i=1

ui


 .

To obtain the bounds in Assertions (iii) and (iv), we consider the cut ring Rt

with t = 2 and apply Lemma 2.8; note that we have d = n0 + n1 + n2 +m− 2
for the dimension d = dim(X) and that l22 ≥ 0 is due to the fact that X is non-
toric. The bounds wij , l0j < 6dµ in Assertion (iii) follow from lijwij = γ < 6dµ
and li1 < 2dµ follows from li1 | w21 for 3 ≤ i ≤ r. Moreover, li1 | w11 for
2 ≤ i ≤ r implies l11 · · · lr1 | γ = l11w11. Similarly wij , lij < 2(d + 1)µ in
Assertion (iv) follow from lijwij = γ < 2(d + 1)dµ and l21 · · · lr1 | γ = l21w21

follows from li1 | w21 for 3 ≤ i ≤ r. The bounds on r in (iii) in (iv) are as well
consequences of the admissibility condition.

To obtain the bounds in Assertion (v), we consider the cut ring Rt with t = s.
Using ni = 1 for i ≥ t+1, we can estimate the degree of the relation as follows:

γ ≤
(n0 + . . .+ nt +m)µ

t− 1
=

(d+ t)µ

t− 1
≤ (d+ 2)µ.

Since we have wij lij ≤ deg g0 for any 0 ≤ i ≤ r and any 1 ≤ j ≤ ni, we see
that all wij and lij are bounded by (d + 2)µ. As before, ls+1,1 · · · lr1 | γ is a
consequence of li1 | γ for i = s+ 2, . . . , r and also the bound on r follows from
the admissibility condition.

Finally, we have to express the Picard index µ in terms of the weights wij and
uk as claimed in the Assertions. This is a direct application of the formula
of Proposition 2.5. Observe that it suffices to work with the p-images of the
following points: For every 0 ≤ i ≤ r with ni > 1 take a point x(i, j) ∈ X̂ with
ij-coordinate Tij equal to one and all others equal to zero, for every 0 ≤ i ≤ r

with ni = 1 whenever ni = 1 take x(i, j) ∈ X̂ with ij-coordinate Tij equal to
zero, all other Tst equal to one and coordinates Sk equal to zero, and, for every
1 ≤ k ≤ m, take a point x(k) ∈ X̂ having the k-coordinate Sk equal to one
and all others zero.
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We conclude the section with discussing some aspects of the not necessarily
Fano varieties of Proposition 2.7. Recall that we considered admissible triples
(A, n, L) with n0 = . . . = nr = 1 and thus rings R of the form

K[T0, . . . , Tr, S1, . . . , Sm] / 〈αi+1,i+2T
li
i + αi+2,iT

li+1

i+1 + αi,i+1T
li+2

i+2 ; 0 ≤ i ≤ r − 2〉.

Proposition 2.9. Suppose that the ring R as above is the Cox ring of a non-
toric variety X with Cl(X) = Z. Then we have m ≥ 1 and µ := [Cl(X) :
Pic(X)] ≥ 30. Moreover, if X is a surface, then we have m = 1 and wi =
l−1i l0 · · · lr.

Proof. The homogeneity condition liwi = ljwj together with the admissibility
condition gcd(li, lj) = 1 for 0 ≤ i 6= j ≤ r gives us li | gcd(wj ; j 6= i). Moreover,
by Proposition 1.11, every set of m + r weights wi has to generate the class
group Z, so they must have greatest common divisor one. Since X is non-
toric, li ≥ 2 holds and we obtain m ≥ 1. To proceed, we infer l0 · · · lr | µ and
l0 · · · lr | deg gijk from Proposition 2.5. As a consequence, the minimal value
for µ and deg gijk is obviously 2 · 3 · 5 = 30. what really can be received as
the following example shows. Note that if X is a surface we have m = 1 and
gcd(wi; 0 ≤ i ≤ r) = 1. Thus, liwi = ljwj gives us deg gijk = l0 · · · lr and
wi = l−1i l0 · · · lr.

The bound [Cl(X) : Pic(X)] ≥ 30 given in the above proposition is even sharp;
the surface discussed below realizes it.

Example 2.10. Consider X with R(X) = K[T0, T1, T2, T3]/〈g〉 with g = T 2
0 +

T 3
1 + T 5

2 and the grading

deg T0 = 15, deg T1 = 10, deg T2 = 6, deg T3 = 1.

Then we have gcd(15, 10) = 5, gcd(15, 6) = 3 and gcd(10, 6) = 2 and therefore
[Cl(X) : Pic(X)] = 30. Further X is Fano because of

deg g = 30 < 32 = deg T0 + . . .+ deg T3.

Let us have a look at the geometric meaning of the condition n0 = . . . = nr = 1.
For a variety X with an action of a torus T , we denote by X0 ⊆ X the union of
all orbits with at most finite isotropy. Then there is a possibly non-separated
orbit space X0/T ; we call it the maximal orbit space. From [15], we infer that
n0 = . . . = nr = 1 holds if and only if X0/T is separated. Combining this with
Propositions 2.7 and 2.9 gives the following.

Corollary 2.11. For any pair (d, µ) ∈ Z2
>0 there is, up to deformation, only

a finite number of d-dimensional complete varieties X with a complexity one
torus action having divisor class group Z, Picard index [Cl(X) : Pic(X)] = µ
and maximal orbit space P1 and for each of these varieties the complement
X \X0 contains divisors.
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Finally, we present a couple of examples showing that there are also non-Fano
varieties with a complexity one torus action having divisor class group Z and
maximal orbit space P1.

Example 2.12. Consider X with R(X) = K[T0, T1, T2, T3]/〈g〉 with g = T 2
0 +

T 3
1 + T 7

2 and the grading

deg T0 = 21, deg T1 = 14, deg T2 = 6, deg T3 = 1.

Then we have gcd(21, 14) = 7, gcd(21, 6) = 3 and gcd(14, 6) = 2 and therefore
[Cl(X) : Pic(X)] = 42. Moreover, X is not Fano, because its canonical class
KX is trivial

KX = deg g − deg T0 − . . .− deg T3 = 0.

Example 2.13. Consider X with R(X) = K[T0, T1, T2, T3]/〈g〉 with g = T 2
0 +

T 3
1 + T 11

2 and the grading

deg T0 = 33, deg T1 = 22, deg T2 = 6, deg T3 = 1.

Then we have gcd(22, 33) = 11, gcd(33, 6) = 3 and gcd(22, 6) = 2 and therefore
[Cl(X) : Pic(X)] = 66. The canonical class KX of X is even ample:

KX = deg g − deg T0 − . . .− deg T3 = 4.

The following example shows that the Fano assumption is essential for the
finiteness results in Theorem 2.1.

Remark 2.14. For any pair p, q of coprime positive integers, we obtain a locally
factorial K∗-surface X(p, q) with Cl(X) = Z and Cox ring

R(X(p, q)) = K[T01, T02, T11, T21] / 〈g〉, g = T01T
pq−1
02 + T q

11 + T p
21;

the Cl(X)-grading is given by deg T01 = deg T02 = 1, deg T11 = p and
deg T21 = q. Note that deg g = pq holds and for p, q ≥ 3, the canonical
class KX satisfies

KX = deg g− deg T01 − deg T02 − deg T11 − deg T21 = pq− 2− p− q ≥ 0.

3 Classification results

In this section, we give classification results for Fano varieties X with Cl(X) ∼=
Z that come with a complexity one torus action; note that they are neces-
sarily rational. The procedure to obtain classification lists for prescribed di-
mension d = dim X and Picard index µ = [Cl(X) : Pic(X)] is always the
following. By Theorem 1.9, we know that their Cox rings are of the form
R(X) ∼= R(A, n, L)[S1, . . . , Sm] with admissible triples (A, n, L). Note that for
the family A = (a0, . . . , ar) of points ai ∈ K2, we may assume

a0 = (1, 0), a1 = (1, 1), a2 = (0, 1).
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The bounds on the input data of (A, n, L) provided by Theorem 2.1 as well as
the criteria of Propositions 1.11 and 2.5 allow us to generate all the possible Cox
ringsR(X) of the Fano varietiesX in question for fixed dimension d and Picard
index µ. Note that X can be reconstructed fromR(X) = R(A, n, L)[S1, . . . , Sn]
as the homogeneous spectrum with respect to the Cl(X)-grading. Thus X is
classified by its Cox ring R(X).

In the following tables, we present the Cox rings as K[T1, . . . , Ts] modulo re-
lations and fix the Z-gradings by giving the weight vector (w1, . . . , ws), where
wi := deg Ti. The first classification result concerns surfaces.

Theorem 3.1. Let X be a non-toric Fano surface with an effective K∗-action
such that Cl(X) = Z and [Cl(X) : Pic(X)] ≤ 6 hold. Then its Cox ring is
precisely one of the following.

[Cl(X) : Pic(X)] = 1

No. R(X) (w1, . . . , w4) (−KX)2

1 K[T1, . . . , T4]/〈T1T
5
2 + T 3

3 + T 2
4 〉 (1, 1, 2, 3) 1

[Cl(X) : Pic(X)] = 2

No. R(X) (w1, . . . , w4) (−KX)2

2 K[T1, . . . , T4]/〈T
4
1 T2 + T 3

3 + T 2
4 〉 (1, 2, 2, 3) 2

[Cl(X) : Pic(X)] = 3

No. R(X) (w1, . . . , w4) (−KX)2

3 K[T1, . . . , T4]/〈T 3
1 T2 + T 3

3 + T 2
4 〉 (1, 3, 2, 3) 3

4 K[T1, . . . , T4]/〈T1T
3
2 + T 5

3 + T 2
4 〉 (1, 3, 2, 5) 1/3

5 K[T1, . . . , T4]/〈T 7
1 T2 + T 5

3 + T 2
4 〉 (1, 3, 2, 5) 1/3

[Cl(X) : Pic(X)] = 4

No. R(X) (w1, . . . , w4) (−KX)2

6 K[T1, . . . , T4]/〈T 2
1 T2 + T 3

3 + T 2
4 〉 (1, 4, 2, 3) 4

7 K[T1, . . . , T4]/〈T 6
1 T2 + T 5

3 + T 2
4 〉 (1, 4, 2, 5) 1

[Cl(X) : Pic(X)] = 5

No. R(X) (w1, . . . , w4) (−KX)2
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8 K[T1, . . . , T4]/〈T1T2 + T 3
3 + T 2

4 〉 (1, 5, 2, 3) 5

9 K[T1, . . . , T4]/〈T 5
1 T2 + T 5

3 + T 2
4 〉 (1, 5, 2, 5) 9/5

10 K[T1, . . . , T4]/〈T 9
1 T2 + T 7

3 + T 2
4 〉 (1, 5, 2, 7) 1/5

11 K[T1, . . . , T4]/〈T 7
1 T2 + T 4

3 + T 3
4 〉 (1, 5, 3, 4) 1/5

[Cl(X) : Pic(X)] = 6

No. R(X) (w1, . . . , w4) (−KX)2

12 K[T1, . . . , T4]/〈T 4
1 T2 + T 5

3 + T 2
4 〉 (1, 6, 2, 5) 8/3

13 K[T1, . . . , T4]/〈T
8
1 T2 + T 7

3 + T 2
4 〉 (1, 6, 2, 7) 2/3

14 K[T1, . . . , T4]/〈T 6
1 T2 + T 4

3 + T 3
4 〉 (1, 6, 3, 4) 2/3

15 K[T1, . . . , T4]/〈T 9
1 T2 + T 3

3 + T 2
4 〉 (1, 3, 4, 6) 2/3

Proof. As mentioned, Theorems 1.9, 2.1 and Propositions 1.11, 2.5 produce a
list of all Cox rings of surfaces with the prescribed data. Doing this computa-
tion, we obtain the list of the assertion. Note that none of the Cox rings listed is
a polynomial ring and hence none of the resulting surfaces X is a toric variety.
To show that different members of the list are not isomorphic to each other,
we use the following two facts. Firstly, observe that any two minimal systems
of homogeneous generators of the Cox ring have (up to reordering) the same
list of degrees, and thus the list of generator degrees is invariant under isomor-
phism (up to reordering). Secondly, by Construction 1.7, the exponents lij > 1
are precisely the orders of the non-trivial isotropy groups of one-codimensional
orbits of the action of the torus T on X . Using both principles and going
through the list, we see that different members X cannot be T -equivariantly
isomorphic to each other. Since all listed X are non-toric, the effective com-
plexity one torus action on each X corresponds to a maximal torus in the linear
algebraic group Aut(X). Any two maximal tori in the automorphism group
are conjugate, and thus we can conclude that two members are isomorphic if
and only if they are T -equivariantly isomorphic.

We remark that in [28, Section 4], log del Pezzo surfaces with an effective K∗-
action and Picard number 1 and Gorenstein index less than 4 were classified.
The above list contains six such surfaces, namely no. 1-4, 6 and 8; these
are exactly the ones where the maximal exponents of the monomials form a
platonic triple, i.e., are of the form (1, k, l), (2, 2, k), (2, 3, 3), (2, 3, 4) or (2, 3, 5).
The remaining ones, i.e., no. 5, 7, and 9-15 have non-log-terminal and thus
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non-rational singularities; to check this one may compute the resolutions via
resolution of the ambient weighted projective space as in [14, Ex. 7.5].

With the same scheme of proof as in the surface case, one establishes the
following classification results on Fano threefolds.

Theorem 3.2. Let X be a three-dimensional locally factorial non-toric Fano
variety with an effective two torus action such that Cl(X) = Z holds. Then its
Cox ring is precisely one of the following.

No. R(X) (w1, . . . , w5) (−KX)3

1 K[T1, . . . , T5] / 〈T1T
5
2 + T 3

3 + T 2
4 〉 (1, 1, 2, 3, 1) 8

2 K[T1, . . . , T5] / 〈T1T2T
4
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 2, 3) 8

3 K[T1, . . . , T5] / 〈T1T
2
2 T

3
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 2, 3) 8

4 K[T1, . . . , T5] / 〈T1T2 + T3T4 + T 2
5 〉 (1, 1, 1, 1, 1) 54

5 K[T1, . . . , T5] / 〈T1T
2
2 + T3T

2
4 + T 3

5 〉 (1, 1, 1, 1, 1) 24

6 K[T1, . . . , T5] / 〈T1T
3
2 + T3T

3
4 + T 4

5 〉 (1, 1, 1, 1, 1) 4

7 K[T1, . . . , T5] / 〈T1T
3
2 + T3T

3
4 + T 2

5 〉 (1, 1, 1, 1, 2) 16

8 K[T1, . . . , T5] / 〈T1T
5
2 + T3T

5
4 + T 2

5 〉 (1, 1, 1, 1, 3) 2

9 K[T1, . . . , T5] / 〈T1T
5
2 + T 3

3 T
3
4 + T 2

5 〉 (1, 1, 1, 1, 3) 2

The singular threefolds listed in this theorem are rational degenerations of
smooth Fano threefolds from [18]. The (smooth) general Fano threefolds of the
corresponding families are non-rational see [12] for no. 1-3, [8] for no. 5, [20]
for no. 6, [30, 29] for no. 7 and [19] for no. 8-9. Even if one allows certain mild
singularities, one still has non-rationality in some cases, see [13], [9, 25], [10],
[6].

Theorem 3.3. Let X be a three-dimensional non-toric Fano variety with an
effective two torus action such that Cl(X) = Z and [Cl(X) : Pic(X)] = 2 hold.
Then its Cox ring is precisely one of the following.

No. R(X) (w1, . . . , w5) (−KX)3

1 K[T1, . . . , T5]/〈T 4
1 T2 + T 3

3 + T 2
4 〉 (1, 2, 2, 3, 1) 27/2

2 K[T1, . . . , T5]/〈T
4
1 T

3
2 + T 5

3 + T 2
4 〉 (1, 2, 2, 5, 1) 1/2

3 K[T1, . . . , T5]/〈T 8
1 T2 + T 5

3 + T 2
4 〉 (1, 2, 2, 5, 1) 1/2

4 K[T1, . . . , T5]/〈T 4
1 T2 + T 3

3 + T 2
4 〉 (1, 2, 2, 3, 2) 16
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5 K[T1, . . . , T5]/〈T 4
1 T

3
2 + T 5

3 + T 2
4 〉 (1, 2, 2, 5, 2) 2

6 K[T1, . . . , T5]/〈T 8
1 T2 + T 5

3 + T 2
4 〉 (1, 2, 2, 5, 2) 2

7 K[T1, . . . , T5]/〈T1T
5
2 + T 3

3 + T 2
4 〉 (1, 1, 2, 3, 2) 27/2

8 K[T1, . . . , T5]/〈T1T
9
2 + T 5

3 + T 2
4 〉 (1, 1, 2, 5, 2) 1/2

9 K[T1, . . . , T5]/〈T 3
1 T

7
2 + T 5

3 + T 2
4 〉 (1, 1, 2, 5, 2) 1/2

10 K[T1, . . . , T5]/〈T1T
11
2 + T 3

3 + T 2
4 〉 (1, 1, 4, 6, 1) 1/2

11 K[T1, . . . , T5]/〈T 5
1 T

7
2 + T 3

3 + T 2
4 〉 (1, 1, 4, 6, 1) 1/2

12 K[T1, . . . , T5]/〈T1T
11
2 + T 3

3 + T 2
4 〉 (1, 1, 4, 6, 2) 2

13 K[T1, . . . , T5]/〈T
5
1 T

7
2 + T 3

3 + T 2
4 〉 (1, 1, 4, 6, 2) 2

14 K[T1, . . . , T5]/〈T 2
1 T

5
2 + T 3

3 + T 2
4 〉 (1, 2, 4, 6, 1) 2

15 K[T1, . . . , T5]/〈T 10
1 T2 + T 3

3 + T 2
4 〉 (1, 2, 4, 6, 1) 2

16 K[T1, . . . , T5]/〈T1T
2
2 + T 3

3 + T 2
4 〉 (2, 2, 2, 3, 1) 16

17 K[T1, . . . , T5]/〈T1T
4
2 + T 5

3 + T 2
4 〉 (2, 2, 2, 5, 1) 2

18 K[T1, . . . , T5]/〈T 2
1 T

3
2 + T 5

3 + T 2
4 〉 (2, 2, 2, 5, 1) 2

19 K[T1, . . . , T5]/〈T1T
2
2 + T3T4 + T 3

5 〉 (1, 1, 1, 2, 1) 81/2

20 K[T1, . . . , T5]/〈T1T
4
2 + T3T

2
4 + T 5

5 〉 (1, 1, 1, 2, 1) 5/2

21 K[T1, . . . , T5]/〈T 2
1 T

3
2 + T3T

2
4 + T 5

5 〉 (1, 1, 1, 2, 1) 5/2

22 K[T1, . . . , T5]/〈T1T
3
2 + T 2

3 T4 + T 4
5 〉 (1, 1, 1, 2, 1) 16

23 K[T1, . . . , T5]/〈T1T
4
2 + T 3

3 T4 + T 5
5 〉 (1, 1, 1, 2, 1) 5/2

24 K[T1, . . . , T5]/〈T 2
1 T

3
2 + T 3

3 T4 + T 5
5 〉 (1, 1, 1, 2, 1) 5/2

25 K[T1, . . . , T5]/〈T1T
3
2 + T 2

3 T4 + T 2
5 〉 (1, 1, 1, 2, 2) 27

26 K[T1, . . . , T5]/〈T1T
5
2 + T 2

3 T
2
4 + T 3

5 〉 (1, 1, 1, 2, 2) 3/2

27 K[T1, . . . , T5]/〈T1T
5
2 + T 4

3 T4 + T 3
5 〉 (1, 1, 1, 2, 2) 3/2

28 K[T1, . . . , T5]/〈T 2
1 T

4
2 + T 4

3 T4 + T 3
5 〉 (1, 1, 1, 2, 2) 3/2

29 K[T1, . . . , T5]/〈T1T
5
2 + T 4

3 T4 + T 2
5 〉 (1, 1, 1, 2, 3) 8

30 K[T1, . . . , T5]/〈T 3
1 T

3
2 + T 4

3 T4 + T 2
5 〉 (1, 1, 1, 2, 3) 8

31 K[T1, . . . , T5]/〈T1T
7
2 + T 2

3 T
3
4 + T 2

5 〉 (1, 1, 1, 2, 4) 1

32 K[T1, . . . , T5]/〈T 3
1 T

5
2 + T 2

3 T
3
4 + T 2

5 〉 (1, 1, 1, 2, 4) 1

33 K[T1, . . . , T5]/〈T1T
7
2 + T 6

3 T4 + T 2
5 〉 (1, 1, 1, 2, 4) 1

34 K[T1, . . . , T5]/〈T 3
1 T

5
2 + T 6

3 T4 + T 2
5 〉 (1, 1, 1, 2, 4) 1

35 K[T1, . . . , T5]/〈T1T
3
2 + T3T4 + T 4

5 〉 (1, 1, 2, 2, 1) 27
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36 K[T1, . . . , T5]/〈T1T
5
2 + T3T

2
4 + T 6

5 〉 (1, 1, 2, 2, 1) 3/2

37 K[T1, . . . , T5]/〈T1T
3
2 + T3T4 + T 2

5 〉 (1, 1, 2, 2, 2) 16

38 K[T1, . . . , T5]/〈T1T
5
2 + T3T

2
4 + T 3

5 〉 (1, 1, 2, 2, 2) 6

39 K[T1, . . . , T5]/〈T 2
1 T

4
2 + T3T

2
4 + T 3

5 〉 (1, 1, 2, 2, 2) 6

40 K[T1, . . . , T5]/〈T 3
1 T

3
2 + T3T

2
4 + T 2

5 〉 (1, 1, 2, 2, 2) 27/2

41 K[T1, . . . , T5]/〈T
3
1 T

5
2 + T3T

3
4 + T 2

5 〉 (1, 1, 2, 2, 2) 32

42 K[T1, . . . , T5]/〈T1T
5
2 + T3T

2
4 + T 2

5 〉 (1, 1, 2, 2, 3) 4

43 K[T1, . . . , T5]/〈T1T
7
2 + T3T

3
4 + T 2

5 〉 (1, 1, 2, 2, 4) 32

44 K[T1, . . . , T5]/〈T1T
9
2 + T3T

4
4 + T 2

5 〉 (1, 1, 2, 2, 5) 1/2

45 K[T1, . . . , T5]/〈T1T
9
2 + T 2

3 T
3
4 + T 2

5 〉 (1, 1, 2, 2, 5) 1/2

46 K[T1, . . . , T5]/〈T 3
1 T

7
2 + T3T

4
4 + T 2

5 〉 (1, 1, 2, 2, 5) 1/2

47 K[T1, . . . , T5]/〈T 3
1 T

7
2 + T 2

3 T
3
4 + T 2

5 〉 (1, 1, 2, 2, 5) 1/2

48 K[T1, . . . , T5]/〈T 5
1 T

5
2 + T3T

4
4 + T 2

5 〉 (1, 1, 2, 2, 5) 1/2

49 K[T1, . . . , T5]/〈T 5
1 T

5
2 + T 2

3 T
3
4 + T 2

5 〉 (1, 1, 2, 2, 5) 1/2

50 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 3
5 〉 (1, 2, 1, 2, 1) 48

51 K[T1, . . . , T5]/〈T 2
1 T2 + T 2

3 T4 + T 4
5 〉 (1, 2, 1, 2, 1) 27

52 K[T1, . . . , T5]/〈T1T
2
2 + T3T

2
4 + T 5

5 〉 (1, 2, 1, 2, 1) 10

53 K[T1, . . . , T5]/〈T1T
2
2 + T 3

3 T4 + T 5
5 〉 (1, 2, 1, 2, 1) 10

54 K[T1, . . . , T5]/〈T 3
1 T2 + T 3

3 T4 + T 5
5 〉 (1, 2, 1, 2, 1) 10

55 K[T1, . . . , T5]/〈T 4
1 T2 + T 4

3 T4 + T 6
5 〉 (1, 2, 1, 2, 1) 3/2

56 K[T1, . . . , T5]/〈T 2
1 T2 + T 2

3 T4 + T 2
5 〉 (1, 2, 1, 2, 2) 32

57 K[T1, . . . , T5]/〈T
2
1 T

2
2 + T 4

3 T4 + T 3
5 〉 (1, 2, 1, 2, 2) 6

58 K[T1, . . . , T5]/〈T 4
1 T2 + T 4

3 T4 + T 3
5 〉 (1, 2, 1, 2, 2) 6

59 K[T1, . . . , T5]/〈T 4
1 T2 + T 4

3 T4 + T 2
5 〉 (1, 2, 1, 2, 3) 27/2

60 K[T1, . . . , T5]/〈T
2
1 T

3
2 + T 2

3 T
3
4 + T 2

5 〉 (1, 2, 1, 2, 4) 4

61 K[T1, . . . , T5]/〈T 2
1 T

3
2 + T 6

3 T4 + T 2
5 〉 (1, 2, 1, 2, 4) 4

62 K[T1, . . . , T5]/〈T 6
1 T2 + T 6

3 T4 + T 2
5 〉 (1, 2, 1, 2, 4) 4

63 K[T1, . . . , T5]/〈T 4
1 T

3
2 + T 4

3 T
3
4 + T 2

5 〉 (1, 2, 1, 2, 5) 1/2

64 K[T1, . . . , T5]/〈T 8
1 T2 + T 4

3 T
3
4 + T 2

5 〉 (1, 2, 1, 2, 5) 1/2

65 K[T1, . . . , T5]/〈T 8
1 T2 + T 8

3 T4 + T 2
5 〉 (1, 2, 1, 2, 5) 1/2

66 K[T1, . . . , T5]/〈T 2
1 T2 + T3T4 + T 4

5 〉 (1, 2, 2, 2, 1) 32

67 K[T1, . . . , T5]/〈T 4
1 T2 + T3T

2
4 + T 6

5 〉 (1, 2, 2, 2, 1) 6

Documenta Mathematica 16 (2011) 71–109



Multigraded Factorial Rings and Fano Varieties 95

68 K[T1, . . . , T5]/〈T 4
1 T2 + T3T

2
4 + T 2

5 〉 (1, 2, 2, 2, 3) 16

69 K[T1, . . . , T5]/〈T 4
1 T

3
2 + T3T

4
4 + T 2

5 〉 (1, 2, 2, 2, 5) 2

70 K[T1, . . . , T5]/〈T 4
1 T

3
2 + T 2

3 T
3
4 + T 2

5 〉 (1, 2, 2, 2, 5) 2

71 K[T1, . . . , T5]/〈T 8
1 T2 + T3T

4
4 + T 2

5 〉 (1, 2, 2, 2, 5) 2

72 K[T1, . . . , T5]/〈T 8
1 T2 + T 2

3 T
3
4 + T 2

5 〉 (1, 2, 2, 2, 5) 2

73 K[T1, . . . , T5]/〈T1T2T
10
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 4, 6) 1/2

74 K[T1, . . . , T5]/〈T1T
2
2 T

9
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 4, 6) 1/2

75 K[T1, . . . , T5]/〈T1T
3
2 T

8
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 4, 6) 1/2

76 K[T1, . . . , T5]/〈T1T
4
2 T

7
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 4, 6) 1/2

77 K[T1, . . . , T5]/〈T1T
5
2 T

6
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 4, 6) 1/2

78 K[T1, . . . , T5]/〈T 2
1 T

3
2 T

7
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 4, 6) 1/2

79 K[T1, . . . , T5]/〈T 2
1 T

5
2 T

5
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 4, 6) 1/2

80 K[T1, . . . , T5]/〈T 3
1 T

4
2 T

5
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 4, 6) 1/2

81 K[T1, . . . , T5]/〈T1T2T
2
3 + T 3

4 + T 2
5 〉 (1, 1, 2, 2, 3) 27/2

82 K[T1, . . . , T5]/〈T1T
3
2 T3 + T 3

4 + T 2
5 〉 (1, 1, 2, 2, 3) 27/2

83 K[T1, . . . , T5]/〈T 2
1 T

2
2 T3 + T 3

4 + T 2
5 〉 (1, 1, 2, 2, 3) 27/2

84 K[T1, . . . , T5]/〈T1T2T
4
3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

85 K[T1, . . . , T5]/〈T1T
3
2 T

3
3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

86 K[T1, . . . , T5]/〈T1T
5
2 T

2
3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

87 K[T1, . . . , T5]/〈T1T
7
2 T3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

88 K[T1, . . . , T5]/〈T 2
1 T

2
2 T

3
3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

89 K[T1, . . . , T5]/〈T
2
1 T

6
2 T3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

90 K[T1, . . . , T5]/〈T 3
1 T

3
2 T

2
3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

91 K[T1, . . . , T5]/〈T 3
1 T

5
2 T3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

92 K[T1, . . . , T5]/〈T 4
1 T

4
2 T3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

93 K[T1, . . . , T5]/〈T1T2T
5
3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

94 K[T1, . . . , T5]/〈T1T
3
2 T

4
3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

95 K[T1, . . . , T5]/〈T1T
5
2 T

3
3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

96 K[T1, . . . , T5]/〈T1T
7
2 T

2
3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

97 K[T1, . . . , T5]/〈T1T
9
2 T3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

98 K[T1, . . . , T5]/〈T 2
1 T

4
2 T

3
3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

Documenta Mathematica 16 (2011) 71–109



96 J. Hausen, E. Herppich, H. Süß

99 K[T1, . . . , T5]/〈T 2
1 T

8
2 T3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

100 K[T1, . . . , T5]/〈T 3
1 T

5
2 T

2
3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

101 K[T1, . . . , T5]/〈T 3
1 T

7
2 T3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

102 K[T1, . . . , T5]/〈T 4
1 T

6
2 T3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

103 K[T1, . . . , T5]/〈T 5
1 T

5
2 T3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

104 K[T1, . . . , T5]/〈T
2
1 T2T3 + T 3

4 + T 2
5 〉 (1, 2, 2, 2, 3) 16

105 K[T1, . . . , T5]/〈T 2
1 T2T

3
3 + T 5

4 + T 2
5 〉 (1, 2, 2, 2, 5) 2

106 K[T1, . . . , T5]/〈T 4
1 T2T

2
3 + T 5

4 + T 2
5 〉 (1, 2, 2, 2, 5) 2

107 K[T1, . . . , T5]/〈T
6
1 T2T3 + T 5

4 + T 2
5 〉 (1, 2, 2, 2, 5) 2

The varieties no. 2,3 and 25, 26 are rational degenerations of quasismooth vari-
eties from the list in [16]. In [11] the non-rationality of a general (quasismooth)
element of the corresponding family was proved.

The varieties listed so far might suggest that we always obtain only one relation
in the Cox ring. We discuss now some examples, showing that for a Picard index
big enough, we need in general more than one relation, where this refers always
to a presentation as in Theorem 1.9 (ii).

Example 3.4. A Fano K∗-surface X with Cl(X) = Z such that the Cox ring
R(X) needs two relations. Consider the Z-graded ring

R = K[T01, T02, T11, T21, T31]/〈g0, g1〉,

where the degrees of T01, T02, T11, T21, T31 are 29, 1, 6, 10, 15, respectively, and
the relations g0, g1 are given by

g0 := T01T02 + T 5
11 + T 3

21, g1 := α23T
5
11 + α31T

3
21 + α12T

2
31

Then R is the Cox ring of a Fano K∗-surface. Note that the Picard index is
given by [Cl(X) : Pic(X)] = lcm(29, 1) = 29.

Proposition 3.5. Let X be a non-toric Fano surface with an effective K∗-
action such that Cl(X) ∼= Z and [Cl(X) : Pic(X)] < 29 hold. Then the Cox
ring of X is of the form

R(X) ∼= K[T1, . . . , T4]/〈T
l1
1 T l2

2 + T l3
3 + T l4

4 〉.

Proof. The Cox ring R(X) is as in Theorem 1.9, and, in the notation used
there, we have n0 + . . .+ nr +m = 2 + r. This leaves us with the possibilities
n0 = m = 1 and n0 = 2, m = 0. In the first case, Proposition 2.9 tells us that
the Picard index of X is at least 30.
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So, consider the case n0 = 2 and m = 0. Then, according to Theorem 1.9, the
Cox ring R(X) is K[T01, T02, T1 . . . , Tr] divided by relations

g0,1,2 = T l01
01 T l02

02 +T l1
1 +T l2

2 , gi,i+1,i+2 = αi+1,i+2T
li
i +αi+2,iT

li+1

i+1 +αi,i+1T
li+2

i+2 ,

where 1 ≤ i ≤ r − 2. We have to show that r = 2 holds. Set µ := [Cl(X) :
Pic(X)] and let γ ∈ Z denote the degree of the relations. Then we have γ = wili
for 1 ≤ i ≤ r, where wi := deg Ti. With w0i := deg T0i, Proposition 2.5 gives
us

(r − 1)γ < w01 + w02 + w1 + . . .+ wr.

We claim that w01 and w02 are coprime. Otherwise they had a common prime
divisor p. This p divides γ = liwi. Since l1, . . . , lr are pairwise coprime, p
divides at least r − 1 of the weights w1, . . . , wr. This contradicts the Cox ring
condition that any r+1 of the r+2 weights generate the class group Z. Thus,
w01 and w02 are coprime and we obtain

µ ≥ lcm(w01,w02) = w01 · w02 ≥ w01 +w02 − 1.

Now assume that r ≥ 3 holds. Then we can conclude

2γ < w01 + w02 + w1 + w2 + w3 ≤ µ+ 1 + γ

(
1

l1
+

1

l2
+

1

l3

)

Since the numbers li are pairwise coprime, we obtain l1 ≥ 5, l2 ≥ 3 and l3 ≥ 2.
Moreover, liwi = ljwj implies li | wj and hence l1l2l3 | γ. Thus, we have
γ ≥ 30. Plugging this in the above inequality gives

µ ≥ γ

(
2−

1

l1
−

1

l2
−

1

l3

)
− 1 = 29.

The Fano assumption is essential in this result; if we omit it, then we may even
construct locally factorial surfaces with a Cox ring that needs more then one
relation.

Example 3.6. A locally factorial K∗-surface X with Cl(X) = Z such that the
Cox ring R(X) needs two relations. Consider the Z-graded ring

R = K[T01, T02, T11, T21, T31]/〈g0, g1〉,

where the degrees of T01, T02, T11, T21, T31 are 1, 1, 6, 10, 15, respectively, and
the relations g0, g1 are given by

g0 := T 7
01T

23
02 + T 5

11 + T 3
21, g1 := α23T

5
11 + α31T

3
21 + α12T

2
31

Then R is the Cox ring of a non Fano K∗-surface X of Picard index one, i.e,
X is locally factorial.

Documenta Mathematica 16 (2011) 71–109



98 J. Hausen, E. Herppich, H. Süß

For non-toric Fano threefolds X with an effective 2-torus action Cl(X) ∼= Z,
the classifications 3.2 and 3.3 show that for Picard indices one and two we only
obtain hypersurfaces as Cox rings. The following example shows that this stops
at Picard index three.

Example 3.7. A Fano threefold X with Cl(X) = Z and a 2-torus action such
that the Cox ring R(X) needs two relations. Consider

R = K[T01, T02, T11, T12, T21, T31]/〈g0, g1〉

where the degrees of T01, T02, T11, T12, T21, T31 are 1, 1, 3, 3, 2, 3, respectively,
and the relations are given by

g0 = T 5
01T02 + T11T12 + T 3

21, g1 = α23T11T12 + α31T
3
21 + α12T

2
31.

Then R is the Cox ring of a Fano threefold with a 2-torus action. Note that
the Picard index is given by

[Cl(X) : Pic(X)] = lcm(1, 1, 3, 3) = 3.

Finally, we turn to locally factorial Fano fourfolds. Here we observe more than
one relation in the Cox ring even in the locally factorial case.

Theorem 3.8. Let X be a four-dimensional locally factorial non-toric Fano
variety with an effective three torus action such that Cl(X) = Z holds. Then
its Cox ring is precisely one of the following.

No. R(X) (w1, . . . , w6) (−KX)4

1 K[T1, . . . , T6]/〈T1T
5
2 + T 3

3 + T 2
4 〉 (1, 1, 2, 3, 1, 1) 81

2 K[T1, . . . , T6]/〈T1T
9
2 + T 2

3 + T 5
4 〉 (1, 1, 2, 5, 1, 1) 1

3 K[T1, . . . , T6]/〈T 3
1 T

7
2 + T 2

3 + T 5
4 〉 (1, 1, 2, 5, 1, 1) 1

4 K[T1, . . . , T6]/〈T1T2T
4
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 2, 3, 1) 81

5 K[T1, . . . , T6]/〈T1T
2
2 T

3
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 2, 3, 1) 81

6 K[T1, . . . , T6]/〈T1T2T
8
3 + T 5

4 + T 2
5 〉 (1, 1, 1, 2, 5, 1) 1

7 K[T1, . . . , T6]/〈T1T
2
2 T

7
3 + T 5

4 + T 2
5 〉 (1, 1, 1, 2, 5, 1) 1

8 K[T1, . . . , T6]/〈T1T
3
2 T

6
3 + T 5

4 + T 2
5 〉 (1, 1, 1, 2, 5, 1) 1

9 K[T1, . . . , T6]/〈T1T
4
2 T

5
3 + T 5

4 + T 2
5 〉 (1, 1, 1, 2, 5, 1) 1

10 K[T1, . . . , T6]/〈T 2
1 T

3
2 T

5
3 + T 5

4 + T 2
5 〉 (1, 1, 1, 2, 5, 1) 1

11 K[T1, . . . , T6]/〈T 3
1 T

3
2 T

4
3 + T 5

4 + T 2
5 〉 (1, 1, 1, 2, 5, 1) 1

12 K[T1, . . . , T6]/〈T1T2 + T3T4 + T 2
5 〉 (1, 1, 1, 1, 1, 1) 512

13 K[T1, . . . , T6]/〈T1T
2
2 + T3T

2
4 + T 3

5 〉 (1, 1, 1, 1, 1, 1) 243
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14 K[T1, . . . , T6]/〈T1T
3
2 + T3T

3
4 + T 4

5 〉 (1, 1, 1, 1, 1, 1) 64

15 K[T1, . . . , T6]/〈T1T
4
2 + T3T

4
4 + T 5

5 〉 (1, 1, 1, 1, 1, 1) 5

16 K[T1, . . . , T6]/〈T1T
4
2 + T 2

3 T
3
4 + T 5

5 〉 (1, 1, 1, 1, 1, 1) 5

17 K[T1, . . . , T6]/〈T 2
1 T

3
2 + T 2

3 T
3
4 + T 5

5 〉 (1, 1, 1, 1, 1, 1) 5

18 K[T1, . . . , T6]/〈T1T
3
2 + T3T

3
4 + T 2

5 〉 (1, 1, 1, 1, 2, 1) 162

19 K[T1, . . . , T6]/〈T1T
5
2 + T3T

5
4 + T 3

5 〉 (1, 1, 1, 1, 2, 1) 3

20 K[T1, . . . , T6]/〈T1T
5
2 + T 2

3 T
4
4 + T 3

5 〉 (1, 1, 1, 1, 2, 1) 3

21 K[T1, . . . , T6]/〈T1T
5
2 + T3T

5
4 + T 2

5 〉 (1, 1, 1, 1, 3, 1) 32

22 K[T1, . . . , T6]/〈T1T
5
2 + T 3

3 T
3
4 + T 2

5 〉 (1, 1, 1, 1, 3, 1) 32

23 K[T1, . . . , T6]/〈T1T
7
2 + T3T

7
4 + T 2

5 〉 (1, 1, 1, 1, 4, 1) 2

24 K[T1, . . . , T6]/〈T1T
7
2 + T 3

3 T
5
4 + T 2

5 〉 (1, 1, 1, 1, 4, 1) 2

25 K[T1, . . . , T6]/〈T 3
1 T

5
2 + T 3

3 T
5
4 + T 2

5 〉 (1, 1, 1, 1, 4, 1) 2

26 K[T1, . . . , T6]/〈T1T2T3T
3
4 + T 3

5 + T 2
6 〉 (1, 1, 1, 1, 2, 3) 81

27 K[T1, . . . , T6]/〈T1T2T
2
3 T

2
4 + T 3

5 + T 2
6 〉 (1, 1, 1, 1, 2, 3) 81

28 K[T1, . . . , T6]/〈T1T2T3T
7
4 + T 5

5 + T 2
6 〉 (1, 1, 1, 1, 2, 5) 1

29 K[T1, . . . , T6]/〈T1T2T
2
3 T

6
4 + T 5

5 + T 2
6 〉 (1, 1, 1, 1, 2, 5) 1

30 K[T1, . . . , T6]/〈T1T2T
3
3 T

5
4 + T 5

5 + T 2
6 〉 (1, 1, 1, 1, 2, 5) 1

31 K[T1, . . . , T6]/〈T1T2T
4
3 T

4
4 + T 5

5 + T 2
6 〉 (1, 1, 1, 1, 2, 5) 1

32 K[T1, . . . , T6]/〈T1T
2
2 T

2
3 T

5
4 + T 5

5 + T 2
6 〉 (1, 1, 1, 1, 2, 5) 1

33 K[T1, . . . , T6]/〈T1T
2
2 T

3
3 T

4
4 + T 5

5 + T 2
6 〉 (1, 1, 1, 1, 2, 5) 1

34 K[T1, . . . , T6]/〈T1T
3
2 T

3
3 T

3
4 + T 5

5 + T 2
6 〉 (1, 1, 1, 1, 2, 5) 1

35 K[T1, . . . , T6]/〈T
2
1 T

2
2 T

3
3 T

3
4 + T 5

5 + T 2
6 〉 (1, 1, 1, 1, 2, 5) 1

36 K[T1, . . . , T6]/〈T1T2T3 + T4T
2
5 + T 3

6 〉 (1, 1, 1, 1, 1, 1) 243

37 K[T1, . . . , T6]/〈T1T2T
2
3 + T4T

3
5 + T 4

6 〉 (1, 1, 1, 1, 1, 1) 64

38 K[T1, . . . , T6]/〈T1T2T
3
3 + T4T

4
5 + T 5

6 〉 (1, 1, 1, 1, 1, 1) 5

39 K[T1, . . . , T6]/〈T1T2T
3
3 + T 2

4 T
3
5 + T 5

6 〉 (1, 1, 1, 1, 1, 1) 5

40 K[T1, . . . , T6]/〈T1T
2
2 T

2
3 + T4T

4
5 + T 5

6 〉 (1, 1, 1, 1, 1, 1) 5

41 K[T1, . . . , T6]/〈T1T
2
2 T

2
3 + T 2

4 T
3
5 + T 5

6 〉 (1, 1, 1, 1, 1, 1) 5

42 K[T1, . . . , T6]/〈T1T2T
2
3 + T4T

3
5 + T 2

6 〉 (1, 1, 1, 1, 1, 2) 162

43 K[T1, . . . , T6]/〈T1T2T
4
3 + T4T

5
5 + T 3

6 〉 (1, 1, 1, 1, 1, 2) 3

44 K[T1, . . . , T6]/〈T1T2T
4
3 + T 2

4 T
4
5 + T 3

6 〉 (1, 1, 1, 1, 1, 2) 3
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45 K[T1, . . . , T6]/〈T1T
2
2 T

3
3 + T4T

5
5 + T 3

6 〉 (1, 1, 1, 1, 1, 2) 3

46 K[T1, . . . , T6]/〈T1T
2
2 T

3
3 + T 2

4 T
4
5 + T 3

6 〉 (1, 1, 1, 1, 1, 2) 3

47 K[T1, . . . , T6]/〈T 2
1 T

2
2 T

2
3 + T4T

5
5 + T 3

6 〉 (1, 1, 1, 1, 1, 2) 3

48 K[T1, . . . , T6]/〈T1T
2
2 T

3
3 + T 3

4 T
3
5 + T 2

6 〉 (1, 1, 1, 1, 1, 3) 32

49 K[T1, . . . , T6]/〈T1T
2
2 T

3
3 + T4T

5
5 + T 2

6 〉 (1, 1, 1, 1, 1, 3) 32

50 K[T1, . . . , T6]/〈T1T2T
4
3 + T 3

4 T
3
5 + T 2

6 〉 (1, 1, 1, 1, 1, 3) 32

51 K[T1, . . . , T6]/〈T1T2T
4
3 + T4T

5
5 + T 2

6 〉 (1, 1, 1, 1, 1, 3) 32

52 K[T1, . . . , T6]/〈T1T2T
6
3 + T4T

7
5 + T 2

6 〉 (1, 1, 1, 1, 1, 4) 2

53 K[T1, . . . , T6]/〈T1T2T
6
3 + T 3

4 T
5
5 + T 2

6 〉 (1, 1, 1, 1, 1, 4) 2

54 K[T1, . . . , T6]/〈T1T
2
2 T

5
3 + T4T

7
5 + T 2

6 〉 (1, 1, 1, 1, 1, 4) 2

55 K[T1, . . . , T6]/〈T1T
2
2 T

5
3 + T 3

4 T
5
5 + T 2

6 〉 (1, 1, 1, 1, 1, 4) 2

56 K[T1, . . . , T6]/〈T1T
3
2 T

4
3 + T4T

7
5 + T 2

6 〉 (1, 1, 1, 1, 1, 4) 2

57 K[T1, . . . , T6]/〈T1T
3
2 T

4
3 + T 3

4 T
5
5 + T 2

6 〉 (1, 1, 1, 1, 1, 4) 2

58 K[T1, . . . , T6]/〈T 2
1 T

3
2 T

3
3 + T4T

7
5 + T 2

6 〉 (1, 1, 1, 1, 1, 4) 2

59 K[T1, . . . , T6]/〈T 2
1 T

3
2 T

3
3 + T 3

4 T
5
5 + T 2

6 〉 (1, 1, 1, 1, 1, 4) 2

60 K[T1, . . . , T6]/〈T1T2 + T3T4 + T5T6〉 (1, 1, 1, 1, 1, 1) 512

61 K[T1, . . . , T6]/〈T1T
2
2 + T3T

2
4 + T5T

2
6 〉 (1, 1, 1, 1, 1, 1) 243

62 K[T1, . . . , T6]/〈T1T
3
2 + T3T

3
4 + T5T

3
6 〉 (1, 1, 1, 1, 1, 1) 64

63 K[T1, . . . , T6]/〈T1T
3
2 + T3T

3
4 + T 2

5 T
2
6 〉 (1, 1, 1, 1, 1, 1) 64

64 K[T1, . . . , T6]/〈T1T
4
2 + T3T

4
4 + T5T

4
6 〉 (1, 1, 1, 1, 1, 1) 5

65 K[T1, . . . , T6]/〈T1T
4
2 + T3T

4
4 + T 2

5 T
3
6 〉 (1, 1, 1, 1, 1, 1) 5

66 K[T1, . . . , T6]/〈T1T
4
2 + T 2

3 T
3
4 + T 2

5 T
3
6 〉 (1, 1, 1, 1, 1, 1) 5

67 K[T1, . . . , T6]/〈T 2
1 T

3
2 + T 2

3 T
3
4 + T 2

5 T
3
6 〉 (1, 1, 1, 1, 1, 1) 5

68 K[T1, . . . , T7]/
〈

T1T2+T3T4+T5T6,

αT3T4+T5T6+T 2
7

〉
(1, 1, 1, 1, 1, 1, 1) 324

69 K[T1, . . . , T7]/
〈

T1T
2
2 +T3T

2
4 +T5T

2
6 ,

αT3T
2
4 +T5T

2
6 +T 3

7

〉
(1, 1, 1, 1, 1, 1, 1) 9

where in the last two rows of the table the parameter α can be any element from
K∗ \ {1}.

By the result of [26], the singular quintics of this list are rational degenerations
of smooth non-rational Fano fourfolds.

Documenta Mathematica 16 (2011) 71–109



Multigraded Factorial Rings and Fano Varieties 101

4 Geometry of the locally factorial threefolds

In this section, we take a closer look at the (factorial) singularities of the Fano
varieties X listed in Theorem 3.2. Recall that the discrepancies of a resolution
ϕ : X̃ → X of a singularity are the coefficients of KX̃ − ϕ∗KX , where KX

and KX̃ are canonical divisors such that KX̃ − ϕ∗KX is supported on the
exceptional locus of ϕ. A resolution is called crepant, if its discrepancies vanish
and a singularity is called canonical (terminal), if it admits a resolution with
nonnegative (positive) discrepancies. By a relative minimal model we mean a

projective morphism X̃ → X such that X̃ has at most terminal singularities
and its relative canonical divisor is relatively nef.

Theorem 4.1. For the nine 3-dimensional Fano varieties listed in Theo-
rem 3.2, we have the following statements.

(i) No. 4 is a smooth quadric in P4.

(ii) Nos. 1,3,5,7 and 9 are singular with only canonical singularities and all
admit a crepant resolution.

(iii) Nos. 6 and 8 are singular with non-canonical singularities but admit a
smooth relative minimal model.

(iv) No. 2 is singular with only canonical singularities, one of them of type
cA1, and admits only a singular relative minimal model.

The Cox ring of the relative minimal model X̃ as well as the the Fano degree
of X itself are given in the following table.

No. R(X̃) (−KX)3

1 K[T1, . . . , T14]/(T1T2T
2
3 T

3
4 T

4
5 T

5
6 + T 3

7 T
2
8 T9 + T 2

10T11〉 8

2 K[T1, . . . , T9]/〈T1T2T
2
3 T

4
4 + T5T

2
6 T

3
7 + T 2

8 〉 8

3 K[T1, . . . , T8]/〈T1T
2
2 T

3
3 + T4T

3
5 + T6T

2
7 〉 8

4 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 2
5 〉 54

5 K[T1, . . . , T6]/〈T1T
2
2 + T3T

2
4 + T 3

5 T6〉 24

6 K[T1, . . . , T6]/〈T1T
3
2 + T3T

3
4 + T 4

5 T6〉 4

7 K[T1, . . . , T7]/〈T1T
3
2 + T3T

3
4 + T 2

5 T6〉 16

8 K[T1, . . . , T7]/〈T1T
5
2 + T3T

5
4 + T 2

5 T6〉 2

9 K[T1, . . . , T46]/
〈

T1T2T3T
2
4 T 2

5 T
3
6 T 3

7 T 4
8 T

4
9 T 5

10 +

+ T11···T18T
2
19···T

2
24T

3
25T

3
26 + T27···T32T

2
33

〉
2

Documenta Mathematica 16 (2011) 71–109



102 J. Hausen, E. Herppich, H. Süß

For the proof, it is convenient to work in the language of polyhedral divisors
introduced in [1] and [2]. As we are interested in rational varieties with a
complexity one torus action, we only have to consider polyhedral divisors on
the projective line Y = P1. This considerably simplifies the general definitions
and allows us to give a short summary. In the sequel, N ∼= Zn denotes a lattice
and M = Hom(N,Z) its dual. For the associated rational vector spaces we
write NQ and MQ. A polyhedral divisor on the projective line Y := P1 is a
formal sum

D =
∑

y∈Y

Dy · y,

where the coefficients Dy ⊆ NQ are (possibly empty) convex polyhedra all
sharing the same tail (i.e. recession) cone DY = σ ⊆ NQ, and only finitely
many Dy differ from σ. The locus of D is the open subset Y (D) ⊆ Y obtained
by removing all points y ⊆ Y with Dy = ∅. For every u ∈ σ∨ ∩M we have the
evaluation

D(u) :=
∑

y∈Y

min
v∈Dy

〈u, v〉·y,

which is a usual rational divisor on Y (D). We call the polyhedral divisor D on
Y proper if deg D ( σ holds, where the polyhedral degree is defined by

deg D :=
∑

y∈Y

Dy.

Every proper polyhedral divisor D on Y defines a normal affine variety X(D)
of dimension rk (N) + 1 coming with an effective action of the torus T =
SpecK[M ]: set X(D) := SpecA(D), where

A(D) :=
⊕

u∈σ∨∩M

Γ(Y (D),O(D(u))) ⊆
⊕

u∈M

K(Y ) · χu.

A divisorial fan, is a finite set Ξ of polyhedral divisors D on Y , all having their
polyhedral coefficients Dy in the same NQ and fulfilling certain compatibility
conditions, see [2]. In particular, for every point y ∈ Y , the slice

Ξy := {Dy; D ∈ Ξ}

must be a polyhedral subdivision. The tail fan is the set ΞY of the tail cones
DY of the D ∈ Ξ; it is a fan in the usual sense. Given a divisorial fan Ξ, the
affine varieties X(D), where D ∈ Ξ, glue equivariantly together to a normal
variety X(Ξ), and we obtain every rational normal variety with a complexity
one torus action this way.

Smoothness of X = X(Ξ) is checked locally. For a proper polyhedral divisor
D on Y , we infer the following from [28, Theorem 3.3]. If Y (D) is affine,
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then X(D) is smooth if and only if cone({1} × Dy) ⊆ Q × NQ, the convex,
polyhedral cone generated by {1} × Dy, is regular for every y ∈ Y (D). If
Y (D) = Y holds, then X(D) is smooth if and only if there are y, z ∈ Y such
that D = Dyy+Dzz holds and cone({1}×Dy) + cone({−1}×Dz) is a regular
cone in Q×NQ. Similarly to toric geometry, singularities of X(D) are resolved
by means of subdividing D. This means to consider divisorial fans Ξ such that
for any y ∈ Y , the slice Ξy is a subdivision of Dy. Such a Ξ defines a dominant
morphism X(Ξ) → X(D) and a slight generalization of [2, Thm. 7.5.] yields
that this morphism is proper.

Proposition 4.2. The 3-dimensional Fano varieties No. 1-8 listed in Theo-
rem 3.2 and their relative minimal models arise from divisorial fans having the
following slices and tail cones.

1

b

(−1,1)

− 4
5−

3
4−

2
3−

1
2

b

1
3
1
2 1

b

1
2 1

bb

(0,1)

(0,-1)

(-1,6)

(1,0)

2

b
(− 1

4 ,
1
2 )

(0, 12 )

(−1,1)

b
(− 2

3 ,0)

(− 1
2 ,0)

b

(1,− 1
2 )

bb

(-4,3)

(1,0)

(2,-2.6)

(2,-1)

(1,-1)

(0,1)

(-1,1)

3

b

( 1
2 ,

1
2 )

( 2
3 ,

1
3 )

b

(0,− 1
3 )

b
(− 1

2 ,0) bb

(-3,-2)

(1,0)

(0,1)

(-1,0)

(1,1)

(0,-1)

4

b
(−1,0)

b

(0,−1)

b
( 1
2 ,

1
2 ) bb

(-1,1) (1,1)

(1,-1)(-1,-1)
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5

b
(− 1

2 ,0) b

(0,− 1
2 )

b
( 1
3 ,

1
3 ) bb

(-1,2)

(1,1)

(2,-1)

(-1,-1)
(0,-1)

(-1,0)

6

b
(− 1

3 ,0) b

(0,− 1
3 )

b
( 1
4 ,

1
4 ) bb

(-1,3)

(1,1)

(3,-1)

(-1,-1)
(0,-1)

(-1,0)

7

b

( 2
3 ,

1
3 )

b

(0,− 1
3 )

b

(− 1
2 ,0)

bb

(1,2)

(1,0)

(-3,-2)

(-1,0)

(2,1)

(0,-1)

8

b

( 3
5 ,

1
5 )

b

(0,− 1
5 )

b

(− 1
2 ,0)

bb

(1,2)

(1,0)

(-5,-2)

(-1,0)

(3,1)

(0,-1)

The above table should be interpreted as follows. The first three pictures in
each row are the slices at 0, 1 and ∞ and the last one is the tail fan. The
divisorial fan of the fano variety itself is given by the solid polyhedra in the
pictures. Here, all polyhedra of the same gray scale belong to the same poly-
hedral divisor. The subdivisions for the relative minimal models are sketched
with dashed lines. In general, polyhedra with the same tail cone belong all
to a unique polyhedral divisor with complete locus. For the white cones in-
side the tail fan we have another rule: for every polyhedron ∆ ∈ Ξy with the
given white cone as its tail there is a polyhedral divisor ∆ · y + ∅ · z ∈ Ξ, with
z ∈ {0, 1,∞} \ {y}. Here, different choices of z lead to isomorphic varieties,
only the affine covering given by the X(D) changes.

In order to prove Theorem 4.1, we also have to understand invariant divisors on
X = X(Ξ) in terms of Ξ, see [15, Prop. 4.11 and 4.12] for details. A first type
of invariant prime divisors, is in bijection Dy,v ↔ (y, v) with the vertices (y, v),
where y ∈ Y and v ∈ Ξy is of dimension zero. The order of the generic isotropy
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group along Dy,v equals the minimal positive integer µ(v) with µ(v)v ∈ N . A
second type of invariant prime divisors, is in D̺ ↔ ̺ with the extremal rays
̺ ∈ ΞY , where a ray ̺ ∈ ΞY is called extremal if there is a D ∈ Ξ such that
̺ ⊆ DY and deg D ∩ ̺ = ∅ holds. The set of extremal rays is denoted by Ξ×Y .
The divisor of a semi-invariant function f · χu ∈ K(X) is then given by

div(f · χu) = −
∑

y∈Y

∑

v∈Ξ
(0)
y

µ(v) · (〈v, u〉+ ordyf) ·Dy,v −
∑

̺∈Ξ×

Y

〈n̺, u〉 ·D̺.

Next we describe the canonical divisor. Choose a point y0 ∈ Y such that
Ξy0 = ΞY holds. Then a canonical divisor on X = X(Ξ) is given by

KX = (s− 2) · y0 −
∑

Ξy 6=ΞY

∑

v∈Ξ
(0)
i

Dy,v −
∑

̺∈Ξ×

Y

E̺.

Proposition 4.3. Let D be a proper polyhedral divisor with Y (D) = P1, let Ξ
be a refinement of D and denote by y1, . . . , ys ∈ Y the points with Ξyi

6= ΞY .
Then the associated morphism ϕ : X(Ξ) → X(D) satisfies the following.

(i) The prime divisors in the exceptional locus of ϕ are the divisors Dyi,v

and D̺ corresponding to v ∈ Ξ
(0)
yi \ D

(0)
yi and ̺ ∈ Ξ×Y \ D× respectively.

(ii) Then the discrepancies along the prime divisors Dyi,v and D̺ of (i) are
computed as

dyi,v = −µ(v) · (〈v, u′〉+ αy)− 1, d̺ = −〈v̺, u
′〉 − 1,

where the numbers αi are determined by



−1 −1 . . . −1 0
µ(v11) 0 . . . 0 µ(v11)v

1
1

...
...

...
...

µ(vr11 ) 0 . . . 0 µ(vr11 )vr11
. . .

0 0 . . . µ(v1s) µ(v1s)v
1
s

...
...

...
...

0 0 . . . µ(vrss ) µ(vrss )vrss
0 0 . . . 0 n̺1

...
...

...
...

0 0 . . . 0 n̺r




·




αy1

...
αys

u


 =




2− s
1
...
1
1
...
1




Proof. The first claim is obvious by the characterization of invariant prime
divisors. For the second claim note that by [24, Theorem 3.1] every Cartier
divisor on X(D) is principal. Hence, we may assume

ℓ ·KX = div(f · χu), div(f) =
∑

y

αy · y.
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Then our formulæ for div(f · χu) and KX provide a row for every vertex vji ∈
Ξyi

, i = 0, . . . , s, and for every extremal ray ̺i ∈ Ξ×, and ℓ−1(α, u) is the
(unique) solution of the above system.

Note, that in the above Proposition, the variety X(D) is Q-Gorenstein if and
only if the linear system of equations has a solution.

Proof of Theorem 4.1 and Proposition 4.2. We exemplarily discuss variety
number eight. Recall that its Cox ring is given as

R(X) = K[T1, . . . , T5]/(T1T
5
2 + T3T

5
4 + T 2

5 )

with the degrees 1, 1, 1, 1, 3. In particular, X is a hypersurface of degree 6
in P(1, 1, 1, 1, 3), and the self-intersection of the anti-canonical divisor can be
calculated as

(−K3
X) = 6 ·

(1 + 1 + 1 + 1 + 3− 6)3

1 · 1 · 1 · 1 · 3
= 2.

The embedding X ⊆ P(1, 1, 1, 1, 3) is equivariant, and thus we can use the tech-
nique described in [1, Sec. 11] to calculate a divisorial fan Ξ for X . The result
is the following divisorial fan; we draw its slices and indicate the polyhedral
divisors with affine locus by colouring their tail cones DY ∈ ΞY white:

b

( 3
5 ,

1
5 )

Ξ0

b

(0,− 1
5 )

Ξ1

b

(− 1
2 ,0)

Ξ∞

bb

ΞY

(1,2)

(1,0)

(-5,-2)

(-1,0)

One may also use [15, Cor. 4.9.] to verify that Ξ is the right divisorial fan: it
computes the Cox ring in terms of Ξ, and, indeed, we obtain again R(X). Now
we subdivide and obtain a divisorial fan having the refined slices as indicated
in the following picture.

b

( 3
5 ,

1
5 )

b

(0,− 1
5 )

b

(− 1
2 ,0)

bb

(1,2)

(1,0)

(-5,-2)

(-1,0)

(3,1)

(0,-1)

Here, the white ray Q≥0 · (1, 0) indicates that the polyhedral divisors with that
tail have affine loci. According to [15, Cor. 4.9.], the corresponding Cox ring is
given by

R(X̃) = K[T1, . . . , T7]/〈T1T
5
2 + T3T

5
4 + T 2

5 T6〉.
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We have to check that X̃ is smooth. Let us do this explicitly for the affine chart
defined by the polyhedral divisor D with tail cone DY = cone((1, 2), (3, 1)).
Then D is given by

D =

((
3

5
,
1

5

)
+ σ

)
· {0} +

([
−
1

2
, 0

]
× 0 + σ

)
· {∞}.

Thus, cone({1} ×D0) + cone({−1}×D∞) is generated by (5, 3, 1), (−2,−1, 0)
and (−1, 0, 0); in particular, it is a regular cone. This implies smoothness of
the affine chart X(D). Furthermore, we look at the affine charts defined by
the polyhedral divisors D with tail cone DY = cone(1, 0). Since they have
affine locus, we have to check cone({1} × Dy), where y ∈ Y . For y 6= 0, 1, we
have Dy = DY . In this case, cone({1} × Dy) is generated by (1, 1, 0), (0, 1, 0)
and thus is regular. For y = 0, we obtain that cone({1} × Dy) is generated
by (5, 3, 1), (1, 0, 0), (0, 1, 0) and this is regular. For y = 1 we get the same
result. Hence, the polyhedral divisors with tail cone Dy = cone(1, 0) give rise
to smooth affine charts.

Now we compute the discrepancies according to Proposition 4.3. The resolution
has two exceptional divisors D∞,0 and E(1,0). We work in the chart defined by
the divisor D ∈ Ξ with tail cone DY = cone((1, 2), (1, 0)). The resulting system
of linear equations and its unique solution are given by




−1 −1 −1 0 0 −1
5 0 0 3 1 1
0 1 0 0 0 1
0 5 0 0 −1 1
0 0 2 −1 0 1




,




α0

α1

α∞
u


 =




0
1
0
−1
4




.

The formula for the discrepancies yields d∞,0 = −1 and d(1,0) = −2. In
particular, X has non-canonical singularities. By a criterion from [24, Sec. 3.4.],

we know that D∞,0 + 2 · E(1,0) is a nef divisor. It follows that X̃ is a minimal
model over X .
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