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Abstract. In this article we introduce a very simple an widely
applicable criterion for extending natural transformations to higher
K-theory. More precisely, we prove that every natural transformation
defined on the Grothendieck group and with values in an additive the-
ory admits a unique extension to higher K-theory. As an application,
the higher trace maps and the higher Chern characters originally con-
structed by Dennis and Karoubi, respectively, can be obtained in an
elegant, unified, and conceptual way from our general results.
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Introduction

In his foundational work, Grothendieck [10] introduced a very simple and el-
egant construction K0, the Grothendieck group, in order to formulate a far-
reaching generalization of the Riemann-Roch theorem. Since then, this ver-
satile construction spawned well-beyond the realm of algebraic geometry to
become one of the most important (working) tools in mathematics.
Latter, through revolutionary topological techniques, Quillen [23] extended the
Grothendieck group to a whole family of higher K-theory groups Kn, n ≥

0. However, in contrast with K0, these higher K-theory groups are rather
misterious and their computation is often out of reach. In order to capture
some of its flavour, Connes, Dennis, Karoubi, and others, constructed natural
transformations towards simpler theories E making use of a variety of highly
involved techniques; see [6, 7, 15]. Typically, the construction of a natural
transformation K0 ⇒ E0 is very simple, while its extension Kn ⇒ En to
higher K-theory is a real “tour-de-force”. For example, the trace map K0 ⇒

HH0 consists simply in taking the trace of an idempotent, while its extension

1The author was partially supported by the grant FCT-Portugal PTDC/MAT/098317/2008.
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Kn ⇒ HHn makes use of an array of tools (Hurewicz maps, group homology,
assembly maps, etc) coming from topology, algebra, representation theory, etc.
These phenomena motivate the following general questions:

Questions:Given a natural transformation K0 ⇒ E0, is it possible to extend
it to higher K-theory Kn ⇒ En ? If so, is such an extension unique ?

In this article we prove that if E verifies three very simple conditions, not only
such an extension exists, but it is moreover unique. The precisely formulation
of our results makes use of the language of Grothendieck derivators, a formalism
which allows us to state and prove precise universal properties; see Appendix A.

1. Statement of results

A differential graded (=dg) category, over a fixed commutative base ring k,
is a category enriched over cochain complexes of k-modules (morphisms sets
are such complexes) in such a way that composition fulfills the Leibniz rule :
d(f ◦ g) = (df) ◦ g + (−1)deg(f)f ◦ (dg). Dg categories extend the classical
notion of (dg) k-algebra and solve many of the technical problems inherent
to triangulated categories; see Keller’s ICM address [16]. In non-commutative
algebraic geometry in the sense of Bondal, Drinfeld, Kaledin, Kontsevich, Van
den Bergh, and others, they are considered as differential graded enhancements
of (bounded) derived categories of quasi-coherent sheaves on a hypothetic non-
commutative space; see [1, 8, 9, 14, 17, 18].
Let E : dgcat → Spt be a functor, defined on the category of dg categories, and
with values in the category of spectra [2]. We say that E is an additive functor
if it verifies the following three conditions:

(i) filtered colimits of dg categories are mapped to filtered colimits of spec-
tra;

(ii) derived Morita equivalences (i.e. dg functors which induce an equiva-
lence on the associated derived categories; see [16, §4.6]) are mapped
to weak equivalences of spectra;

(iii) split exact sequences (i.e. sequences of dg categories which become split
exact after passage to the associated derived categories; see [24, §13])
are mapped to direct sums

0 // A // B //vv
C //vv

0 7→ E(A)⊕ E(C) ≃ E(B)

in the homotopy category of spectra.

Examples of additive functors include Hochschild homology (HH), cyclic ho-
mology (HC), and algebraic K-theory (K); see [16, §5]. Recall from [25] that
the category dgcat carries a Quillen model structure whose weak equivalences
are the derived Morita equivalences. Given an additive functor E, we obtain
then an induced morphism of derivators E : HO(dgcat) → HO(Spt). Associated
to E, we have also the composed functors

En : dgcat
E
−→ Spt

πs

n

−→ Ab n ≥ 0 ,
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where πs
n denotes the nth stable homotopy group functor and Ab the category

of abelian groups. Our answer to the questions stated in the Introduction is:

Theorem 1.1. For any additive functor E, the natural map

(1.2) Nat(K,E)
∼
→ Nat(K0, E0)

is bijective. In particular, every natural transformation φ : K0 ⇒ E0 admits a
canonical extension φn : Kn ⇒ En to all higher K-theory groups.

Intuitively speaking, Theorem 1.1 show us that all the information concern-
ing a natural transformation is encoded on the Grothendieck group. Its proof
relies in an essential way on the theory of non-commutative motives, a sub-
ject envisioned by Kontsevich [17, 19] and whose development was initiated
in [3, 4, 24, 25, 27, 28]. In the next section we illustrate the potential of this
general result by explaining how the highly involved constructions of Dennis
and Karoubi can be obtained as simple instantiations of the above theorem.
Due to its generality and simplicity, we believe that Theorem 1.1 will soon be
part of the toolkit of any mathematician whose research comes across the above
conditions (i)-(iii).

2. Applications

2.1. Higher trace maps. Recall from [16, §5.3] the construction of the
Hochschild homology complex HH(A) of a dg category A. This construction
is functorial in A and so by promoting it to spectra we obtain a well-defined
functor

(2.1) HH : dgcat −→ Spt .

As explained in loc. cit., this functor verifies conditions (i)-(iii) and hence it
is additive. Now, given a k-algebra A, recall from [20, Example 8.3.6] the
construction of the classical trace map

K0(A) → HH0(A) = A/[A,A] .

Roughly, it is the map induced by sending an idempotent matrix to the image
of its trace (i.e. the sum of the diagonal entries) in the quocient A/[A,A]. This
construction extends naturally from k-algebras to dg categories (see [26]) giving
rise to a natural transformation

(2.2) K0 ⇒ HH0 .

Proposition 2.3. In Theorem 1.1 let E be the additive functor (2.1) and
let φ be the natural transformation (2.2). Then, for every k-algebra A, the
canonical extension φn : Kn(A) → HHn(A) of φ agrees with the nth trace map
constructed originally by Dennis (see [20, §8.4 and §11.4]).
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2.2. Higher Chern characters. Recall also from [16, §5.3] the construction
of the cyclic homology complex HC(A) of a dg category A. By promoting this
construction to spectra we obtain a functor

(2.4) HC : dgcat −→ Spt

which verifies conditions (i)-(iii). Given a k-algebraA, recall from [20, Theorem
8.3.4] the construction of the Chern characters

ch0,i : K0(A) −→ HC2i(A) i ≥ 0 .

Morally, these are the non-commutative analogues of the classical Chern char-
acter with values in even dimensional de Rham cohomology. As shown in [26]
this construction extends naturally from k-algebras to dg categories giving rise
to natural transformations

K0 ⇒ HC2i i ≥ 0 .

Proposition 2.5. In Theorem 1.1 let E be the additive functor Ω2iHC (ob-
tained by composing (2.4) with the (2i)th-fold looping functor on Spt) and let
φ be the natural transformation K0 ⇒ (Ω2iHC)0 = HC2i. Then, for every k-
algebra A, the canonical extension φn : Kn(A) → (Ω2iHC)n(A) = HCn+2i(A)
of φ agrees with the higher Chern character chn,i constructed originally by
Karoubi (see [15, §2.27-2.36]).

3. Proof of Theorem 1.1

We start by describing the natural map (1.2). As mentioned in §1, the category
dgcat carries a Quillen model structure whose weak equivalences are the derived
Morita equivalences; see [25, Theorem 5.3]. Let us write Hmo for the associated
homotopy category and l : dgcat → Hmo for the localization functor. According
to our notation the map (1.2) sends a natural transformation Φ ∈ Nat(K,E)
to the natural transformation πs

0 ◦Φ(e) ◦ l ∈ Nat(K0, E0). Pictorially, we have:

(3.1) dgcat
l // Hmo

E(e)

44

K(e)

**
⇓Φ(e) Ho(Spt)

πs

0 // Ab .

The functors K,E : dgcat → Spt are additive and so the following diagrams

dgcat

l

��

K // Spt

��

dgcat

l

��

E // Spt

��
Hmo

K(e)
// Ho(Spt) Hmo

E(e)
// Ho(Spt)

are commutative. Moreover, the 0th stable homotopy group functor πs
0 descends

to the homotopy category Ho(Spt). These facts show us that the composed
horizontal functors in the above diagram (3.1) are in fact K0 and E0.
We now study the set Nat(K0, E0). Recall from [16, §5.1] the notion of additive
invariant. Intutively, it consists of a functor defined on dgcat and with values
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in an additive category which verifies conditions similar to (ii)-(iii). Since by
hypothesis E is additive, the composed functor

E0 : dgcat
l

−→ Hmo
E(e)
−→ Ho(Spt)

πs

0

−→ Ab

is an additive invariant. Hence, as proved in [26, Proposition 4.1], we have the
following natural bijection

Nat(K0, E0)
∼
−→ E0(k) η 7→ η(k)([k]) .(3.2)

Some explanations are in order: k denotes the dg category naturally associated
to the base ring k, i.e. the dg category with only one object and with k as
the dg algebra of endomorphisms (concentrated in degree zero); the symbol [k]
stands for the class of k (as a module over itself) in the Grothendieck group
K0(k) = K0(k).
Let us now turn our attention to Nat(K,E). Recall from [24, §15] the notion of
additive invariant of dg categories. Roughly speaking, it consists of a morphism
of derivators defined on HO(dgcat) and with values in a triangulated derivator
which verifies conditions analogous to (i)-(iii). Since the functor E is additive,
the induced morphism of derivators

E : HO(dgcat) −→ HO(Spt)

is an additive invariant of dg categories. Following [3, Theorem 8.1] we have
then a natural bijection2

Nat(K,E)
∼
−→ πs

0 E(k) = E0(k) .(3.3)

A careful inspection of the proof of [3, Theorem 8.1] show us that (3.3) sends
a natural transformation Φ ∈ Nat(K,E) to the element πs

0(Φ(e)(k))([k]) of the
abelian group E0(k). Note that this element is simply the image of [k] by the
abelian group homomorphism

K0(k) = πs
0(K(e)(k))

πs

0
(Φ(e)(k))
−→ πs

0(E(e)(k)) = E0(k) .

We now prove that the following diagram

(3.4) Nat(K,E)
(1.2) //

(3.3) ''OOOOOOOOOOO
Nat(K0, E0)

(3.2)

��
E0(k)

commutes. Let Φ ∈ Nat(K,E). On the one hand, we observe that the composed
map (3.2) ◦ (1.2) sends Φ to the element (πs

0 ◦ Φ(e) ◦ l)(k)([k]) of the abelian
group E0(k). On the other hand, the following equalities hold:

(Φ(e) ◦ l)(k) = Φ(e)(k) (πs
0 ◦ Φ(e))(k) = πs

0(Φ(e)(k)) .

2In [3] this bijection was established for a localizing invariant E. However, the arguments
in the additive case are completely similar.
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Therefore, we have

(πs
0 ◦ Φ(e) ◦ l)(k)([k]) = πs

0(Φ(e)(k))([k]) .

Finally, since the right-hand side in this latter equality coincides with the image
of Φ by the map (3.3), we conclude that (3.3) = (3.2) ◦ (1.2).
Theorem 1.1 now follows from diagram (3.4) and the fact that both maps
(3.2) and (3.3) are bijective. The canonical extension φn : Kn ⇒ En of φ :
K0 ⇒ E0 is then the composition πs

n ◦ Φ(e) ◦ l, where Φ is the unique natural
transformation associated to φ under the bijection (1.2).

4. Proof of Proposition 2.3

The essence of the proof consists in describing the unique natural transfor-
mation Φ ∈ Nat(K,HH) which corresponds to (2.2) under the bijection (1.2).
Recall from [24, §15] the construction of the universal additive invariant of dg
categories

UA : HO(dgcat) −→ MotA .

Given any Quillen model category M we have an induced equivalence of cate-
gories

(4.1) (UA)
∗ : Hom !(MotA,HO(M))

∼
−→ HomA(HO(dgcat),HO(M)) ,

where the left-hand side denotes the category of homotopy colimit preserving
morphisms of derivators and the right-hand side the category of additive in-
variants of dg categories. The algebraic K-theory functor K is additive and
so the induced morphism K is an additive invariant of dg categories. Thanks
to equivalence (4.1), it factors then uniquely through UA. Recall from [24,
Theorem 15.10] that for every dg category A we have a weak equivalence of
spectra

RHom(UA(k),UA(A)) ≃ K(A) ,

where RHom(−,−) denotes the spectral enrichment of MotA (see [3, §A.3]).
Therefore, we conclude that K can be expressed as the following composition

(4.2) HO(dgcat)
UA
−→ MotA

RHom(UA(k),−)
−→ HO(Spt) .

The Hochschild homology functor, with values in the projective Quillen model
category C(k) of cochain complexes of k-modules (see [12, Theorem 2.3.11]),
verifies conditions (i)-(iii). Hence, it gives rise to an additive additive invariant
of dg categories which we denote by

HH : HO(dgcat) −→ HO(C(k)) .

Note that, according to our notation, HH can be expressed as the following
composition

(4.3) HO(dgcat)
HH
−→ HO(C(k))

RHom(k,−)
−→ HO(Spt) .
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Equivalence (4.1) provide us then the following commutative diagram

HO(dgcat)

UA

��

HH // HO(C(k))

MotA

HH

88ppppppppppp

.

By construction, the morphism HH maps UA(k) to HH(k) = k. Hence, by
making use of the above factorizations (4.2) and (4.3), we conclude that it in-
duces a natural transformation Φ ∈ Nat(K,HH). We now show that the image
of this natural transformation Φ by the map (1.2) is the natural transformation
(2.2). By taking E = HH in bijection (3.2) we obtain:

Nat(K0, HH0) ≃ HH0(k) ≃ k η 7→ η(k)([k]) .(4.4)

Under this bijection, the natural transformation (2.2) corresponds to the unit
of the base ring k; see [26, Theorem 1.3]. Hence, it suffices to show that the
same holds for the natural transformation πs

0◦Φ(e)◦l associated to Φ. The class
[k] of k (as a module over itself) in the Grothendieck group K0(k) corresponds
to the identity morphism in

HomMotA(e)(UA(k),UA(k)) ≃ K0(k) ≃ K0(k) .

By functoriality, HH(e) maps this identity morphism to the identity morphism
in HomD(k)(HH(k),HH(k)). Under the natural isomorphisms

HomD(k)(HH(k),HH(k)) ≃ HomD(k)(k, k) ≃ HH0(k) ≃ k

the identity morphism corresponds to the unit of the base ring k and so we
conclude that πs

0 ◦Φ(e) ◦ l agrees with (2.2). This implies that Φ is in fact the
unique natural transformation which corresponds to (2.2) under the bijection
(1.2).
Finally, let A be a k-algebra. As proved in [27, Theorem 2.8], the canonical
extension φn : Kn(A) → HHn(A) of φ (i.e. the abelian group homomorphism
(πs

n ◦Φ(e) ◦ l)(A)) agrees with the nth trace map constructed by Dennis and so
the proof is finished.

5. Proof of Proposition 2.5

We prove first the particular case (i = 0). Let us start by describing the unique
natural transformation Φ ∈ Nat(K,HC) which corresponds to φ : K0 ⇒ HC0

under the bijection (1.2). Observe that HC can be expressed as the following
composition

HO(dgcat)
M

−→ HO(C(Λ))
P

−→ HO(k[u]-Comod)
U

−→ HO(C(k))
RHom(k,−)

−→ HO(Spt) .

Some explanations are in order: C(Λ) is the projective Quillen model category
of mixed complexes and M the morphism induced by the mixed complex con-
struction3 (see [4, Example 7.10]); k[u]-Comod is the Quillen model category of
k[u]-comodules (where k[u] is the Hopf algebra of polynomials in one variable

3Denoted by C in [4, Example 7.10].
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of degree 2) and P the morphism induced by the perioditization construction
(see [4, Example 7.11]); U is the morphism induced by the natural forgetful
construction. Moreover, as explained in [4, Examples 8.10 and 8.11], negative
cyclic homology and periodic cyclic homology admit the following factoriza-
tions:

(5.1) HC
− : HO(dgcat)

M
−→ HO(C(Λ))

RHom(k,−)
−→ HO(Spt)

HP : HO(dgcat)
(P◦M)
−→ HO(k[u]-Comod)

RHom(k[u],−)
−→ HO(Spt) .

Therefore, since P maps k to k[u] and U maps k[u] to k, we obtain the classical
natural transformations

(5.2) HC
− ⇒ HP ⇒ HC

between the cyclic homology variants; see [20, §5.1]. The mixed complex mor-
phism M is an additive invariant of dg categories and so by equivalence (4.1)
it factors uniquely through UA. We obtain then a commutative diagram

HO(dgcat)
M //

UA

��

HO(C(Λ))

MotA

M

77ppppppppppp

.

By construction, the morphism M maps UA(k) to M(k) = k. Therefore, making
use of the factorizations (4.2) and (5.1), we conclude that M induces a natural
transformation Φ1 : K ⇒ HC−. Its composition with (5.2) gives rise to a nat-
ural transformation which we denote by Φ ∈ Nat(K,HC). We now show that
the image of Φ by the map (1.2) is the natural transformation φ : K0 ⇒ HC0.
Recall from [26, Theorem 1.7(ii)] that φ admits the following factorization

K0
ch

−

0

⇒ HC−
0 ⇒ HP0 ⇒ HC0 ,

where ch−
0 is the negative Chern character and the other natural transforma-

tions are the ones associated to (5.2). Hence, it suffices to show that the natural
transformation πs

0 ◦ Φ1(e) ◦ l, associated to Φ1 : K ⇒ HC−, agrees with ch−
0 .

This fact is proved in [28, Proposition 4.2] and so we conclude that Φ is the
unique natural transformation which corresponds to φ under the bijection (1.2).
Now, let A be a k-algebra. As explained in [20, §11.4.3], Karoubi’s Chern
character chn,0(A) can be expressed as the following composition

Kn(A)
ch−

n
(A)

−→ HC−
n (A) −→ HPn(A) −→ HCn(A) .

Note that the right-hand side maps coincide the ones associated to (5.2). There-
fore, it suffices to show that the abelian group homomorphism

(πs
n ◦ Φ1(e) ◦ l)(A) : Kn(A) −→ HC−

n (A)

agrees with ch−
n (A). This latter fact is proved in [27, Theorem 2.8] and so the

proof of the particular case (i = 0) is finished.
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We now prove the case (i > 0). Recall from [13, §1] that for any dg category A

we have a natural periodicity map S : Ω2M(A) → M(A) in the category C(Λ)
of mixed complexes. This construction is natural in A and so by iterating it
we obtain an infinite sequence of maps

(5.3) · · · −→ Ω2i
M(A) −→ · · · −→ Ω2

M(A) −→ M(A) .

Under the natural equivalences

RHom(k,Ω2i
M(−)) ≃ Ω2i

HC
−

RHom(k[u],P(Ω2i
M(−))) ≃ Ω2i

HP

RHom(k,U(P(Ω2i
M(−)))) ≃ Ω2i

HC ,

the above sequence of maps (5.3) gives rise to the following commutative dia-
gram of natural transformations

(5.4) K
Φ1 +3

HC− +3 HP +3 HC

Ω2HC− +3

KS

Ω2HP

≃

KS

+3 Ω2HC

KS

...

KS

...

≃

KS

...

KS

Ω2iHC− +3

KS

Ω2iHP

≃
KS

+3 Ω2iHC

KS

...

KS

...

≃

KS

...

KS

The periodicity map S becomes invertible in periodic cyclic homology and so
the middle column in (5.4) consists of natural isomorphisms. Hence, we obtain
the classical sequence of natural transformations

HP ⇒ · · · ⇒ Ω2i
HC ⇒ · · · ⇒ Ω2

HC ⇒ HC

which relates periodic cyclic homology with the even dimensional loopings of
cyclic homology; see [20, §5.1.8]. Let us then take for Φ the composed natural
transformation

K
Φ1

⇒ HC
− ⇒ HP ⇒ Ω2i

HC .

The fact that its image by the map (1.2) is the natural transformation φ :
K0 ⇒ HC2i is now an immediate consequence of the following factorization

φ : K0
ch

−

0

⇒ HC−
0 ⇒ HP0 ⇒ HC2i ,

see [26, Theorem 1.7(ii)], and the particular case (i = 0). Similarly, the fact
that the canonical extension φn : Kn(A) → HCn+2i(A) agrees with Karoubi’s
higher Chern character chn,i(A) follows from the following factorization

chn,i(A) : Kn(A)
ch−

n
(A)

−→ HC−
n (A) −→ HPn(A) −→ HCn+2i(A) ,
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666 Gonçalo Tabuada

see [20, §11.4.3], and the particular case (i = 0). This achieves the proof.

Appendix A. Grothendieck Derivators

In order to make this article more self-contained we give a brief introduction to
Grothendieck’s theory of derivators [11]; this language can easily be acquired
by skimming through [21], [5, §1] or [3, 4, Appendix A].
Derivators originate in the problem of higher homotopies in derived categories.
Given a triangulated category T and a small category I, it essentially never
happens that the diagram category Fun(Iop, T ) remains triangulated; this al-
ready fails for the category of arrows in T . However, our triangulated category
T often appears as the homotopy category T = Ho(M) of some Quillen model
category M (see [22]). In this case we can consider the category Fun(Iop,M)
of diagrams in M whose homotopy category Ho(Fun(Iop,M)) is triangulated
and provides a reasonable approximation to Fun(Iop, T ). More importantly,
one can let I vary. This “nebula” of categories Ho(Fun(Iop,M)), indexed by
small categories I, and the various (adjoint) functors between them is what
Grothendieck formalized into the concept of a derivator.
A derivator consists of a strict contravariant 2-functor, from the 2-category
of small categories to the 2-category of all categories, subject to five natural
conditions. We shall not list these conditions here for it would be too long;
see [5, §1]. The essential example to keep in mind is the (triangulated) derivator
HO(M) associated to a (stable) Quillen model category M and defined for
every small category I by

HO(M)(I) := Ho(Fun(Iop,M)) .

We will write e for the 1-point category with one object and one identity
morphism. Note that HO(M)(e) is the homotopy category Ho(M). Given
Quillen model categoriesM1 andM2 and weak equivalence preserving functors
E,F : M1 → M2, we will denote by E,F : HO(M1) −→ HO(M2) the induced
morphisms of derivators and by Nat(E,F) the set of natural transformations
from E to F; see [5, §5]. Note that given Φ ∈ Nat(E,F), Φ(e) is a natural
transformation between the induced functors E(e),F(e) : Ho(M1) → Ho(M2).
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FCT-UNL
Quinta da Torre, 2829-516
Caparica
Portugal
tabuada@fct.unl.pt

Documenta Mathematica 16 (2011) 657–668


	Introduction
	1. Statement of results
	2. Applications
	3. Proof of Theorem ??
	4. Proof of Proposition ??
	5. Proof of Proposition ??
	Appendix A. Grothendieck Derivators
	References

