Theta Series and Function Field Analogue
 of Gross Formula

Fu-Tsun Wei and Jing Yu¹
Received: October 14, 2010
Revised: July 6, 2011
Communicated by Peter Schneider

Abstract

Let $k=\mathbb{F}_{q}(t)$, with q odd. In this article we introduce "definite" (with respect to the infinite place of k) Shimura curves over k, and establish Hecke module isomorphisms between their Picard groups and the spaces of Drinfeld type "new" forms of corresponding level. An important application is a function field analogue of Gross formula for the central critical values of Rankin type L-series coming from automorphic cusp forms of Drinfeld type.

2010 Mathematics Subject Classification: 11R58 11G18 11F41 11F67 Keywords and Phrases: function field, quaternion algebra, Shimura curve, automorphic form, Hecke operator, special value of L-series.

Introduction

We present here a theory of "definite" quaternion algebras over the rational function field $k:=\mathbb{F}_{q}(t)$ with q odd, "definite" means that the place ∞ at infinity ramifies for the quaternion algebra in question. Following Gross [8], we first give a geometric translation of Eichler's arithmetic theory of definite quaternion algebra by introducing the so-called "definite" Shimura curves. The geometry of these curves is simple and easy to manipulate. Basing on Eichler's trace computation, one is lead (via Jacquet-Langlands) to an explicit Hecke module isomorphism between the Picard groups of definite Shimura curves and spaces of automorphic forms of Drinfeld type over the function field k.

[^0]Automorphic forms of Drinfeld type are very useful tools for function fields arithmetic (cf. 77, [12] and [17] for more details and applications), which can be viewed as an analogue of classical modular forms of weight 2 . To illustrate our approach to quaternion algebras over function field, we give an application to the study of central critical values of certain L-series of "Rankin type" in the global function field setting. These L-series include, among others, L-series coming from elliptic curves over k with square free conductor supported at even number of places and having split multiplicative reduction at ∞. Having the extensive calculations done in [12], we obtain in particular a function field analogue of Gross formula for the central critical values of these L-series over "imaginary" quadratic extensions of k (with respect to ∞).

The structure of this article is modelled on [8]. Let \mathcal{D} be a "definite" quaternion algebra over k and let N_{0} be the product of finite ramified primes of \mathcal{D}. We introduce the definite Shimura curve $X=X_{N_{0}}$ over k (for maximal orders) in §1 which is a finite union of genus zero curves. Also introduced are the Gross points, which are special points on these curves associated to orders in imaginary quadratic extensions of k. With a natural choice of basis on the Picard group $\operatorname{Pic}(X)$, the Hecke correspondences can be expressed by Brandt matrices.

From the entries of Brandt matrices we introduce certain theta series. Taking into account the Gross height pairing on the $\operatorname{Pic}(X)$ (defined in $\S 1.2$), we then have at hand a construction of automorphic forms of Drinfeld type for the congruence subgroup $\Gamma_{0}\left(N_{0}\right)$ of $\mathrm{GL}_{2}\left(\mathbb{F}_{q}[t]\right)$. The main theorem of this article in $\$ 2.3$ is:

Theorem. There is a map $\Phi: \operatorname{Pic}(X) \times \operatorname{Pic}(X)^{\vee} \longrightarrow M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ such that for all monic polynomials m of $\mathbb{F}_{q}[t]$

$$
T_{m} \Phi\left(e, e^{\prime}\right)=\Phi\left(t_{m} e, e^{\prime}\right)=\Phi\left(e, t_{m} e^{\prime}\right)
$$

Here $\operatorname{Pic}(X)^{\vee}$ is the dual group $\operatorname{Hom}(\operatorname{Pic}(X), \mathbb{Z}), M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ is the space of Drinfeld type "new" forms for $\Gamma_{0}\left(N_{0}\right), t_{m}$ are Hecke correspondences on X, and T_{m} are Hecke operators on $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$. Moreover, this map induces an isomorphism (as Hecke modules)

$$
\left(\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{C}\right) \otimes_{\mathbb{T}_{\mathbb{C}}}\left(\operatorname{Pic}(X)^{\vee} \otimes_{\mathbb{Z}} \mathbb{C}\right) \cong M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)
$$

This theorem in fact tells us that all automorphic "new" forms of Drinfeld type come from our theta series. The special case of our theorem when N_{0} is single prime is also obtained in Papikian [10] §3, by a different geometric method using Néron models of jacobians of Drinfeld modular curve $X_{0}\left(N_{0}\right)$. In our proof of the above theorem, we use the explicit construction of theta series and claim the equality of the trace of the m-th Brandt matrix $B(m)$ and the trace of the Hecke operator T_{m} on $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ for each monic polynomial m in $\mathbb{F}_{q}[t]$. This claim is essentially the Jacquet-Langlands correspondence (cf.
(9)) between automorphic representations of quaternion algebras over k and automorphic cuspidal representations of GL_{2} over k. Another crucial step in the proof is to show that the Hecke module $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ is free of rank one, which follows from the multiplicity one theorem (cf. [3]). For the sake of completeness, we recall these results in Appendix.

Let D be an irreducible polynomial in $\mathbb{F}_{q}[t]$ such that $K=k(\sqrt{D})$ is imaginary and P is inert in K if the prime P divides N_{0}. For each ideal class \mathcal{A} of $\mathbb{F}_{q}[t][\sqrt{D}]=O_{K}$, we construct in $\$ 2.4$ an automorphic form $g_{\mathcal{A}}$ of Drinfeld type with its Fourier coefficients worked out. In 3.1 we recall Rankin product of L-series $\Lambda(f, \mathcal{A}, s)$ associated to Drinfeld type new form f for $\Gamma_{0}\left(N_{0}\right)$ and partial zeta function $\zeta_{\mathcal{A}}$. In 3.2 we express the central critical value $\Lambda(f, \mathcal{A}, 0)$ as the Petersson inner product of f and $g_{\mathcal{A}}$. Furthermore, when f is a "normalized" Hecke eigenform and χ is a character of ideal class group $\operatorname{Pic}\left(O_{K}\right)$ of O_{K}, we give the twisted critical value $\Lambda(f, \chi, 0)$ explicitly in terms of the Gross height of a special divisor class $e_{f, \chi}$ on the definite Shimura curve $X_{N_{0}}$. This is our analogue of Gross formula.

Let E be an elliptic curves over k with conductor $N_{0} \infty$ and split multiplicative reduction at ∞. From the work of Weil, Jacquet-Langlands, and Deligne, it is well known that there exists a Drinfeld type cusp form f_{E} such that

$$
L(E / k, s+1)=L\left(f_{E}, s\right)
$$

Here $L(E / k, s)$ is the Hasse-Weil L-series of E over k. After doing base change to the quadratic field K, one gets

$$
L(E / K, s+1)=\Lambda\left(f, \mathbf{1}_{D}, s\right)
$$

where $\mathbf{1}_{D}$ is the trivial character of $\operatorname{Pic}\left(O_{K}\right)$. Our formula can certainly be applied to these elliptic curves. An example is given in \$3.4

Notation

We fix the following notations:
k : the rational function field $\mathbb{F}_{q}(t), q=p^{\ell_{0}}$ where p is an odd prime.
A : the polynomial ring $\mathbb{F}_{q}[t]$.
∞ : the infinite place, which corresponds to degree valuation v_{∞}.
$\pi_{\infty}: \quad t^{-1}$, a fixed uniformizer of ∞.
$k_{\infty}: \quad \mathbb{F}_{q}\left(\left(t^{-1}\right)\right)$, i.e. the completion of k at ∞.
$\mathcal{O}_{\infty}: \mathbb{F}_{q}\left[\left[t^{-1}\right]\right]$, i.e. the valuation ring in k_{∞}.
$P: \quad$ a finite prime (place) of k.
k_{P} : the completion of k at the finite prime P.
A_{P} : the closure of A in k_{P}.
\mathbb{A}_{k} : the adele ring of k.
$\hat{k}: \quad \prod_{P}^{\prime} k_{P}$, the finite adele ring of k.
$\hat{A}: \quad \prod_{P} A_{P}$.
$\psi_{\infty}:$ a fixed additive character on k_{∞} : for $y=\sum_{i} a_{i} \pi_{\infty}^{i} \in k_{\infty}$, we define $\psi_{\infty}(y):=\exp \left(\frac{2 \pi \sqrt{-1}}{p} \cdot \operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{p}}\left(-a_{1}\right)\right)$.

We identify non-zero ideals of A with the monic polynomials in A by using the same notation.

1 Definite Shimura curves

Let \mathcal{D} be a quaternion algebra over k ramified at ∞ (call \mathcal{D} "definite"). Before introducing the definite Shimura curve for \mathcal{D}, we start with a genus 0 curve Y over k associated with the quaternion algebra \mathcal{D}, which is defined by the following: the points of Y over any k-algebra M are

$$
Y(M)=\left\{x \in \mathcal{D} \otimes_{k} M: x \neq 0, \operatorname{Tr}(x)=\operatorname{Nr}(x)=0\right\} / M^{\times},
$$

where the action of M^{\times}on $\mathcal{D} \otimes_{k} M$ is by multiplication on M, Tr and Nr are respectively the reduced trace and the reduced norm of \mathcal{D}. More precisely, if $\mathcal{D}=k+k u+k v+k u v$ where $u^{2}=\alpha, v^{2}=\beta, \alpha$ and β are in k^{\times}, and $u v=-v u$, then Y is just the conic

$$
\alpha y^{2}+\beta z^{2}=\alpha \beta w^{2}
$$

in the projective plane \mathbb{P}^{2}. The group \mathcal{D}^{\times}acts on Y (from the right) by conjugation. If K is a quadratic extension of $k, Y(K)$ is canonically identified with the set $\operatorname{Hom}(K, \mathcal{D})$ of embeddings: for each embedding $f: K \rightarrow \mathcal{D}$, let $y=y_{f}$ be the image of the unique K-line on the quadric $\left\{x \in \mathcal{D} \otimes_{k} K\right.$: $\operatorname{Tr}(x)=\operatorname{Nr}(x)=0\}$ on which conjugation by $f\left(K^{\times}\right)$acts by multiplication by the character $a \mapsto a / \bar{a}$. Note that y_{f} is one of the two fixed points of $f\left(K^{\times}\right)$ acting on $Y(K)$; another one is the image of the line where conjugation acts by the character $a \mapsto \bar{a} / a$.
Let N_{0} be the product of the finite ramified primes of \mathcal{D}. Choose a maximal A-order R of \mathcal{D}. For any finite prime P let $R_{P}:=R \otimes_{A} A_{P}, \mathcal{D}_{P}:=\mathcal{D} \otimes_{k} k_{P}$, and

$$
\hat{R}:=R \otimes_{A} \hat{A}, \hat{D}:=\mathcal{D} \otimes_{k} \hat{k}
$$

Definition 1.1. (cf. [2] and [8]) The definite Shimura curve $X_{N_{0}}$ is defined as

$$
X_{N_{0}}=\left(\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} \times Y\right) / \mathcal{D}^{\times}
$$

We will use the notation X instead of $X_{N_{0}}$ when N_{0} is fixed.
Lemma 1.2. $X_{N_{0}}$ is a finite union of curves of genus 0 .

Proof. Let g_{1}, \ldots, g_{n} be representatives for the finite double coset space $\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \mathcal{D}^{\times}$, i.e.

$$
\hat{\mathcal{D}}^{\times}=\coprod_{i=1}^{n} \hat{R}^{\times} g_{i} \mathcal{D}^{\times} .
$$

Then each coset of $X_{N_{0}}$ has a representative $\left(\hat{R}^{\times} g_{i}, y\right) \bmod \mathcal{D}^{\times}$and the map

$$
\begin{array}{rlr}
X_{N_{0}} & \longrightarrow & \coprod_{i=1}^{n} Y / \Gamma_{i} \\
\left(\hat{R}^{\times} g_{i}, y\right) & \longmapsto & y \bmod \Gamma_{i}
\end{array}
$$

is a bijection, where $\Gamma_{i}=g_{i}^{-1} \hat{R}^{\times} g_{i} \cap \mathcal{D}^{\times}$is a finite group for $i=1, \ldots, n$.
Definition 1.3. Let K be an imaginary quadratic extension of k (i.e. ∞ is not split in K). We call

$$
x=(g, y) \in \text { Image }\left[\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} \times Y(K) \rightarrow X_{N_{0}}(K)\right]
$$

a Gross point on $X_{N_{0}}$ over K.
Let $f: K \rightarrow \mathcal{D}$ be the embedding corresponding to y. Then

$$
f(K) \cap g^{-1} \hat{R} g=f\left(O_{d}\right)
$$

for some quadratic order $O_{d}:=A[\sqrt{d}]$ where d is an element in A with $d \notin k_{\infty}^{2}$. In this case, we say x is of discriminant d. Note that the discriminant of a Gross point is well-defined up to multiplying with elements in $\left(\mathbb{F}_{q}^{\times}\right)^{2}$. Set $X_{i}:=Y / \Gamma_{i}$. If the component g of a Gross point x is congruent to g_{i} in $\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \mathcal{D}^{\times}$, then x lies on the component $X_{i}(K)=\left(Y / \Gamma_{i}\right)(K)$.

1.1 Actions on Gross points

Let $a \in \hat{K}^{\times}$where $\hat{K}:=K \otimes_{k} \hat{k}$ and $x=(g, y)$ be a Gross point of discriminant d. Let $f: K \rightarrow \mathcal{D}$ be the embedding corresponding to y. This induces a homomorphism $\hat{f}: \hat{K} \rightarrow \hat{\mathcal{D}}$ and we define

$$
x_{a}:=(g \hat{f}(a), y)
$$

Note that x_{a} is also of discriminant d, and it is easy to check that $x=x_{a}$ if and only if $a \in \hat{O}_{d}^{\times} K^{\times}$where $\hat{O}_{d}:=O_{d} \otimes_{A} \hat{A}$. Hence $\hat{O}_{d}^{\times} \backslash \hat{K}^{\times} / K^{\times} \cong \operatorname{Pic}\left(O_{d}\right)$ acts freely on the set G_{d} of Gross points of discriminant d.

The orbit space $G_{d} / \operatorname{Pic}\left(O_{d}\right)$ is identified with the space of double cosets

$$
\hat{R}^{\times} \backslash \mathcal{E} / \hat{f}\left(\hat{K}^{\times}\right)
$$

where $f: K \rightarrow \mathcal{D}$ is a fixed embedding (if any exist) and

$$
\mathcal{E}:=\left\{g \in \hat{\mathcal{D}}^{\times}: f(K) \cap g^{-1} \hat{R} g=f\left(O_{d}\right)\right\} .
$$

Note that

$$
\hat{R}^{\times} \backslash \varepsilon / \hat{f}\left(\hat{K}^{\times}\right)=\prod_{P} R_{P}^{\times} \backslash \varepsilon_{P} / f\left(K_{P}^{\times}\right)
$$

where $\mathcal{E}_{P}:=\left\{g_{P} \in \mathcal{D}_{P}^{\times}: f\left(K_{P}\right) \cap g_{P}^{-1} R_{P} g_{P}=f\left(O_{d, P}\right)\right\}$ and $O_{d, P}$ is the closure of O_{d} in $K_{P}:=K \otimes_{k} k_{P}$.

Lemma 1.4. (cf. [16] or 17)

$$
\#\left(R_{P}^{\times} \backslash \mathcal{E}_{P} / f\left(K_{P}^{\times}\right)\right)= \begin{cases}1 & \text { if } P \nmid N_{0}, \\ 1-\left\{\frac{d}{P}\right\} & \text { if } P \mid N_{0} .\end{cases}
$$

Here $\left\{\frac{d}{P}\right\}$ is the Eichler quadratic symbol, i.e.

$$
\left\{\frac{d}{P}\right\}= \begin{cases}1 & \text { if } P^{2} \mid d \text { or } d \bmod P \in\left((A / P)^{\times}\right)^{2} \\ -1 & \text { if } d \bmod P \in(A / P)^{\times}-\left((A / P)^{\times}\right)^{2} \\ 0 & \text { if } P \mid d \text { but } P^{2} \nmid d .\end{cases}
$$

Remark. The above lemma tells us that the number $\#\left(G_{d}\right)$ is equal to

$$
h(d) \prod_{P \mid N_{0}}\left(1-\left\{\frac{d}{P}\right\}\right)
$$

where $h(d)$ is the class number of O_{d}.
There is a natural action of $\operatorname{Gal}(K / k)$ on Gross points in the following way: let $x=(g, y)$ be a Gross point and $f_{y}: K \hookrightarrow \mathcal{D}$ be the embedding corresponding to y. Define

$$
x^{\sigma}=(g, y)^{\sigma}=\left(g, y_{\sigma}\right)
$$

where $\sigma \in \operatorname{Gal}(K / k)$ and y_{σ} corresponds to the embedding $f_{y} \circ \sigma$. If x is a Gross point of discriminant d in X_{i} then so is x^{σ}. Moreover, let $a \in \hat{O}_{d}^{\times} \backslash \hat{K}^{\times} / K^{\times} \cong$ $\operatorname{Pic}\left(O_{d}\right)$ and $\sigma \in \operatorname{Gal}(K / k)$ one has

$$
\left(x^{\sigma}\right)_{a}=\left(x_{\sigma(a)}\right)^{\sigma} .
$$

Therefore we have an action of $\operatorname{Pic}\left(O_{d}\right) \rtimes \operatorname{Gal}(K / k)$ on the set G_{d} of Gross points of discriminant d.

1.2 Hecke correspondences and Gross height pairing

Let P be a prime of A. Let \mathcal{T} be the Bruhat-Tits tree of $\mathrm{PGL}_{2}\left(k_{P}\right)$ as defined in [14. The vertices are the equivalence classes of A_{P}-lattices L in k_{P}^{2}, and two such vertices $[L]$ and $\left[L^{\prime}\right]$ are adjacent if there exists an integer r such that

$$
P^{r+1} L \subsetneq L^{\prime} \subsetneq P^{r} L
$$

This is a tree where each vertex has degree $q^{\operatorname{deg} P}+1$. For a vertex v, the Hecke correspondence t_{P} sends v to the formal sum of its $q^{\operatorname{deg} P}+1$ neighbors in the tree. Identifying $\mathrm{PGL}_{2}\left(A_{P}\right) \backslash \mathrm{PGL}_{2}\left(k_{P}\right)$ with the Bruhat-Tits tree, we can write the Hecke correspondence for $g \in \mathrm{PGL}_{2}\left(A_{P}\right) \backslash \mathrm{PGL}_{2}\left(k_{P}\right)$:

$$
t_{P}(g):=\sum_{\operatorname{deg}(u)<\operatorname{deg} P}\left(\begin{array}{ll}
1 & u \\
0 & P
\end{array}\right) g+\left(\begin{array}{ll}
P & 0 \\
0 & 1
\end{array}\right) g .
$$

Note that $X_{N_{0}}$ can be written as

$$
\left(\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \hat{k}^{\times}\right) \times Y / \mathcal{D}^{\times}
$$

and

$$
\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \hat{k}^{\times}=\prod_{P}^{\prime} R_{P}^{\times} \backslash \mathcal{D}_{P}^{\times} / k_{P}^{\times} .
$$

When $\left(P, N_{0}\right)=1$,

$$
R_{P}^{\times} \backslash \mathcal{D}_{P}^{\times} / k_{P}^{\times} \cong \mathrm{PGL}_{2}\left(A_{P}\right) \backslash \mathrm{PGL}_{2}\left(k_{P}\right)
$$

and so we have the Hecke correspondence t_{P} on $X_{N_{0}}$.
Now suppose P divides N_{0}, then $R_{P}^{\times} \backslash \mathcal{D}_{P}^{\times} / k_{P}^{\times}$has two elements and define the Atkin-Lehner involution

$$
w_{P}(g, y):=\left(g^{\prime}, y\right)
$$

where g^{\prime} is another double coset in $R_{P}^{\times} \backslash \mathcal{D}_{P}^{\times} / k_{P}^{\times}$.
From the construction, these correspondences commute with each other. Therefore we can define Hecke correspondence t_{m} for every non-zero ideal (m) of A in the following way:

$$
\begin{cases}t_{m m^{\prime}}=t_{m} t_{m^{\prime}} & \text { if } m \text { and } m^{\prime} \text { are relatively prime, } \\ t_{P^{\ell}}=t_{P^{\ell-1}} t_{P}-q^{\operatorname{deg} P} t_{P^{\ell-2}} & \text { for } P \nmid N_{0} \\ t_{P^{\ell}}=w_{P}^{\ell} & \text { for } P \mid N_{0}\end{cases}
$$

Note that $X=X_{N_{0}}=\coprod_{i=1}^{n} X_{i}$, where n is the left ideal class number of R. Consider the Picard group $\operatorname{Pic}(X)$, which is isomorphic to \mathbb{Z}^{n} and is generated
by the classes e_{i} of degree 1 corresponding to the component X_{i}. Then the correspondences t_{m} induce endomorphisms of the group $\operatorname{Pic}(X)$. In fact, with respect to the basis $\left\{e_{1}, \ldots, e_{n}\right\}$, these endomorphisms can be represented by Brandt matrices.
Let $\left\{I_{1}, \ldots, I_{n}\right\}$ be a set of left ideals of R representing the distinct ideal classes, with $I_{1}=R$. Let $w_{i}:=\#\left(R_{i}^{\times}\right) /(q-1)$ where R_{i} is the right order of I_{i}. Consider $M_{i j}:=I_{j}^{-1} I_{i}$, which is a left ideal of R_{j} with right order R_{i}. Choose a generator $N_{i j} \in k$ of the reduced ideal norm $\operatorname{Nr}\left(M_{i j}\right)\left(:=<\operatorname{Nr}(b): b \in M_{i j}>_{A}\right)$ of $M_{i j}$. For each monic polynomial m in A, define

$$
B_{i j}(m):=\frac{\#\left\{b \in M_{i j}:\left(\mathrm{Nr}(b) / N_{i j}\right)=(m)\right\}}{(q-1) w_{j}}
$$

and the m-th Brandt matrix

$$
B(m):=\left(B_{i j}(m)\right)_{1 \leq i, j \leq n} \in \operatorname{Mat}_{n}(\mathbb{Z})
$$

Proposition 1.5. For all non-zero ideal (m) in A and $i=1,2, \ldots, n$,

$$
t_{m} e_{i}=\sum_{j=1}^{n} B_{i j}(m) e_{j}
$$

Proof. From the definition of t_{m} and the recurrence relations of $B(m)$ (cf. [16]), we can reduce the proof to the case when $m=P$ is a prime.
From the following bijection

$$
\begin{aligned}
\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} & \cong \quad\{\text { left ideals of } R\} \\
\hat{R}^{\times} g & \leftrightarrow \quad I_{g}:=\hat{R} g \cap \mathcal{D},
\end{aligned}
$$

for any element g in $\hat{\mathcal{D}}^{\times}$we can identify the following set

$$
\left\{\hat{R}^{\times}\left(\begin{array}{ll}
1 & u \\
0 & P
\end{array}\right) g: \operatorname{deg} u<\operatorname{deg} P\right\} \cup\left\{\hat{R}^{\times}\left(\begin{array}{cc}
P & 0 \\
0 & 1
\end{array}\right) g\right\}
$$

with

$$
\left\{\text { left ideal } I \text { of } R \text { contained in } I_{g} \text { with } \operatorname{Nr}(I)=P \operatorname{Nr}\left(I_{g}\right)\right\} .
$$

According to the definition of $t_{P}, t_{P} e_{i}=\sum_{j} \alpha_{j} e_{j}$ where α_{j} is the number of left ideals I of R equivalent to I_{j} which are contained in I_{i} with $\operatorname{Nr}(I)=P \operatorname{Nr}\left(I_{i}\right)$. It is easy to see that $\alpha_{j}=B_{i j}(P)$ and so the proposition holds.
We define the Gross height pairing $<\cdot, \cdot>$ on $\operatorname{Pic}(X)$ with values in \mathbb{Z} by setting

$$
\left\{\begin{array}{l}
<e_{i}, e_{j}>:=0 \quad \text { if } i \neq j \\
<e_{i}, e_{i}>:=w_{i}
\end{array}\right.
$$

and extending bi-additively. Therefore $\operatorname{Pic}(X)^{\vee}:=\operatorname{Hom}(\operatorname{Pic}(X), \mathbb{Z})$ can be viewed as a subgroup of $\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{Q}$ with basis $\left\{\check{e}_{i}:=e_{i} / w_{i}: i=1, \ldots, n\right\}$ via this pairing. Since $w_{j} B_{i j}(m)=w_{i} B_{j i}(m)$, one has the following proposition.

Proposition 1.6. For all classes e and e^{\prime} in $\operatorname{Pic}(X)$, we have

$$
<t_{m} e, e^{\prime}>=<e, t_{m} e^{\prime}>
$$

Proof. Since $w_{j} B_{i j}(m)=w_{i} B_{j i}(m)$, we have

$$
<t_{m} e_{i}, e_{j}>=<e_{i}, t_{m} e_{j}>
$$

for all i, j and the result holds.
Let $d \in A$ with $d \notin k_{\infty}^{2}$. Assume every prime factor P of N_{0} is not split in K and P^{2} does not divides d (i.e. the set G_{d} of Gross points of discriminant d is not empty). For any prime $P \mid N_{0}$, one has $w_{P}\left(G_{d}\right)=G_{d}$. Suppose P_{1}, \ldots, P_{r} are primes dividing N_{0} and inert in K. We have in fact a free action of $\operatorname{Pic}\left(O_{d}\right) \times \prod_{i=1}^{r}\left\langle w_{P_{i}}\right\rangle$ on G_{d}. Since $w_{P_{i}}$ are of order 2 for all i, $\operatorname{Pic}\left(O_{d}\right) \times \prod_{i=1}^{r}\left\langle w_{P_{i}}\right\rangle$ acts simply transitively on G_{d}.

Let $a \in A$ with $a \notin k_{\infty}^{2}$. Consider the rational divisor

$$
c_{a}:=\sum_{a=d f^{2}, f \text { monic }} \frac{1}{2 u(d)} \sum_{x_{d} \in G_{d}} x_{d}
$$

Here $u(d)=\#\left(O_{d}^{\times}\right)$. By calculation one has

$$
\operatorname{deg}\left(c_{a}\right)=\frac{1}{2} \sum_{a=d f^{2}, f \text { monic }}\left[\frac{h(d)}{u(d)} \cdot \prod_{P \mid N_{0}}\left(1-\left\{\frac{d}{P}\right\}\right)\right] .
$$

Let $e_{a} \in \operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{Q}$ be the class of the divisor c_{a}. It can be shown that
Proposition 1.7. The class e_{a} lies in $\operatorname{Pic}(X)^{\vee}$, which is considered as a subgroup of $\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{Q}$.
Note that we can extend the Gross height pairing to $\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{C}$ which is linear in the first term and conjugate linear in the second. In the next section this pairing gives us a construction of automorphic forms of Drinfeld type.

2 Automorphic forms of Drinfeld type and main theorem

2.1 Automorphic forms of Drinfeld type

Consider the open compact subgroup $\mathcal{K}_{0}(N \infty):=\prod_{P} \mathcal{K}_{0, P} \times \Gamma_{\infty}$ of $\mathrm{GL}_{2}\left(\mathbb{A}_{k}\right)$, where

$$
\mathcal{K}_{0, P}:=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}\left(A_{P}\right): c \in N A_{P}\right\}
$$

for finite prime P, and

$$
\Gamma_{\infty}:=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathcal{O}_{\infty}\right): c \in \pi_{\infty} \mathcal{O}_{\infty}\right\} .
$$

An automorphic form f on $\mathrm{GL}_{2}\left(\mathbb{A}_{k}\right)$ for $\mathcal{K}_{0}(N \infty)$ (with trivial central character) is a \mathbb{C}-valued function on the double coset space

$$
\mathrm{GL}_{2}(k) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{k}\right) / \mathcal{K}_{0}(N \infty) k_{\infty}^{\times} .
$$

Note that by strong approximation theorem (cf. [16]) we have the following bijection

$$
\mathrm{GL}_{2}(k) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{k}\right) / K_{0}(N \infty) k_{\infty}^{\times} \cong \Gamma_{0}(N) \backslash \mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times}
$$

where

$$
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}(A): c \equiv 0 \bmod N\right\}
$$

Therefore f can be viewed as a \mathbb{C}-valued function on $\Gamma_{0}(N) \backslash \mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times}$. From now on, we call f an automorphic form for $\Gamma_{0}(N)$ if f is a function on the space of double cosets $\Gamma_{0}(N) \backslash \mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times}$. An automorphic form f for $\Gamma_{0}(N)$ is called a cusp form if for every $g_{\infty} \in \mathrm{GL}_{2}\left(k_{\infty}\right)$ and $\gamma \in \mathrm{GL}_{2}(A)$

$$
\int_{A \backslash k_{\infty}} f\left(\gamma\left(\begin{array}{cc}
1 & h_{\gamma} x \\
0 & 1
\end{array}\right) g_{\infty}\right) d x=0
$$

Here $d u$ is a Haar measure with $\int_{A \backslash k_{\infty}} d u=1$ and h_{γ} is a generator of the ideal of A which is maximal for the property that

$$
\gamma\left(\begin{array}{cc}
1 & h_{\gamma} A \\
0 & 1
\end{array}\right) \gamma^{-1} \subset \Gamma_{0}(N)
$$

Note that the coset space $\mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times}$can be represented by the two disjoint sets

$$
\mathcal{T}_{+}:=\left\{\left(\begin{array}{cc}
\pi_{\infty}^{r} & u \\
0 & 1
\end{array}\right): r \in \mathbb{Z}, u \in k_{\infty} / \pi_{\infty}^{r} \mathcal{O}_{\infty}\right\}
$$

and

$$
\mathcal{T}_{-}:=\left\{\left(\begin{array}{cc}
\pi_{\infty}^{r} & u \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
\pi_{\infty} & 0
\end{array}\right): r \in \mathbb{Z}, u \in k_{\infty} / \pi_{\infty}^{r} \mathcal{O}_{\infty}\right\}
$$

Definition 2.1. An automorphic form f on $\mathrm{GL}_{2}\left(k_{\infty}\right)$ is of Drinfeld type if it satisfies the following harmonic properties: for any $g_{\infty} \in \mathrm{GL}_{2}\left(k_{\infty}\right)$ we have

$$
\tilde{f}\left(g_{\infty}\right):=f\left(g_{\infty}\left(\begin{array}{cc}
0 & 1 \\
\pi_{\infty} & 0
\end{array}\right)\right)=-f\left(g_{\infty}\right) \text { and } \sum_{\kappa \in \mathrm{GL}_{2}\left(\mathcal{O}_{\infty}\right) / \Gamma_{\infty}} f\left(g_{\infty} \kappa\right)=0
$$

Suppose a function $f:\left(\begin{array}{cc}1 & A \\ 0 & 1\end{array}\right) \backslash \mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times} \rightarrow \mathbb{C}$ is given. Recall the Fourier expansion of f (cf. [18]): for $r \in \mathbb{Z}$ and $u \in k_{\infty}$,

$$
f\left(\begin{array}{cc}
\pi_{\infty}^{r} & u \\
0 & 1
\end{array}\right)=\sum_{\lambda \in A} f^{*}(r, \lambda) \psi_{\infty}(\lambda u)
$$

where

$$
f^{*}(r, \lambda):=\int_{A \backslash k_{\infty}} f\left(\begin{array}{cc}
\pi_{\infty}^{r} & u \\
0 & 1
\end{array}\right) \psi_{\infty}(-\lambda u) d u
$$

Here ψ_{∞} is the fixed additive character on k_{∞} in the notation table. Since $f\left(g \gamma_{\infty}\right)=f(g)$ for all $\gamma_{\infty} \in \Gamma_{\infty}, f^{*}(r, \lambda)=0$ if $\operatorname{deg} \lambda+2>r$. Moreover, if f satisfies harmonic properties, then

$$
f^{*}(r, \lambda)=q^{-r+\operatorname{deg} \lambda+2} f^{*}(\operatorname{deg} \lambda+2, \lambda)
$$

if $\operatorname{deg} \lambda+2 \leq r$.

2.1.1 Example: Theta series

Fix a definite quaternion algebra $\mathcal{D}=\mathcal{D}_{\left(N_{0}\right)}$ where N_{0} is the product of finite ramified primes of \mathcal{D}. Let R be a maximal order and n be the class number. With representatives of left ideal classes fixed in $\S 1.2$ we have introduced for each (i, j), the ideal $M_{i j}$ of \mathcal{D} and chose a generator $N_{i j}$ of the fractional ideal $\operatorname{Nr}\left(M_{i j}\right)$. For $1 \leq i, j \leq n$ and $(x, y) \in k_{\infty}^{\times} \times k_{\infty}$, define

$$
\theta_{i j}(x, y):=\sum_{b \in M_{i j}} \phi_{\infty}\left(\frac{\mathrm{Nr}(b)}{N_{i j}} x t^{2}\right) \cdot \psi_{\infty}\left(\frac{\mathrm{Nr}(b)}{N_{i j}} y\right)
$$

where ϕ_{∞} is the characteristic function of \mathcal{O}_{∞}. It is easy to obtain the following properties:

$$
\begin{equation*}
\theta_{i j}(x, y)=\sum_{\lambda \in A, \operatorname{deg} \lambda+2 \leq v_{\infty}(x)} B_{i j}^{\prime}(\lambda) \psi_{\infty}(\lambda y) \tag{1}
\end{equation*}
$$

where for each $\lambda \in A$,

$$
B_{i j}^{\prime}(\lambda)=\#\left\{b \in M_{i j}: \operatorname{Nr}(b) / N_{i j}=\lambda\right\}
$$

(2) $\theta_{i j}(x, y+h)=\theta_{i j}(x, y)$ for $h \in A$.
(3) $\theta_{i j}(\alpha x, \beta x+y)=\theta_{i j}(x, y)$ for $\alpha \in \mathcal{O}_{\infty}^{\times}, \beta \in \mathcal{O}_{\infty}$.

Basing on Poisson summation formula, we have the following transformation law for $\theta_{i j}$ (cf. Appendix B):

Proposition 2.2. Let $(x, y) \in k_{\infty}^{\times} \times k_{\infty}$ and $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(A)$. Suppose $v_{\infty}(c x)>v_{\infty}(c y+d)$ and $c \equiv 0 \bmod N_{0}$. Then for $1 \leq i, j \leq n$,

$$
\theta_{i j}\left(\frac{x}{(c y+d)^{2}}, \frac{a y+b}{c y+d}\right)=q^{-2 v_{\infty}(c y+d)} \cdot \theta_{i j}(x, y) .
$$

For $g_{\infty} \in \mathrm{GL}_{2}\left(k_{\infty}\right)$, write g_{∞} as $\gamma\left(\begin{array}{ll}x & y \\ 0 & 1\end{array}\right) \gamma_{\infty} z_{\infty}$, where γ is in $\Gamma_{0}\left(N_{0}\right),(x, y)$ is in $k_{\infty}^{\times} \times k_{\infty}, \gamma_{\infty}$ is in Γ_{∞}, and z_{∞} is in k_{∞}^{\times}. We introduce the theta series $\Theta_{i j}$ for $M_{i j}$:

$$
\begin{aligned}
\Theta_{i j}\left(g_{\infty}\right) & :=\frac{1}{(q-1) w_{j}} \cdot q^{-v_{\infty}(x)} \cdot\left(\sum_{\epsilon \in \mathbb{F}_{q}^{\times}} \theta_{i j}(x, \epsilon y)\right) \\
& =q^{-v_{\infty}(x)} \cdot\left[\frac{1}{w_{j}}+\sum_{\substack{m \in A \text { monic, } \\
\text { deg } m+2 \leq v_{\infty}(x)}} B_{i j}(m)\left(\sum_{\epsilon \in \mathbb{F}_{q}^{\times}} \psi_{\infty}(\epsilon m y)\right)\right] .
\end{aligned}
$$

The last equality follows from $B_{i j}^{\prime}(0)=1$ and for each monic polynomial $m \in A$,

$$
(q-1) w_{j} \cdot B_{i j}(m)=\sum_{\epsilon \in \mathbb{F}_{q}^{\times}} B_{i j}^{\prime}(\epsilon m)
$$

The transformation law of $\theta_{i j}$ tells us that
Lemma 2.3. $\Theta_{i j}$ is a well-defined \mathbb{Q}-valued function on the double coset space $\Gamma_{0}\left(N_{0}\right) \backslash \mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times}$.
Proof. Let g_{∞} be an element in $\mathrm{GL}_{2}\left(k_{\infty}\right)$. Suppose

$$
g_{\infty}=\gamma_{1}\left(\begin{array}{cc}
x_{1} & y_{1} \\
0 & 1
\end{array}\right) \gamma_{\infty, 1} z_{1}=\gamma_{2}\left(\begin{array}{cc}
x_{2} & y_{2} \\
0 & 1
\end{array}\right) \gamma_{\infty, 2} z_{2}
$$

where for $i=1,2, \gamma_{i} \in \Gamma_{0}\left(N_{0}\right),\left(x_{i}, y_{i}\right) \in k_{\infty} \times k_{\infty}^{\times}, \gamma_{\infty, i} \in \Gamma_{\infty}, z_{i} \in k_{\infty}^{\times}$. We need to show that

$$
q^{-v_{\infty}\left(x_{1}\right)} \cdot\left(\sum_{\epsilon \in \mathbb{F}_{q}^{\times}} \theta_{i j}\left(x_{1}, \epsilon y_{1}\right)\right)=q^{-v_{\infty}\left(x_{2}\right)} \cdot\left(\sum_{\epsilon \in \mathbb{F}_{q}^{\times}} \theta_{i j}\left(x_{2}, \epsilon y_{2}\right)\right) .
$$

Set $\gamma=\gamma_{2}^{-1} \gamma_{1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), z=z_{1}^{-1} z_{2}$, and $\gamma_{\infty}=\gamma_{\infty, 1}^{-1} \gamma_{\infty, 2}$. Then one has $v_{\infty}\left(c x_{1}\right)>v_{\infty}\left(c y_{1}+d\right)$ and

$$
\begin{aligned}
\gamma\left(\begin{array}{cc}
x_{1} & y_{1} \\
0 & 1
\end{array}\right) & =\left(\begin{array}{cc}
\frac{\operatorname{det} \gamma \cdot x_{1}}{\left(c y_{1}+d\right)^{2}} & \frac{a y_{1}+b}{c y_{1}+d} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{c x_{1}}{c y_{1}+d} & 1
\end{array}\right)\left(\begin{array}{cc}
c y_{1}+d & 0 \\
0 & c y_{1}+d
\end{array}\right) \\
& =\left(\begin{array}{cc}
x_{2} & y_{2} \\
0 & 1
\end{array}\right) \gamma_{\infty} z
\end{aligned}
$$

Therefore $v_{\infty}\left(x_{2}\right)=v_{\infty}\left(x_{1}\right)-2 v_{\infty}\left(c y_{1}+d\right)$, and the properties of $\theta_{i j}$ implies

$$
\theta_{i j}\left(x_{2}, \epsilon y_{2}\right)=\theta_{i j}\left(\frac{\operatorname{det} \gamma \cdot x_{1}}{\left(c y_{1}+d\right)^{2}}, \epsilon \frac{a y_{1}+b}{c y_{1}+d}\right) .
$$

for each $\epsilon \in \mathbb{F}_{q}^{\times}$. Hence the transformation law of $\theta_{i j}$ in Proposition 2.2 shows

$$
\begin{aligned}
q^{-v_{\infty}\left(x_{2}\right)} \cdot\left(\sum_{\epsilon \in \mathbb{F}_{q}^{\times}} \theta_{i j}\left(x_{2}, \epsilon y_{2}\right)\right) & =q^{-v_{\infty}\left(x_{1}\right)} \cdot\left(\sum_{\epsilon \in \mathbb{F}_{q}^{\times}} \theta_{i j}\left(\operatorname{det} \gamma \cdot x_{1}, \epsilon \operatorname{det} \gamma \cdot y_{1}\right)\right) \\
& =q^{-v_{\infty}\left(x_{1}\right)} \cdot\left(\sum_{\epsilon \in \mathbb{F}_{q}^{\times}} \theta_{i j}\left(x_{1}, \epsilon y_{1}\right)\right)
\end{aligned}
$$

The Fourier coefficients of $\Theta_{i j}$ can be easily read off from Brandt matrices: for each $r \in \mathbb{Z}$ and $\lambda \in A$ with $\operatorname{deg} \lambda+2 \leq r$ the Fourier coefficients

$$
\Theta_{i j}^{*}(r, \lambda)= \begin{cases}q^{-r} B_{i j}(m) & \text { if }(\lambda)=(m) \neq 0 \\ q^{-r} / w_{j} & \text { if } \lambda=0\end{cases}
$$

Therefore $\Theta_{i j}^{*}(r+1, \lambda)=q^{-1} \Theta_{i j}^{*}(r, \lambda)$ for all $\lambda \in A$ with $\operatorname{deg} \lambda+2 \leq r$.
In fact, $\Theta_{i j}$ are of Drinfeld type for all $1 \leq i, j \leq n$. To show the harmonicity of $\Theta_{i j}$, by [6] Lemma 2.13, it is enough to prove that for all $g_{\infty} \in \mathrm{GL}_{2}\left(k_{\infty}\right)$

$$
\tilde{\Theta}_{i j}\left(g_{\infty}\right)=-\Theta_{i j}\left(g_{\infty}\right)
$$

Let $\pi_{\infty}^{r} \in k_{\infty}^{\times}$and $u \in k_{\infty}$. Choose $c, d \in A$ with $c \equiv 0 \bmod N_{0},(c, d)=1$, $v_{\infty}\left(u+\frac{d}{c}\right) \geq r+1$, and find $a, b \in A$ with $a d-b c=1$. Then for $\ell \in \mathbb{Z}$ with $\ell \leq r+1$ the following two matrices:

$$
\left(\begin{array}{cc}
\pi_{\infty}^{\ell} & u \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
\pi_{\infty} & 0
\end{array}\right) \text { and }\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)\left(\begin{array}{cc}
\frac{\pi_{\infty}^{1-\ell}}{c^{2}} & \frac{a}{c} \\
0 & 1
\end{array}\right)
$$

represent the same coset in $\mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times}$. Using this fact for $\ell=r$ and $\ell=r+1$ one obtains

$$
=\sum_{\operatorname{deg} \mu+2=1-r+2 \operatorname{deg} c} \tilde{\Theta}_{i j}\left(\begin{array}{cc}
\pi_{\infty}^{r} & u \\
0 & 1
\end{array}\right)-q^{-1} \tilde{\Theta}_{i j}\left(\begin{array}{cc}
\pi_{\infty}^{r+1} & u \\
0 & 1
\end{array}\right) .
$$

Set $u_{\epsilon}:=-\frac{d}{c}+\epsilon \pi_{\infty}^{r}$ for $\epsilon \in \mathbb{F}_{q}^{\times}$. From the identity

$$
\frac{a}{c}-\frac{1}{c^{2} \epsilon \pi_{\infty}^{r}}=\frac{a u_{\epsilon}+b}{c u_{\epsilon}+d},
$$

and summing over all ϵ we get:

$$
\begin{aligned}
& (q-1) \tilde{\Theta}_{i j}\left(\begin{array}{cc}
\pi_{\infty}^{r} & u \\
0 & 1
\end{array}\right)-\sum_{\epsilon \in \mathbb{F}_{q}^{\times}} \Theta_{i j}\left(\begin{array}{cc}
\frac{\pi_{\infty}^{1-r}}{c^{2}} & \frac{a u_{\epsilon}+b}{c u_{\epsilon}+d} \\
0 & 1
\end{array}\right) \\
= & q \sum_{\operatorname{deg} \mu+2=1-r+2 \operatorname{deg} c} \Theta_{i j}^{*}(1-r+2 \operatorname{deg} c, \mu) \psi_{\infty}\left(\mu \frac{a}{c}\right) .
\end{aligned}
$$

Note that

$$
\left(\begin{array}{cc}
\frac{\pi_{\infty}^{1-r}}{c^{2}} & \frac{a u_{\epsilon}+b}{c u_{\epsilon}+d} \\
0 & 1
\end{array}\right) \text { and }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
\pi_{\infty}^{r+1} & u_{\epsilon} \\
0 & 1
\end{array}\right)
$$

represent the same coset in $\mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times}$. Thus one has

$$
\tilde{\Theta}_{i j}\left(\begin{array}{cc}
\pi_{\infty}^{r+1} & u \\
0 & 1
\end{array}\right)-\tilde{\Theta}_{i j}\left(\begin{array}{cc}
\pi_{\infty}^{r} & u \\
0 & 1
\end{array}\right)=\sum_{\epsilon \in \mathbb{F}_{q}^{\times}} \Theta_{i j}\left(\begin{array}{cc}
\pi_{\infty}^{r+1} & u+\epsilon \pi_{\infty}^{r} \\
0 & 1
\end{array}\right)
$$

From the Fourier expansion of $\tilde{\Theta}_{i j}$ and $\Theta_{i j}$ we have that for $\lambda \in A$ with $\operatorname{deg} \lambda+2 \leq r$,

$$
\tilde{\Theta}_{i j}^{*}(r+1, \lambda)-\tilde{\Theta}_{i j}^{*}(r, \lambda)=(q-1) \Theta_{i j}^{*}(r+1, \lambda),
$$

and for $\operatorname{deg} \lambda+2=r+1$,

$$
\tilde{\Theta}_{i j}^{*}(\operatorname{deg} \lambda+2, \lambda)=-\Theta_{i j}^{*}(r+1, \lambda)
$$

Therefore $\tilde{\Theta}_{i j}^{*}(r, \lambda)=-\Theta_{i j}^{*}(r, \lambda)$ for $\lambda \in A$ with $\lambda \neq 0$ and $r \geq \operatorname{deg} \lambda+2$.
To compute $\tilde{\Theta}_{i j}^{*}(r, 0)$, note that

$$
\begin{aligned}
\tilde{\Theta}_{i j}\left(\begin{array}{cc}
\pi_{\infty}^{r} & 0 \\
0 & 1
\end{array}\right) & =\sum_{\operatorname{deg} \lambda \leq r-2} \tilde{\Theta}_{i j}^{*}(r, \lambda) \\
& =\tilde{\Theta}_{i j}^{*}(r, 0)+\sum_{\lambda \neq 0, \operatorname{deg} \lambda \leq r-2}-\Theta_{i j}^{*}(r, \lambda)
\end{aligned}
$$

On the other hand, for any $\epsilon \in \mathbb{F}_{q}^{\times}$and $\ell \geq 0$ the following two matrices

$$
\left(\begin{array}{cc}
\pi_{\infty}^{\operatorname{deg} N_{0}+\ell} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
\pi_{\infty} & 0
\end{array}\right),\left(\begin{array}{cc}
\epsilon^{-1} & -1 \\
-t^{\ell} N_{0} & \epsilon\left(t^{\ell} N_{0}+1\right)
\end{array}\right)\left(\begin{array}{cc}
\frac{\pi_{\infty}^{1-\operatorname{deg} N_{0}-\ell}}{\left(t^{\ell} N_{0}\right)^{2}} & \frac{\epsilon\left(t^{\ell} N_{0}+1\right)}{t^{\ell} N_{0}} \\
0 & 1
\end{array}\right)
$$

represent the same coset in $\mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times}$. Therefore

$$
\begin{aligned}
& \tilde{\Theta}_{i j}\left(\begin{array}{cc}
\pi_{\infty}^{\operatorname{deg} N_{0}+\ell} & 0 \\
0 & 1
\end{array}\right)=\sum_{\operatorname{deg} \lambda \leq \operatorname{deg} N_{0}+\ell-1} \Theta_{i j}^{*}\left(\operatorname{deg} N_{0}+\ell+1, \lambda\right) \psi_{\infty}\left(\lambda \frac{\epsilon}{t^{\ell} N_{0}}\right) \\
= & \sum_{\operatorname{deg} \lambda \leq \operatorname{deg} N_{0}+\ell-2} \Theta_{i j}^{*}\left(\operatorname{deg} N_{0}+\ell+1, \lambda\right)-\frac{1}{q-1} \sum_{\operatorname{deg} \lambda=\operatorname{deg} N_{0}+\ell-1} \Theta_{i j}^{*}\left(\operatorname{deg} N_{0}+\ell+1, \lambda\right) .
\end{aligned}
$$

This gives

$$
\begin{aligned}
& \tilde{\Theta}_{i j}^{*}\left(\operatorname{deg} N_{0}+\ell, 0\right)= \\
& =\left(\Theta_{i j}^{*}\left(\operatorname{deg} N_{0}+\ell+1,0\right)+(1+q) \sum_{\lambda \neq 0, \operatorname{deg} \lambda \leq \operatorname{deg} N_{0}+\ell-2} \Theta_{i j}^{*}\left(\operatorname{deg} N_{0}+\ell+1, \lambda\right)\right. \\
& \left.\quad-\frac{1}{q-1} \sum_{\operatorname{deg} \lambda=\operatorname{deg} N_{0}+\ell-1} \Theta_{i j}^{*}\left(\operatorname{deg} N_{0}+\ell+1, \lambda\right)\right) \\
& =-\Theta_{i j}^{*}\left(\operatorname{deg} N_{0}+\ell, 0\right)+\frac{1}{q-1} \cdot\left[q \Theta_{i j}\left(\begin{array}{cc}
\pi_{\infty}^{\operatorname{deg} N_{0}+\ell} & 0 \\
0 & 1
\end{array}\right)-\Theta_{i j}\left(\begin{array}{ccc}
\pi_{\infty}^{\operatorname{deg} N_{0}+\ell+1} & 0 \\
0 & 1
\end{array}\right)\right]
\end{aligned}
$$

Using the fact that $M_{i j}$ is discrete and cocompact in $\mathcal{D}_{\infty}=\mathcal{D} \otimes_{k} k_{\infty}$, it can be deduced that for sufficiently large s one has

$$
q \Theta_{i j}\left(\begin{array}{cc}
\pi_{\infty}^{s} & 0 \\
0 & 1
\end{array}\right)=\Theta_{i j}\left(\begin{array}{cc}
\pi_{\infty}^{s+1} & 0 \\
0 & 1
\end{array}\right)
$$

Thus from the equality $\tilde{\Theta}_{i j}^{*}(r+1,0)-\tilde{\Theta}_{i j}^{*}(r, 0)=(q-1) \Theta_{i j}^{*}(r+1,0)$ for all $r \in \mathbb{Z}$ one has

$$
\tilde{\Theta}_{i j}^{*}(r, 0)=-\Theta_{i j}^{*}(r, 0)
$$

Comparing the Fourier coefficients we obtain $\tilde{\Theta}_{i j}=-\Theta_{i j}$ and hence $\Theta_{i j}$ is of Drinfeld type for any $1 \leq i, j \leq n$.

2.2 Hecke operators

Let f be an automorphic form on $\mathrm{GL}_{2}\left(k_{\infty}\right)$ for $\Gamma_{0}(N)$. For each prime P of A, the Hecke operator T_{P} is defined by:

$$
\begin{array}{ll}
T_{P} f(g) & :=\sum_{\operatorname{deg} u<\operatorname{deg} P} f\left(\left(\begin{array}{ll}
1 & u \\
0 & P
\end{array}\right) \cdot g\right)+f\left(\left(\begin{array}{ll}
P & 0 \\
0 & 1
\end{array}\right) \cdot g\right) \\
\text { if } P \nmid N, \\
T_{P} f(g):=\sum_{\operatorname{deg} u<\operatorname{deg} P} f\left(\left(\begin{array}{ll}
1 & u \\
0 & P
\end{array}\right) \cdot g\right) & \text { if } P \mid N .
\end{array}
$$

Note that the Fourier coefficients of $T_{P} f$ are of the form:

$$
\begin{array}{ll}
\left(T_{P} f\right)^{*}(r, \lambda)=q^{\operatorname{deg}(P)} \cdot f^{*}(r+\operatorname{deg}(P), P \lambda)+f^{*}\left(r-\operatorname{deg}(P), \frac{\lambda}{P}\right) & \\
\text { if } P \nmid N, \\
\left(T_{P} f\right)^{*}(r, \lambda)=q^{\operatorname{deg}(P)} \cdot f^{*}(r+\operatorname{deg}(P), P \lambda) & \\
\text { if } P \mid N .
\end{array}
$$

Here $f^{*}\left(\pi_{\infty}^{r}, \frac{\lambda}{P}\right)=0$ if $P \nmid \lambda$. Since T_{P} and $T_{P^{\prime}}$ commute, we can define Hecke operators T_{m} for monic polynomial m in A as follows:

$$
\begin{cases}T_{m m^{\prime}}=T_{m} T_{m^{\prime}} & \text { if } m \text { and } m^{\prime} \text { are relatively prime } \\ T_{P^{\ell}}=T_{P^{\ell-1}} T_{P}-q^{\operatorname{deg} P} T_{P^{\ell-2}} & \text { for } P \nmid N \\ T_{P^{\ell}}=T_{P}^{\ell} & \text { for } P \mid N\end{cases}
$$

We point out that if f is of Drinfeld type, then so is $T_{m} f$ for any monic polynomial m (cf. [7] Section 4.9).

When T_{m} acts on $\Theta_{i j}$, we get:
Proposition 2.4. For any monic polynomial m in A,

$$
T_{m} \Theta_{i j}=\sum_{\ell} B_{i \ell}(m) \Theta_{\ell j}=\sum_{\ell} B_{\ell j}(m) \Theta_{i \ell} .
$$

Proof. The second identity will follow from the first, as

$$
w_{j} \Theta_{i j}=w_{i} \Theta_{j i} \text { and } w_{\ell} B_{i \ell}(m)=w_{i} B_{\ell i}(m) .
$$

Note that the Hecke operators T_{m} satisfy the same relations as the matrices $B(m)$. Moreover, from the recurrence relations of Brandt matrices (cf. [16]) we have

$$
\begin{array}{rlr}
\sum_{\ell} B_{i \ell}(P) B_{\ell j}(m)=B_{i j}(m P)+q^{\operatorname{deg}(P)} B_{i j}(m / P) \text { if } P \nmid N_{0}, \\
\sum_{\ell} B_{i \ell}(P) B_{\ell j}(m)=B_{i j}(m P) & \text { if } P \mid N_{0} .
\end{array}
$$

Comparing the Fourier coefficients the result holds.

Remark. Let $\mathcal{E}_{N_{0}}:=\sum_{j=1}^{n} \Theta_{i j}$ (which is independent of the choice of i). For $r \in \mathbb{Z}$ and $\lambda \in A$ with $\operatorname{deg} \lambda+2 \leq r$ the Fourier coefficients are

$$
\mathcal{E}_{N_{0}}^{*}(r, \lambda)=q^{-r} \sigma(\lambda)_{N_{0}}
$$

where

$$
\sigma(\lambda)_{N_{0}}=\sum_{\substack{m \mid \lambda \text { monic } \\\left(m, N_{0}\right)=1}} q^{\operatorname{deg} m},
$$

and

$$
\mathcal{E}_{N_{0}}^{*}(r, 0)=q^{-r} \sum_{j=1}^{n} \frac{1}{w_{j}} .
$$

Moreover, from Proposition 2.4 we have

$$
T_{m} \mathcal{E}_{N_{0}}=\sigma(m)_{N_{0}} \mathcal{E}_{N_{0}}
$$

for all monic polynomials m in A. This tell us that the function $\mathcal{E}_{N_{0}}$, which is an analogue of Eisenstein series, generates a one-dimensional eigenspace for all Hecke operators. We point out that suppose $N_{0}=\prod_{i=1}^{\ell} P_{i}$, by comparing the Fourier coefficients one gets

$$
q^{2} \varepsilon_{N_{0}}\left(g_{\infty}\right)=E\left(g_{\infty}\right)+\sum_{i=1}^{\ell}(-1)^{i}\left[\sum_{1 \leq j_{1}<\ldots<j_{i} \leq \ell} E\left(\left(\begin{array}{cc}
P_{j_{1}} \cdots P_{j_{i}} & 0 \\
0 & 1
\end{array}\right) g_{\infty}\right)\right]
$$

for $g_{\infty} \in \mathrm{GL}_{2}\left(k_{\infty}\right)$ where E is the improper Eisenstein series introduced in [6]. For each non-zero ideal N of A, recall the Petersson inner product, which is a non-degenerate pairing on the finite dimensional \mathbb{C}-vector space $S\left(\Gamma_{0}(N)\right)$ of automorphic cusp forms of Drinfeld type for $\Gamma_{0}(N)$,

$$
(f, g):=\int_{G_{0}(N)} f \cdot \bar{g}
$$

Here $G_{0}(N)=\Gamma_{0}(N) \backslash \mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times}$. The measure on $G_{0}(N)$ is taken by counting the size of the stablizer of an element (cf. [7] §4.8). More precisely, let Γ be a congruence subgroup and $e \in \mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times}$. We denote $\operatorname{Stab}_{\Gamma}(e)$ the stabilizer of e in Γ, which is a finite subgroup in Γ. One takes the measure $d([e])$ of each double coset $[e]$ in $\Gamma \backslash \mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times}$where

$$
d([e]):=\frac{\#(Z(\Gamma))}{\#\left(\operatorname{Stab}_{\Gamma}(e)\right)}
$$

Here $Z(\Gamma)$ is the subgroup of scalar matrices in Γ. When $\Gamma=\Gamma_{0}(N)$, for f and g in $S\left(\Gamma_{0}(N)\right)$,

$$
(f, g)=\sum_{[e] \in G_{0}(N)} f(e) \overline{g(e)} d([e])
$$

Definition 2.5. An old form is a linear combinations of forms

$$
f^{\prime}\left(\left(\begin{array}{ll}
d & 0 \\
0 & 1
\end{array}\right) g_{\infty}\right)
$$

for $g_{\infty} \in \mathrm{GL}_{2}\left(k_{\infty}\right)$, where f^{\prime} is an automorphic cusp form of Drinfeld type for $\Gamma_{0}(M), M \mid N, M \neq N$, and $d \mid(N / M)$. An automorphic cusp form f of Drinfeld type for $\Gamma_{0}(N)$ is called a new form if for any old form f^{\prime} one has

$$
\left(f, f^{\prime}\right)=0
$$

If f is a new form which is also a Hecke eigenform, then f is called a newform. It is known that the dimension of Drinfeld type cusp forms for $\Gamma_{0}\left(N_{0}\right)$ is equal to the genus of the Drinfeld modular curve $X_{0}\left(N_{0}\right)$ (cf. [7]). Let $S^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ be the space of new forms for $\Gamma_{0}\left(N_{0}\right)$ and $h_{N_{0}}$ be the number of left ideal classes of the maximal order R. As in the classical case, we can deduce that

$$
h_{N_{0}}=\frac{1}{q^{2}-1} \prod_{P \mid N_{0}}\left(q^{\operatorname{deg} P}-1\right)+\frac{q}{2(q+1)} \prod_{P \mid N_{0}}\left(1-(-1)^{\operatorname{deg} P}\right)
$$

From the genus formula of $X_{0}\left(N_{0}\right)$ in [5], the dimension of $S^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ is equal to $h_{N_{0}}-1$.
In the next subsection we will give our main theorem, which is essentially a construction of the space $S^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ of new forms for $\Gamma_{0}\left(N_{0}\right)$ via the theta series $\Theta_{i j}$.

2.3 Main theorem

Consider the definite Shimura curve $X=X_{N_{0}}$ introduced in $\$ 1$ Recall the height pairing

$$
<e, e^{\prime}>=\sum_{i} a_{i} a_{i}^{\prime}
$$

where $e \in \operatorname{Pic}(X)$ with $e=\sum_{i} a_{i} e_{i}$ and $e^{\prime} \in \operatorname{Pic}(X)^{\vee}$ with $e^{\prime}=\sum_{i} a_{i}^{\prime} \check{e}_{i}$.
Let $M\left(\Gamma_{0}\left(N_{0}\right)\right)$ be the space of automorphic forms of Drinfeld type for $\Gamma_{0}\left(N_{0}\right)$. Define $\Phi: \operatorname{Pic}(X) \times \operatorname{Pic}(X)^{\vee} \rightarrow M\left(\Gamma_{0}\left(N_{0}\right)\right)$ by

$$
\Phi\left(e, e^{\prime}\right):=q^{2} \sum_{i, j} a_{i} a_{j}^{\prime} \Theta_{i j}
$$

for any $e \in \operatorname{Pic}(X)$ with $e=\sum_{i} a_{i} e_{i}$ and $e^{\prime} \in \operatorname{Pic}(X)^{\vee}$ with $e^{\prime}=\sum_{i} a_{i}^{\prime} \check{e}_{i}$. Then for $r \in \mathbb{Z}$ and $u \in k_{\infty}$ we have the following Fourier expansion

$$
\Phi\left(e, e^{\prime}\right)\left(\begin{array}{cc}
\pi_{\infty}^{r} & u \\
0 & 1
\end{array}\right)=q^{-r+2}\left(\operatorname{deg} e \cdot \operatorname{deg} e^{\prime}+\sum_{\substack{m \text { monic, } \\
\operatorname{deg} m \leq r-2}}<e, t_{m} e^{\prime}>\sum_{\epsilon \in \mathbb{F}_{q}^{\times}} \psi_{\infty}(\epsilon m u)\right)
$$

Since

$$
<t_{m} e, e^{\prime}>=<e, t_{m} e^{\prime}>
$$

for any monic polynomial $m \in A$, by Proposition 2.4 one has

$$
T_{m}\left(\Phi\left(e, e^{\prime}\right)\right)=\Phi\left(t_{m} e, e^{\prime}\right)=\Phi\left(e, t_{m} e^{\prime}\right)
$$

In fact, the image of Φ is in $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right):=S^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right) \oplus \mathbb{C} \mathcal{E}_{N_{0}}$. To see this, we need the following claim.

Claim: for any monic m in A, consider t_{m} as in $\operatorname{End}(\operatorname{Pic}(X))$ and restrict T_{m} to the subspace $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$. We have

$$
\operatorname{Tr} t_{m}=\operatorname{Tr} T_{m}
$$

This claim tells us that the \mathbb{C}-algebra $\mathbb{T}_{\mathbb{C}}$ generated by all t_{m} is isomorphic to the \mathbb{C}-algebra generated by all Hecke operators T_{m}. Moreover, $\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{C}$ and $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ are isomorphic as $\mathbb{T}_{\mathbb{C}}$-modules.
According to multiplicity one theorem, which will be recalled in the Appendix $\mathbb{A} .2, M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ is a free rank one $\mathbb{T}_{\mathbb{C}}$-module. More precisely, $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ is generated by the element f whose Fourier coefficients are

$$
f^{*}(r, \lambda)=q^{-r+2} \cdot \operatorname{Tr}\left(T_{m}\right)
$$

for all $0 \neq \lambda \in A,(\lambda)=(m), \operatorname{deg} \lambda+2 \leq r$. Therefore $\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{C}$ is also a free rank one $\mathbb{T}_{\mathbb{C}}$-module. This shows

$$
\operatorname{dim}_{\mathbb{C}} M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)=\operatorname{dim}_{\mathbb{C}}\left[\left(\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{C}\right) \otimes_{\mathbb{T}_{\mathbb{C}}}\left(\operatorname{Pic}(X)^{\vee} \otimes_{\mathbb{Z}} \mathbb{C}\right)\right]
$$

Moreover, since

$$
\sum_{i=1}^{n}<e_{i}, t_{m} \check{e}_{i}>=\operatorname{Tr}(B(m))=\operatorname{Tr}\left(t_{m}\right)
$$

we get $\sum_{i=1}^{n} \Phi\left(e_{i}, \check{e}_{i}\right)=f$, which generates $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$. This also tells us that $\sum_{i=1}^{n} e_{i} \otimes \check{e}_{i}$ is a generator of the cyclic $\mathbb{T}_{\mathbb{C}}$-module $\left(\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{C}\right) \otimes_{\mathbb{T}_{\mathbb{C}}}\left(\operatorname{Pic}(X)^{\vee} \otimes_{\mathbb{Z}} \mathbb{C}\right)$.

The above argument gives us the main result:
Theorem 2.6. There is a map $\Phi: \operatorname{Pic}(X) \times \operatorname{Pic}(X)^{\vee} \longrightarrow M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ satisfying that for $r \in \mathbb{Z}$ and $u \in k_{\infty}$
$\Phi\left(e, e^{\prime}\right)\left(\begin{array}{cc}\pi_{\infty}^{r} & u \\ 0 & 1\end{array}\right)=q^{-r+2}\left(\operatorname{deg} e \cdot \operatorname{deg} e^{\prime}+\sum_{\substack{m \text { monic, } \\ \operatorname{deg} m \leq r-2}}<e, t_{m} e^{\prime}>\sum_{(\lambda)=(m)} \psi_{\infty}(\lambda u)\right)$,
and for all monic polynomials m in A

$$
T_{m} \Phi\left(e, e^{\prime}\right)=\Phi\left(t_{m} e, e^{\prime}\right)=\Phi\left(e, t_{m} e^{\prime}\right)
$$

Moreover, this map induces an isomorphism

$$
\left(\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{C}\right) \otimes_{\mathbb{T}_{\mathbb{C}}}\left(\operatorname{Pic}(X)^{\vee} \otimes_{\mathbb{Z}} \mathbb{C}\right) \cong M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)
$$

as $\mathbb{T}_{\mathbb{C}}$-modules .
Remark. 1. When N_{0} is a prime, $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)=M\left(\Gamma_{0}\left(N_{0}\right)\right)$ and so the theta series $\Theta_{i j}$ gives us a construction of all automorphic forms of Drinfeld type for $\Gamma_{0}\left(N_{0}\right)$. This case was proven by Papikian [10] via a geometric approach.
2. Since the theta series $\Theta_{i j}$ are \mathbb{Q}-valued, the map Φ in Theorem 2.6 in fact induces an isomorphism

$$
\left(\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{Q}\right) \otimes_{\mathbb{T}_{\mathbb{Q}}}\left(\operatorname{Pic}(X)^{\vee} \otimes_{\mathbb{Z}} \mathbb{Q}\right) \cong M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right), \mathbb{Q}\right)
$$

where $\mathbb{T}_{\mathbb{Q}}$ is the \mathbb{Q}-algebra generated by t_{m} for all monic m in A and $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right), \mathbb{Q}\right)$ is the space of \mathbb{Q}-valued functions in $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$.
3. The Claim above is essentially Jacquet-Langlands correspondence over the function field k, which will be recalled in the Appendix $\$$ A. 1

2.4 Example: The function $g_{\mathcal{A}}$

Having Theorem 2.6, we exhibit automorphic forms of Drinfeld type with nice arithmetic properties. Let $D \in A-k_{\infty}^{2}$ be a square-free element with the quadratic Legendre symbol $\left(\frac{D}{P}\right) \neq 1$ for all $P \mid N_{0}$. Let K be the imaginary quadratic field $k(\sqrt{D})$ and O_{K} be the integral closure of A in K. Recall that in $\$ 1.1$ one has a free action of $\operatorname{Pic}\left(O_{K}\right)$ on the set G_{D} of Gross points of discriminant D in the definite Shimura curve $X=X_{N_{0}}$:

$$
\begin{array}{rll}
G_{D} \times \operatorname{Pic}\left(O_{K}\right) & \longrightarrow G_{D} \\
(x, \mathcal{A}) & \longmapsto & x_{\mathcal{A}} .
\end{array}
$$

Suppose a Gross point x of discriminant D in X is given. For each ideal class \mathcal{A} in $\operatorname{Pic}\left(O_{K}\right)$, denote $e_{\mathcal{A}}$ to be the divisor class $\left(x_{\mathcal{A}}\right)$ in $\operatorname{Pic}(X)$. Define

$$
g_{\mathcal{A}}:=\sum_{\mathcal{B} \in \operatorname{Pic}\left(O_{K}\right)} \Phi\left(e_{\mathcal{B}}, e_{\mathcal{A B}}\right)
$$

We have a nice formula for the Fourier coefficients of $g_{\mathcal{A}}$ in terms of Hecke actions: for monic $m \in A$ with $\operatorname{deg} m+2 \leq r$,

$$
\begin{aligned}
& g_{\mathcal{A}}^{*}(r, m)=q^{-r+2} \cdot \sum_{\mathcal{B} \in \operatorname{Pic}\left(O_{K}\right)}<e_{\mathcal{B}}, t_{m} e_{\mathcal{A B}}> \\
& g_{\mathcal{A}}^{*}(r, 0)=q^{-r+2} \cdot h_{O_{K}}
\end{aligned}
$$

Here $h_{O_{K}}=\# \operatorname{Pic}\left(O_{K}\right)$. Note that $g_{\mathcal{A}}$ is independent of the choice of the Gross point x.

From now on we assume D is irreducible with $\left(\frac{D}{P}\right)=-1$ for all primes $P \mid N_{0}$. According to Dirichlet's theorem there exists a monic irreducible polynomial Q prime to N_{0} and $\epsilon_{0} \in \mathbb{F}_{q}^{\times}-\mathbb{F}_{q}^{2}$ such that deg $N_{0} Q D$ is odd and $\epsilon_{0} N_{0} Q \equiv$ $1 \bmod D$. Then there exists $j \in \mathcal{D}$ with $j^{2}=\epsilon_{0} N_{0} Q$ so that $\mathcal{D}=K+K j$ and $j^{-1} \alpha j=\bar{\alpha}$ for $\alpha \in K$.
Let $\mathfrak{d}=(\sqrt{D})$ be the different of O_{K}, which is a prime ideal in O_{K}. Since $\epsilon_{0} N_{0} Q \equiv 1 \bmod D$, one has $\left(\frac{\epsilon N_{0} Q}{D}\right)=1$. From the reciprocity law we get $\left(\frac{D}{Q}\right)=1$ and so the prime ideal (Q) is split in K. Suppose $(Q)=\mathfrak{q} \bar{q}$ and set

$$
R:=\left\{\alpha+\beta j: \alpha \in \mathfrak{d}^{-1}, \beta \in \mathfrak{d}^{-1} \mathfrak{q}^{-1}, \alpha-\beta \in O_{\mathfrak{d}}\right\}
$$

Here $O_{\mathfrak{d}}$ is the localization of O_{K} at \mathfrak{d}. It is clear that R is an A-lattice in \mathcal{D} containing 1. In fact, R is a maximal A-order and $K \cap R=O_{K}$. To show R is an A-order, let $\alpha_{1}+\beta_{1} j$ and $\alpha_{2}+\beta_{2} j$ be two elements in R. Then

$$
\left(\alpha_{1}+\beta_{1} j\right)\left(\alpha_{2}+\beta_{2} j\right)=\left(\alpha_{1} \alpha_{2}+\beta_{1} \bar{\beta}_{2} \epsilon_{0} N_{0} Q\right)+\left(\alpha_{1} \beta_{2}+\beta_{1} \bar{\alpha}_{2}\right) j
$$

For $i=1,2$, write β_{i} as $\alpha_{i}+\delta_{i}$ with $\delta_{i} \in O_{\mathfrak{d}}$. Then

$$
\alpha_{1} \alpha_{2}+\beta_{1} \bar{\beta}_{2} \epsilon_{0} N_{0} Q=\alpha_{1}\left(\alpha_{2}+\bar{\alpha}_{2}\right)+\left(\delta_{1} \bar{\beta}_{2}+\beta_{1} \bar{\delta}_{2}+\delta_{1} \bar{\delta}_{2}\right) \epsilon_{0} N_{0} Q
$$

Since $\alpha_{2} \in \mathfrak{d}^{-1}=A+\sqrt{D^{-1}} A$, one has

$$
\alpha_{2}+\bar{\alpha}_{2} \in A
$$

Hence

$$
\alpha_{1} \alpha_{2}+\beta_{1} \bar{\beta}_{2} \epsilon_{0} N_{0} Q \in \mathfrak{d}^{-2} \cap \sqrt{D}^{-1} O_{\mathfrak{d}}=\mathfrak{d}^{-1}
$$

Similarly,

$$
\alpha_{1} \beta_{2}+\beta_{1} \bar{\alpha}_{2} \in \mathfrak{d}^{-2} \mathfrak{q}^{-1} \cap \sqrt{D}^{-1} O_{\mathfrak{d}}=\mathfrak{d}^{-1} \mathfrak{q}^{-1}
$$

From the condition that $\epsilon_{0} N_{0} Q \equiv 1 \bmod D$, one can check that

$$
\alpha_{1} \alpha_{2}+\beta_{1} \bar{\beta}_{2} \epsilon_{0} N_{0} Q-\left(\alpha_{1} \beta_{2}+\beta_{1} \bar{\alpha}_{2}\right) \in O_{\mathfrak{v}} .
$$

Therefore R is an A-order. The discriminant of R is $\left(N_{0}\right)^{2}$, which can be checked locally. This implies that R is maximal.

Let x be the Gross point in the definite Shimura curve $X=X_{N_{0}}$ which corresponds to the trivial ideal R and the embedding $K \hookrightarrow \mathcal{D}$. Then x is of discriminant D. Using this particular Gross point we can get an explicit formula for the Fourier coefficients of $g_{\mathcal{A}}$.

Note that there is a one-to-one correspondence between the irreducible components of X and the left ideal classes of R. Let $\mathfrak{a} \in \mathcal{A}, \mathfrak{b} \in \mathcal{B}$. Then $R \mathfrak{a}$ and $R \mathfrak{a b}$ are representatives of the left ideal classes of R corresponding to $e_{\mathcal{A}}$ and $e_{\mathcal{A B}}$ respectively. Therefore

$$
<e_{\mathcal{B}}, t_{m} e_{\mathcal{A B}}>=\frac{1}{q-1} \#\left\{b \in \mathfrak{b}^{-1} R \mathfrak{b a}:=(\operatorname{Nr}(b)) / \operatorname{Nr}(\mathfrak{a})=(m)\right\}
$$

Assume $N_{0} \mathfrak{d}$ and \mathfrak{a} are relatively prime. Then

$$
\mathfrak{b}^{-1} R \mathfrak{b a}=\left\{\alpha+\beta j: \alpha \in \mathfrak{d}^{-1} \mathfrak{a}, \beta \in \mathfrak{d}^{-1} \mathfrak{b}^{-1} \overline{\mathfrak{b}} \mathfrak{q}^{-1} \overline{\mathfrak{a}}, \alpha-(-1)^{\operatorname{ord}_{\mathfrak{~}}(\mathfrak{b})} \beta \in O_{\mathfrak{d}}\right\}
$$

We can express the Fourier coefficients of $g_{\mathcal{A}}$ in terms of sums of the counting numbers

$$
r_{\mathcal{A}}((\lambda)):=\#\{\mathfrak{a} \in \mathcal{A}: \mathfrak{a} \text { integral with } \operatorname{Nr}(\mathfrak{a})=(\lambda)\}
$$

for ideals (λ) of A, by the following proposition:
Proposition 2.7. Suppose $D \in A-k_{\infty}^{2}$ is irreducible with $\left(\frac{D}{P}\right)=-1$ for all primes $P \mid N_{0}$. Then for any monic polynomial m in A,

$$
\begin{aligned}
& \quad \sum_{\mathcal{B} \in \operatorname{Pic}\left(O_{K}\right)}<e_{\mathcal{B}}, t_{m} e_{\mathcal{A B}}>=\frac{1}{2(q-1)}\left[2 r_{\mathcal{A}}((m D))(q-1) h_{O_{K}}\right. \\
& \left.+\sum_{\substack{\mu \in A, \mu \neq 0 \\
\operatorname{deg}\left(\mu N_{0}\right) \leq \operatorname{deg}(m D)}} r_{\mathcal{A}}\left(\left(\mu N_{0}-m D\right)\right)(t(\mu, D)+1)\left(1-\delta_{\mu N_{0}\left(\mu N_{0}-m D\right)}\right) \sum_{c \mid \mu}\left(\frac{D}{c}\right)\right]
\end{aligned}
$$

Here $t(\mu, D)=1$ if D divides μ and 0 otherwise, and δ_{z} is the norm residue symbol of z for $z \in k_{\infty}^{\times}: \delta_{z}=1$ if $z \in \operatorname{Nr}\left(K_{\infty}^{\times}\right)$and -1 otherwise.

Proof. Let $\mathfrak{a} \in \mathcal{A}$ which is a proper ideal of O_{K} and prime to $N_{0} \mathfrak{d}$. Fix a generator λ_{0} of $\operatorname{Nr}(\mathfrak{a})=\mathfrak{a} \overline{\mathfrak{a}}$. Given $\mathcal{B} \in \operatorname{Pic}\left(O_{K}\right)$. Let $\mathfrak{b} \in \mathcal{B}$. For $b=\alpha+\beta j \in \mathfrak{b}^{-1} R \mathfrak{b a}$, i.e. $\alpha \in \mathfrak{d}^{-1} \mathfrak{a}, \beta \in \mathfrak{d}^{-1} \mathfrak{q}^{-1} \mathfrak{b}^{-1} \overline{\mathfrak{b}} \overline{\mathfrak{a}}, \alpha-(-1)^{\operatorname{ord}_{\mathfrak{o}} \mathfrak{b}} \beta \in O_{\mathfrak{d}}$, define:
(1) $\mathfrak{c}:=(\beta) \mathfrak{d} \mathfrak{q} \overline{\mathfrak{b}}^{-1} \mathfrak{b} \overline{\mathfrak{a}} \in[\mathfrak{q}] \mathcal{B}^{2} \mathcal{A}$,
(2) $\nu:=-\operatorname{Nr}(\alpha) D \lambda_{0}^{-1} \in A$,
(3) $\mu:=-\epsilon_{0} \operatorname{Nr}(\beta) D Q \lambda_{0}^{-1} \in A$.

Here $[\mathfrak{q}] \in \operatorname{Pic}\left(O_{K}\right)$ is the ideal class containing \mathfrak{q}. Then \mathfrak{c} is integral and

$$
\operatorname{Nr}(\alpha+\beta j)=\operatorname{Nr}(\alpha)-\epsilon_{0} N_{0} Q \operatorname{Nr}(\beta)=\left(-\nu+N_{0} \mu\right) D^{-1} \lambda_{0}
$$

Thus $(\operatorname{Nr}(\alpha+\beta j))=\left(m \lambda_{0}\right)$ if and only if $\nu=N_{0} \mu-\epsilon m D$ for a uniquely determined $\epsilon \in \mathbb{F}_{q}^{\times}$.

Since $\beta=0$ if and only if $b=\alpha \in \mathfrak{a}$, one has

$$
\begin{aligned}
& \#\left\{b \in \mathfrak{b}^{-1} R \mathfrak{b a}: \operatorname{Nr}(b)=\left(m \lambda_{0}\right)\right\} \\
= & \#\left\{b=\alpha+\beta j \in \mathfrak{b}^{-1} R \mathfrak{b a}: \beta \neq 0, \operatorname{Nr}(b)=\left(m \lambda_{0}\right)\right\} \\
& +\#\left\{\alpha \in \mathfrak{a}: \operatorname{Nr}(\alpha)=\left(m \lambda_{0}\right)\right\} .
\end{aligned}
$$

It can be shown that $\#\left\{\alpha \in \mathfrak{a}: \operatorname{Nr}(\alpha)=\left(m \lambda_{0}\right)\right\}=(q-1) r_{\mathcal{A}}((m D))$. Note that $\beta \neq 0$ if and only if $\mu \neq 0$. In this case, β is uniquely determined by the integral ideal \mathfrak{c} up to multiplying elements in O_{K}^{\times}.

Conversely, given $0 \neq \mu \in A$ and $\epsilon \in \mathbb{F}_{q}^{\times}$and set $\nu=N_{0} \mu-\epsilon m D$. The number of elements $\alpha \in \mathfrak{d}^{-1} \mathfrak{a}$ with $\operatorname{Nr}(\alpha)=-\nu D^{-1} \lambda_{0}$ is $r_{\mathfrak{a}, \lambda_{0}}\left(N_{0} \mu-\epsilon m D\right)$. Here

$$
r_{\mathfrak{a}, \lambda_{0}}(\lambda):=\#\left\{a \in \mathfrak{a}: \operatorname{Nr}(a)=\lambda \lambda_{0}\right\} \text { for } \lambda \in A .
$$

In the case of $r_{\mathfrak{a}, \lambda_{0}}\left(N_{0} \mu-\epsilon m D\right) \neq 0$, choose an element $\alpha \in \mathfrak{d}^{-1} \mathfrak{a}$ with $\operatorname{Nr}(\alpha)=$ $-\nu D^{-1} \lambda_{0}$. Let \mathfrak{c} be an integral ideal which lies in a class differing from the ideal class $\mathcal{A}[\mathfrak{q}]$ by a square $[\mathfrak{b}]^{2}$ in the class group $\operatorname{Pic}\left(O_{K}\right)$ and with ideal norm (μ). Then

$$
\mathfrak{c} \cdot \mathfrak{b}^{-1} \overline{\mathfrak{b}} \overline{\mathfrak{a}} \mathfrak{q}^{-1} \mathfrak{d}^{-1}=(\beta)
$$

for some $\beta \in K^{\times}$. Suppose we can find β so that $\mu=-\epsilon_{0} \operatorname{Nr}(\beta) D Q \lambda_{0}^{-1} \in A$. Since $\epsilon_{0} N_{0} Q \equiv 1 \bmod D$, the equality $\epsilon m \lambda_{0}=\operatorname{Nr}(\alpha)-\epsilon_{0} N_{0} Q \operatorname{Nr}(\beta) \in A$ implies

$$
\alpha \pm \beta \in O_{\mathfrak{d}} .
$$

Choose $\ell \in\{0,1\}$ and replace \mathfrak{b} by $\mathfrak{b d}{ }^{\ell}$ so that $\alpha-(-1)^{\operatorname{ord}_{\mathfrak{d}}(\mathfrak{b})} \beta \in O_{\mathfrak{d}}$. Therefore $b=\alpha+\beta j \in \mathfrak{b}^{-1} R \mathfrak{b a}$ with $\operatorname{Nr}(b)=\epsilon m \lambda_{0}$. Note that if β is not in $O_{\mathfrak{d}}$ (i.e. $D \nmid \mu$), then ℓ is uniquely determined. If $\beta \in O_{\mathfrak{d}}$ (i.e. $D \mid \mu$), then we have two choices $\pm \beta$. The existence of β is equivalent to that $-\epsilon_{0}^{-1} D \mu Q^{-1} \lambda_{0}$ is in $\operatorname{Nr}\left(K^{\times}\right)$. Since $\operatorname{Nr}(\sqrt{D})=-D$ and $\left(\epsilon_{0}^{-1} \mu Q^{-1} \lambda_{0}\right)=\operatorname{Nr}\left(\mathfrak{c q}^{-1} \overline{\mathfrak{a}}\right)$, we have $\epsilon_{0}^{-1} \mu Q^{-1} \lambda_{0} \in \operatorname{Nr}\left(K^{\times}\right)$if and only if $\delta_{\epsilon_{0}^{-1} \mu Q^{-1} \lambda_{0}}=1$. Therefore combining the above arguments we have

$$
\begin{aligned}
& \sum_{\mathcal{B} \in \operatorname{Pic}\left(O_{K}\right)} \#\left\{b=\alpha+\beta j \in \mathfrak{b}^{-1} R \mathfrak{b a}: \beta \neq 0, \mathrm{Nr}(b)=\left(m \lambda_{0}\right)\right\} \\
= & \sum_{0 \neq \mu \in A} \sum_{\epsilon \in \mathbb{F}_{q}^{\times}} r_{\mathfrak{a}, \lambda_{0}}\left(N_{0} \mu-\epsilon m D\right) \cdot(t(\mu, D)+1) \cdot \mathcal{R}_{\{\mathcal{A}[q]\}}((\mu)) \cdot \frac{1+\delta_{\epsilon_{0}^{-1} \mu Q^{-1} \lambda_{0}}^{2} .}{2} .
\end{aligned}
$$

Here $\mathcal{R}_{\{\mathcal{A}[\mathfrak{q}]\}}((\mu))$ is the number of integral ideals \mathfrak{c}, which lie in a class differing from the class $\mathcal{A}[\mathfrak{q}]$ by a square in the class group $\operatorname{Pic}\left(O_{K}\right)$ and with ideal norm (μ). Following the proof of Lemma 3.4.9 in [12] one has
Lemma 2.8. For $0 \neq \mu \in A$,

$$
\mathcal{R}_{\{\mathcal{A}[q]\}}((\mu)) \cdot \frac{1+\delta_{\epsilon_{0}^{-1} \mu Q^{-1} \lambda_{0}}}{2}=\frac{1}{q-1} \sum_{c \mid \mu}\left(\frac{D}{c}\right) \cdot \frac{1+\delta_{\epsilon_{0}^{-1} \mu Q^{-1} \lambda_{0}}}{2} .
$$

Since $\delta_{\epsilon_{0}^{-1} \mu Q^{-1} \lambda_{0}}=1$ if and only if $\delta_{N_{0} \mu \lambda_{0}}=-1$, with Lemma 2.6 we have

$$
\begin{aligned}
& \sum_{\mathcal{B} \in \operatorname{Pic}\left(O_{K}\right)} \#\left\{b=\alpha+\beta j \in \mathfrak{b}^{-1} R \mathfrak{b a}: \beta \neq 0, \mathrm{Nr}(b)=\left(m \lambda_{0}\right)\right\} \\
= & \sum_{0 \neq \mu \in A} \sum_{\substack{ \\
0 \neq \mathbb{F}_{q}^{\times}}} r_{\mathfrak{a}, \lambda_{0}}\left(N_{0} \mu-\epsilon m D\right)(t(\mu, D)+1) \cdot \frac{1-\delta_{N_{0} \mu \lambda_{0}}}{2} \cdot \frac{1}{q-1} \sum_{c \mid \mu}\left(\frac{D}{c}\right) \\
= & \sum_{\substack{\mu \in A, \mu \neq 0 \\
\operatorname{deg}\left(\mu N_{0}\right) \leq \operatorname{deg}(m D)}} r_{\mathcal{A}}\left(\left(\mu N_{0}-m D\right)\right)(t(\mu, D)+1) \cdot \frac{1-\delta_{\mu N_{0}\left(\mu N_{0}-m D\right)}^{2} \cdot \sum_{c \mid \mu}\left(\frac{D}{c}\right) .}{} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \quad \sum_{\mathcal{B} \in \operatorname{Pic}\left(O_{K}\right)}\left\langle e_{\mathcal{B}}, t_{m} e_{\mathcal{A B}}>=\frac{1}{2(q-1)}\left[2 r_{\mathcal{A}}((m D))(q-1) h_{O_{K}}\right.\right. \\
& \left.+\sum_{\substack{\mu \in A, \mu \neq 0 \\
\operatorname{deg}\left(\mu N_{0}\right) \leq \operatorname{deg}(m D)}} r_{\mathcal{A}}\left(\left(\mu N_{0}-m D\right)\right)(t(\mu, D)+1)\left(1-\delta_{\mu N_{0}\left(\mu N_{0}-m D\right)}\right) \sum_{c \mid \mu}\left(\frac{D}{c}\right)\right] .
\end{aligned}
$$

3 Special values of L-SERIES

3.1 Rankin PRODUCT

To an automorphic cusp form f of Drinfeld type for $\Gamma_{0}(N)$ one can attach an L-series $L(f, s)$: let \mathfrak{m} be an effective divisor of k, which can be written as $\operatorname{div}(\lambda)_{0}+(r-\operatorname{deg} \lambda) \infty$ for a nonzero polynomial $\lambda(=\lambda(\mathfrak{m}))$ in A, with

$$
\operatorname{div}(\lambda)_{0}:=\sum_{\text {finite prime } P} \operatorname{ord}_{P}(\lambda) P .
$$

Denote

$$
f^{*}(\mathfrak{m}):=\int_{A \backslash k_{\infty}} f\left(\begin{array}{cc}
\pi_{\infty}^{r+2} & u \\
0 & 1
\end{array}\right) \psi_{\infty}(-\lambda u) d u=f^{*}(r+2, \lambda)
$$

The L-series $L(f, s)$ attached to f is

$$
L(f, s):=\sum_{\mathfrak{m} \geq 0} f^{*}(\mathfrak{m}) q^{-\operatorname{deg}(\mathfrak{m}) s}, \operatorname{Re} s>1
$$

Let $D \in A-k_{\infty}^{2}$ be a square-free element. Consider the imaginary field $K=$ $k(\sqrt{D})$. Let O_{K} be the integral closure of A in K and $\operatorname{Pic}\left(O_{K}\right)$ be the ideal class group of O_{K}. Given an ideal class $\mathcal{A} \in \operatorname{Pic}\left(O_{K}\right)$ and a polynomial λ in
A. The number of integral ideals \mathfrak{a} in the class \mathcal{A} with $N_{K / k}(\mathfrak{a})=(\lambda)$ leads to the partial zeta function attached to \mathcal{A} :

$$
\zeta_{\mathcal{A}}(s):=\sum_{\mathfrak{m} \geq 0} r_{\mathcal{A}}(\mathfrak{m}) q^{-\operatorname{deg}(\mathfrak{m}) s}, \quad \operatorname{Re} s>1
$$

Here for each effective divisor $\mathfrak{m}=\operatorname{div}(\lambda)_{0}+(r-\operatorname{deg} \lambda) \infty$,

$$
r_{\mathcal{A}}(\mathfrak{m}):=\#\left\{\mathfrak{a} \in \mathcal{A}: \mathfrak{a} \text { integral with } N_{K / k}(\mathfrak{a})=(\lambda)\right\}
$$

Let f be an automorphic cusp form of Drinfeld type for $\Gamma_{0}(N)$. For each ideal class $\mathcal{A} \in \operatorname{Pic}\left(O_{K}\right)$, we are interested in the Rankin product:

$$
L(f, \mathcal{A}, s):=\sum_{\mathfrak{m} \geq 0} f^{*}(\mathfrak{m}) r_{\mathcal{A}}(\mathfrak{m}) q^{-\operatorname{deg}(\mathfrak{m}) s}, \operatorname{Re}(s)>1
$$

To study the analytic continuation and the functional equation of $L(f, \mathcal{A}, s)$, consider the function $\Lambda(f, \mathcal{A}, s)$ which is defined by:

$$
\Lambda(f, \mathcal{A}, s):= \begin{cases}L^{(N, D)}(2 s+1) L(f, \mathcal{A}, s) & \text { when } \operatorname{deg} D \text { is odd } \\ \frac{1}{1+q^{-s-1}} L^{(N, D)}(2 s+1) L(f, \mathcal{A}, s) & \text { when } \operatorname{deg} D \text { is even }\end{cases}
$$

Here $L^{(N, D)}(s)$ is the following L-series indexed by effective divisors supported outside ∞

$$
L^{(N, D)}(s):=\frac{1}{q-1} \sum_{d \in A,(d, N)=1}\left(\frac{D}{d}\right) q^{-s \operatorname{deg} d}, \operatorname{Re}(s)>1
$$

where $\left(\frac{D}{d}\right)$ denotes the Legendre symbol for the polynomial ring A. Note that

$$
L^{(N, D)}(s)=L_{D}(s) \cdot \prod_{\text {prime ideals } P \mid N}\left(1-\left(\frac{D}{P}\right) q^{-s \operatorname{deg} P}\right)^{-1}
$$

where $L_{D}(s)$ is the Dirichlet L-series:

$$
L_{D}(s):=\frac{1}{q-1} \sum_{d \in A, d \neq 0}\left(\frac{D}{d}\right) q^{-s \operatorname{deg} d}, \operatorname{Re}(s)>1
$$

It is known that $L_{D}(s)$ can be extended to a polynomial in q^{-s} with the functional equation (cf. [1]):

$$
L_{D}(2 s+1)=q^{s(-2 \operatorname{deg} D+2)-\frac{1}{2} \operatorname{deg} D+\frac{1}{2}} L_{D}(-2 s)
$$

if $\operatorname{deg} D$ is odd, and

$$
\begin{gathered}
L_{D}(-2 s+1)=\frac{1+q^{1-2 s}}{1+q^{2 s}} q^{\operatorname{deg} D\left(2 s-\frac{1}{2}\right)} L_{D}(2 s) \\
\text { Documenta Mathematica } 16 \text { (2011) } 723-765
\end{gathered}
$$

if $\operatorname{deg} D$ is even.
When f is a new form and D is irreducible, Rück and Tipp ([12]) prove the following functional equation of $\Lambda(f, \mathcal{A}, s)$:

$$
\Lambda(f, \mathcal{A}, s)=-\left(\frac{D}{N}\right) q^{(5-2 \operatorname{deg} D-2 \operatorname{deg} N) s} \Lambda(f, \mathcal{A},-s)
$$

when $\operatorname{deg} D$ is odd, and

$$
\Lambda(f, \mathcal{A}, s)=-\left(\frac{D}{N}\right) q^{(6-2 \operatorname{deg} D-2 \operatorname{deg} N) s} \Lambda(f, \mathcal{A},-s)
$$

when $\operatorname{deg} D$ is even.

3.2 Central critical values of $\Lambda(f, \mathcal{A}, s)$

We are interested in the special value of $\Lambda(f, \mathcal{A}, s)$ at $s=0$. Note that if $\left(\frac{D}{N}\right)=1$, then $\Lambda(f, \mathcal{A}, s)$ has a zero at $s=0$. We focus here on the special case when $\left(\frac{D}{P}\right)=-1$ for all primes $P \mid N_{0}$. Adapting Rankin's method (cf. [12]), we can establish the following theorem.

Theorem 3.1. Let f be a Drinfeld type new form for $\Gamma_{0}\left(N_{0}\right)$ and let D be an irreducible polynomial in $A-k_{\infty}^{2}$ with $\left(\frac{D}{P}\right)=-1$ for all primes $P \mid N_{0}$. One has

$$
\Lambda(f, \mathcal{A}, 0)= \begin{cases}\frac{\left(f, g_{\mathcal{A}}\right)}{q^{\frac{1}{2}(\operatorname{deg} D+1)}} & \text { when } \operatorname{deg} D \text { is odd } \\ \frac{\left(f, g_{\mathcal{A}}\right)}{2 q^{\frac{1}{2} \operatorname{deg} D}} & \text { when } \operatorname{deg} D \text { is even }\end{cases}
$$

Here (\cdot, \cdot) is the Petersson inner product and $g_{\mathcal{A}}$ is the Drinfeld type automorphic form for $\Gamma_{0}\left(N_{0}\right)$ canonically attached to \mathcal{A} in 2.4.

3.2.1 Review of Rankin's method

Given $\mathcal{A} \in \operatorname{Pic}\left(O_{K}\right)$. Choose $\mathfrak{a}_{0} \in \mathcal{A}^{-1}$ and $\lambda_{0} \in k$ such that $N_{K / k}\left(\mathfrak{a}_{0}\right)=\left(\lambda_{0}\right)$ Recall the counting number

$$
r_{\mathfrak{a}_{0}, \lambda_{0}}(\lambda)=\#\left\{\mu \in \mathfrak{a}_{\boldsymbol{o}}: N_{K / k}(\mu)=\lambda_{0} \lambda\right\}
$$

Note that $r_{\mathfrak{a}_{0}, \lambda_{0}}(\lambda)=r_{\mathfrak{a}_{0}^{-1}, \lambda_{0}^{-1}}(\lambda)$, and for effective divisor $\mathfrak{m}=\operatorname{div}(\lambda)_{0}+$ $(\operatorname{deg} \mathfrak{m}-\operatorname{deg} \lambda) \infty$ we have

$$
r_{\mathcal{A}}(\mathfrak{m})=\frac{1}{q-1} \sum_{\epsilon \in \mathbb{F}_{q}^{\times}} r_{\mathfrak{a}_{0}, \lambda_{0}}(\epsilon \lambda) .
$$

We consider the following theta series $\theta_{\mathfrak{a}_{0}, \lambda_{0}}$ (introduced in [11) defined on $k_{\infty}^{\times} \times k_{\infty}$:

$$
\theta_{\mathfrak{a}_{0}, \lambda_{0}}\left(\pi_{\infty}^{r}, u\right):=\sum_{\operatorname{deg} \lambda+2 \leq r} r_{\mathfrak{a}_{0}, \lambda_{0}}(\lambda) \psi_{\infty}(\lambda u)
$$

It satisfies the following transformation law:

$$
\theta_{\mathfrak{a}_{0}, \lambda_{0}}\left(\frac{\pi_{\infty}^{r}}{(c u+d)^{2}}, \frac{a u+b}{c u+d}\right)=\delta_{c u+d}\left(\frac{d}{D}\right) q^{-v_{\infty}(c u+d)} \theta_{\mathfrak{a}_{0}, \lambda_{0}}\left(\pi_{\infty}^{r}, u\right)
$$

for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}^{(1)}(N):=\Gamma_{0}(N) \cap \mathrm{SL}_{2}(A)$ with $v_{\infty}\left(c \pi_{\infty}^{r}\right)>v_{\infty}(c u+d)$.
Here δ is the local norm symbol at ∞, i.e. $\delta_{z}=1$ if $z \in k_{\infty}^{\times}$is a norm of an element in $K_{\infty}=k_{\infty}(\sqrt{D})$ and -1 otherwise.

Viewing $\theta_{\mathfrak{a}_{0}, \lambda_{0}}$ as a function on

$$
\mathbb{H}_{\infty}:=\left(\begin{array}{cc}
1 & A \\
0 & 1
\end{array}\right) \backslash\left(\begin{array}{cc}
k_{\infty}^{\times} & k_{\infty} \\
0 & 1
\end{array}\right) /\left(\begin{array}{cc}
\mathcal{O}_{\infty}^{\times} & \mathcal{O}_{\infty} \\
0 & 1
\end{array}\right)
$$

one can write

$$
\begin{aligned}
L(f, \mathcal{A}, s) & =\frac{q}{q-1} \sum_{r=2}^{\infty}\left[\sum_{u \in \pi_{\infty} O_{\infty} / \pi_{\infty}^{r} O_{\infty}} f \cdot \overline{\theta_{\mathfrak{a}_{0}, \lambda_{0}}}\left(\begin{array}{cc}
\pi_{\infty}^{r} & u \\
0 & 1
\end{array}\right) q^{-r(s+1)+2 s}\right] \\
& =\frac{q}{q-1} \int_{\mathbb{H}_{\infty}} f(h) \overline{\theta_{\mathfrak{a}_{0}, \lambda_{0}}(h) q^{-r(\bar{s}+1)+2 \bar{s}}} d h .
\end{aligned}
$$

For every monic polynomial M in A, the canonical map

$$
\mathbb{H}_{\infty} \longrightarrow G(M):=\Gamma_{0}^{(1)}(M) \backslash \mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times}
$$

is surjective. Following [12], we consider the "Eisenstein series"

$$
E_{s}\left(\begin{array}{cc}
\pi_{\infty}^{r} & u \\
0 & 1
\end{array}\right):=\sum_{\substack{c, d \in A, c=0 \bmod D \\
v_{\infty}\left(c \pi \pi_{\infty}\right)>v_{\infty}(c u+d)}}\left(\frac{d}{D}\right) \delta_{c u+d} q^{v_{\infty}(c u+d)(2 s+1)}
$$

and let $H_{s}\left(\begin{array}{cc}\pi_{\infty}^{r} & u \\ 0 & 1\end{array}\right):=$

$$
\begin{cases}q^{-r(s+1)+2 s} E_{s}\left(\begin{array}{cc}
N \pi_{\infty}^{r} & N u \\
0 & 1
\end{array}\right) & \text { when } \operatorname{deg} D \text { is odd } \\
\left(\frac{(-1)^{r-\operatorname{deg} \lambda_{0}+1}}{2}\right) \cdot q^{-r(s+1)+2 s} E_{s}\left(\begin{array}{cc}
N \pi_{\infty}^{r} & N u \\
0 & 1
\end{array}\right) & \text { when } \operatorname{deg} D \text { is even. }\end{cases}
$$

Then $\theta_{\mathfrak{a}_{0}, \lambda_{0}} H_{\bar{s}}$ can be viewed as a function on $G(N D)$. By [12 Proposition 2.2.2 and Proposition 2.3.2

$$
\Lambda(f, \mathcal{A}, s)=\frac{q}{2(q-1)} \int_{G(N D)} f \cdot \overline{\theta_{\mathfrak{a}_{0}, \lambda_{0}} H_{\bar{s}}}
$$

Given $M \in A$. Let $\mathcal{F}(M)$ be the space of functions on $G(M)$. The trace map from $\mathcal{F}(N D)$ to $\mathcal{F}(N)$ is given by

$$
f \longrightarrow \operatorname{Tr}_{N}^{N D} f(g):=\sum_{\gamma \in \Gamma_{0}^{(1)}(N D) \backslash \Gamma_{0}^{(1)}(N)} f(\gamma g) .
$$

Set $\Phi_{s}:=\operatorname{Tr}_{N}^{N D}\left(\theta_{\mathfrak{a}_{0}, \lambda_{0}} H_{\bar{s}}\right)$. Then

$$
\Lambda(f, \mathcal{A}, s)=\frac{q}{2(q-1)} \int_{G(N)} f \cdot \overline{\Phi_{\bar{s}}}
$$

From the harmonicity of f one has

$$
\Lambda(f, \mathcal{A}, s)=\frac{q}{4(q-1)} \int_{G(N)} f \cdot \overline{F_{\bar{s}}}
$$

where for $g \in \mathrm{GL}_{2}\left(k_{\infty}\right)$,

$$
F_{s}(g):=\frac{q}{q+1}\left(\Phi_{s}(g)-\tilde{\Phi}_{s}(g)\right)-\frac{1}{q+1} \sum_{\substack{\beta \in \mathrm{GL}_{2}\left(O_{\infty}\right) / / \Gamma_{\infty}, \beta \neq 1}}\left(\Phi_{s}(g \beta)-\tilde{\Phi}_{s}(g \beta)\right) .
$$

Note that F_{s} depends on the choice of \mathfrak{a}_{0} and λ_{0}.

3.2.2 Proof of Theorem 3.1

Let Ψ be the average map from functions F on $G(N)$ to functions on $G_{0}(N)$:

$$
\Psi(F)(g):=\frac{1}{q-1} \sum_{\epsilon \in \mathbb{F}_{q}^{\times}} F\left(\left(\begin{array}{ll}
\epsilon & 0 \\
0 & 1
\end{array}\right) g\right) .
$$

Define

$$
\Psi_{\mathcal{A}}:=\Psi\left(F_{0}\right)
$$

Note that $\Psi_{\mathcal{A}}$ now depends only on \mathcal{A}.
Taking the formulas in Proposition 2.7.2 and Proposition 2.7.5 in [12] and specializing at $s=0$ we deduce that for any $\lambda \in A$ with $\operatorname{deg} \lambda+2 \leq r$

$$
\begin{aligned}
& \Psi_{\mathcal{A}}^{*}(r, \lambda)=\frac{3-(-1)^{\operatorname{deg} D}}{4} \cdot q^{-r+1-\left\lceil\frac{\operatorname{deg} D}{2}\right\rceil} \cdot\left[2 r_{\mathcal{A}}((\lambda D))(q-1) L_{D}(0)\right. \\
& \left.+\sum_{\substack{\mu \in A, \mu \neq 0 \\
\operatorname{deg}(\mu N) \leq \operatorname{deg}(\lambda D)}} r_{\mathcal{A}}((\mu N-\lambda D))(t(\mu, D)+1)\left(1-\delta_{\mu N(\mu N-\lambda D)}\right) \sum_{c \mid \mu}\left(\frac{D}{c}\right)\right] .
\end{aligned}
$$

Moreover, one has

Proposition 3.2.

$$
\Lambda(f, \mathcal{A}, 0)=\frac{q}{2(q-1)} \int_{G_{0}(N)} f \cdot \overline{\Psi_{\mathcal{A}}} .
$$

Let $N=N_{0}$. Note that $L_{D}(0)=h_{O_{K}}$. Comparing the Fourier coefficients of $\Psi_{\mathcal{A}}$ with that of $g_{\mathcal{A}}$ we obtain

$$
\Psi_{\mathcal{A}}=g_{\mathcal{A}} \cdot \begin{cases}q^{-\frac{1}{2} \operatorname{deg} D+\frac{1}{2}} \cdot q^{-2} \cdot(q-1) \cdot 2 & \text { when } \operatorname{deg} D \text { is odd } \\ q^{-1} \cdot q^{-\frac{1}{2} \operatorname{deg} D} \cdot(q-1) & \text { when } \operatorname{deg} D \text { is even }\end{cases}
$$

Therefor Theorem 3.1 holds.

3.3 A function field analogue of Gross formula

Now given a character $\chi: \operatorname{Pic}\left(O_{K}\right) \rightarrow \mathbb{C}^{\times}$, define

$$
\Lambda(f, \chi, s):=\sum_{\mathcal{A} \in \operatorname{Pic}\left(O_{K}\right)} \chi(\mathcal{A}) \Lambda(f, \mathcal{A}, s)
$$

When χ is the trivial character and f is a newform which is "normalized" so that the Fourier coefficient $f^{*}(0)=1$, one has

$$
\Lambda(f, \chi, s)=L(f, s) L\left(f \otimes \varepsilon_{D}, s\right)
$$

where ε_{D} is the following quadratic character on divisors of k :

$$
\varepsilon_{D}(P)=\left(\frac{D}{P}\right) \text { and } \varepsilon_{D}(\infty)= \begin{cases}-1 & \text { if } \operatorname{deg} D \text { is even } \\ 0 & \text { if } \operatorname{deg} D \text { is odd }\end{cases}
$$

and $L\left(f \otimes \varepsilon_{D}, s\right)$ is the twisted L-series of f by ε_{D} :

$$
L\left(f \otimes \varepsilon_{D}, s\right):=\sum_{\mathfrak{m} \geq 0} f^{*}(\mathfrak{m}) \varepsilon_{D}(\mathfrak{m}) q^{-\operatorname{deg} \mathfrak{m} s}
$$

From the definition of $\Lambda(f, \chi, s)$ and Theorem 3.1 one has

$$
\Lambda(f, \chi, 0)=\left(\sum_{\mathcal{A} \in \operatorname{Pic}\left(O_{K}\right)} \chi(\mathcal{A})\left(f, g_{\mathcal{A}}\right)\right) \cdot \begin{cases}\frac{1}{q^{\frac{1}{2}(\operatorname{deg} D+1)}} & \text { if } \operatorname{deg} D \text { is odd } \\ \frac{1}{2 q^{\frac{1}{2} \operatorname{deg} D}} & \text { if } \operatorname{deg} D \text { is even. }\end{cases}
$$

Note that

$$
\begin{aligned}
\sum_{\mathcal{A} \in \operatorname{Pic}\left(O_{K}\right)} \chi(\mathcal{A})^{-1} g_{\mathcal{A}} & =\sum_{\mathcal{A} \in \operatorname{Pic}\left(O_{K}\right)}\left(\sum_{\mathcal{B} \in \operatorname{Pic}\left(O_{K}\right)} \chi(\mathcal{A})^{-1} \Phi\left(e_{\mathcal{B}}, e_{\mathcal{A B}}\right)\right) \\
& =\Phi\left(e_{\chi}, e_{\chi}\right)
\end{aligned}
$$

where Φ is the map in Theorem 2.6 and

$$
e_{\chi}=\sum_{\mathcal{A} \in \operatorname{Pic}\left(O_{K}\right)} \chi(\mathcal{A}) e_{\mathcal{A}} .
$$

Suppose f is a normalized newform. Then from Theorem $2.6 f$ corresponds to a particular element $e_{f} \in \operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{R}$ such that

$$
f=\Phi\left(e_{f}, e_{f}\right)
$$

Let $e_{f, \chi}$ be the projection of e_{χ} to the e_{f}-isotypical component in the space $\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{C}$ with respect to the Gross height pairing. Then the f eigencomponent of $\Phi\left(e_{\chi}, e_{\chi}\right)$ is equal to

$$
\Phi\left(e_{f, \chi}, e_{\chi}\right)=\Phi\left(e_{f, \chi}, e_{f, \chi}\right)=<e_{f, \chi}, e_{f, \chi}>f
$$

The last equality holds as f is normalized (i.e. $f^{*}(0)=1$) and the Fourier coefficient $\Phi\left(e_{f, \chi}, e_{f, \chi}\right)^{*}(0)=<e_{f, \chi}, e_{f, \chi}>$. Therefore we obtain
TheOrem 3.3. Let f be an automorphic cusp form of Drinfeld type for $\Gamma_{0}\left(N_{0}\right)$ which is also a normalized newform. Then

$$
\Lambda(f, \chi, 0)= \begin{cases}\frac{(f, f)}{q^{\frac{1}{2}(\operatorname{deg} D+1)}} \cdot<e_{f, \chi}, e_{f, \chi}> & \text { if } \operatorname{deg} D \text { is odd } \\ \frac{(f, f)}{2 q^{\frac{1}{2} \operatorname{deg} D}} \cdot<e_{f, \chi}, e_{f, \chi}> & \text { if } \operatorname{deg} D \text { is even }\end{cases}
$$

Remark. 1. If χ is non-trivial, then $\operatorname{deg} e_{\chi}=0$ and so $\Phi\left(e_{\chi}, e_{\chi}\right)$ is a cusp form. 2. When χ is trivial, then

$$
\sum_{\text {monic } m \mid N_{0}} t_{m} e_{\chi}=2 e_{D}
$$

where e_{D} is the divisor class introduced in Proposition 1.7.
3. The special case when N_{0} is a prime and $\operatorname{deg} D$ is odd, the above formula coincides with the result in [10] $\S 4$ (be aware of the different choices of measures for the Petersson inner product).
4. When irreducible $D \in A-k_{\infty}^{2}$ satisfies $\left(\frac{D}{N_{0}}\right)=1$, the derivative of $\Lambda(f, \chi, s)$ at $s=0$ is given by Néron-Tate height of Heegner points on the Drinfeld modular curve $X_{0}\left(N_{0}\right)$, and an analogue of Gross-Zagier formula has been proved by Rück and Tipp in the case D is irreducible (cf. [12]).

3.4 Example and application to elliptic curves

Let E be a non-iso-trivial elliptic curve over k (i.e. E is not defined over the constant field \mathbb{F}_{q}). From the work of Weil, Jacquet-Langlands, and Deligne, one knows that there exists an automorphic cusp form f_{E} such that

$$
L(E / k, s+1)=L\left(f_{E}, s\right)
$$

Here $L(E / k, s)$ is the Hasse-Weil L-series of E over k. Suppose the conductor of E is $N_{0} \infty$, and E has split multiplicative reduction at ∞. Then the automorphic form f_{E} is of Drinfeld type for $\Gamma_{0}\left(N_{0}\right)$, which is a normalized newform (cf. [7]).

Consider the Hasse-Weil L-series $L(E / K, s)$ of E over the imaginary quadratic field $K=k(\sqrt{D})$ where $D \in A$ with $\left(\frac{D}{P}\right)=-1$ for all primes $P \mid N_{0}$. One has

$$
L(E / K, s+1)=L\left(f_{E}, s\right) L\left(f_{E} \otimes \varepsilon_{D}, s\right)
$$

where $L\left(f_{E}, \otimes \varepsilon_{D}, s\right)$ is the twisted L-series of f_{E} by the quadratic character ε_{D}. Since

$$
L\left(f_{E}, s\right) L\left(f_{E} \otimes \varepsilon_{D}, s\right)=\Lambda\left(f_{E}, \mathbf{1}_{D}, s\right)
$$

where $\mathbf{1}_{D}$ is the trivial character on $\operatorname{Pic}\left(O_{K}\right)$, from Theorem 3.3 we obtain a formula for the special value of $L(E / K, s)$ at $s=1$ when D is irreducible.

Now, let $k=\mathbb{F}_{3}(t)$ (i.e. $q=3$). Let E be the following elliptic curve over k :

$$
E: y^{2}=x^{3}+\left(t^{2}+1\right) x^{2}+t^{2} x=x(x+1)\left(x+t^{2}\right)
$$

The conductor of E is $(t)(t+1)(t-1) \infty$. More precisely, E has split multiplicative reduction at (t) and ∞, and has non-split multiplicative reduction at $(t+1)$ and $(t-1)$. Let $N_{0}=t(t+1)(t-1)=t^{3}-t$. Let f_{E} be the normalized Drinfeld type cusp form for $\Gamma\left(N_{0}\right)$ associated to E. Since the L-series $L(E / k, s)$ of E over k is a polynomial in q^{-s} of degree $\left(\operatorname{deg} N_{0}+1\right)-4$ with constant term 1, this implies that $L(E / k, s)=L\left(f_{E}, s-1\right)=1$.
Let $D=t^{3}-t-1$ and $K=k(\sqrt{D})$. Then

$$
\left(\frac{D}{t}\right)=\left(\frac{D}{t+1}\right)=\left(\frac{D}{t-1}\right)=-1 .
$$

The twist E_{D} of E by D is the following elliptic curve over k :

$$
y^{2}=x^{3}+\left(t^{2}+1\right) D x^{2}+t^{2} D^{2} x .
$$

The conductor of E_{D} is $(D)^{2}(t)(t+1)(t-1) \infty^{2}$, and the L-series $L\left(E_{D} / k, s\right)$ is

$$
1+q^{-s}+4 q^{-2 s}+108 q^{-5 s}+243 q^{-6 s}+2187 q^{-7 s}
$$

Since $L(E / K, s)=L(E / k, s) \cdot L\left(E_{D} / k, s\right)$, we have

$$
L(E / K, s)=1+q^{-s}+4 q^{-2 s}+108 q^{-5 s}+243 q^{-6 s}+2187 q^{-7 s}
$$

and $L(E / K, 1)=\frac{32}{9}$.
On the other hand, from a formula of Gekeler (cf. [13] Theorem 1.1) we immediately get

$$
\left(f_{E}, f_{E}\right)=32
$$

We point out that our choice of the measure is twice of the one in [13. Such computation can be also checked via the algorithm in [15].

The only remaining term is the Gross height of the corresponding point $e_{f_{E}}$ in $\operatorname{Pic}\left(X_{N_{0}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$. Let \mathcal{D} be the definite quaternion algebra over k ramified at $(t),(t+1)$, and $(t-1)$. Then

$$
\mathcal{D}=k+k \alpha+k \beta+k \alpha \beta
$$

where $\alpha^{2}=-1, \beta^{2}=N_{0}=t^{3}-t$, and $\beta \alpha=-\alpha \beta$. Let $R=A+A \alpha+A \beta+A \alpha \beta$, which is a maximal order in \mathcal{D}. The cardinality of R^{\times}is 8 , and the class number (of left ideal classes of R) is 4 . We choose the following representatives of left ideal classes of R :

$$
\begin{aligned}
I_{1} & =R \\
I_{2} & =A t+A t \alpha+A \beta+A \alpha \beta \\
I_{3} & =A(t+1)+A(t+1) \alpha+A \beta+A \alpha \beta \\
I_{4} & =A(t-1)+A(t-1) \alpha+A \beta+A \alpha \beta
\end{aligned}
$$

Note that these ideals are in fact two-sided, and the norm form on each of them can be easily written down. We calculate the following Brandt matrices:
$B(t)=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right), B(t+1)=\left(\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right), B(t-1)=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$.
Since we have $T_{t} f_{E}=f_{E}, T_{t+1} f_{E}=-f_{E}, T_{t-1} f_{E}=-f_{E}$, and the Gross height $<e_{f_{E}}, e_{f_{E}}>=f_{E}^{*}(0)=1$, the corresponding point $e_{f_{E}} \operatorname{in} \operatorname{Pic}\left(X_{N_{0}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ can only be

$$
\pm[1 / 4,1 / 4,-1 / 4,-1 / 4] .
$$

The class number of $O_{K}(=A[\sqrt{D}])$ is 1 . Choose the Gross point x in the first component of $X_{N_{0}}$ corresponding to the embedding $K \hookrightarrow \mathcal{D}$ which maps \sqrt{D} to $\alpha+\beta$. Then $e_{x}=[1,0,0,0]$ in $\operatorname{Pic}\left(X_{N_{0}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$. Therefore

$$
<e_{f_{E}, 1_{D}}, e_{f_{E}, 1_{D}}>=<e_{f_{E}}, e_{x}>^{2}=(4 \cdot 1 / 4)^{2}=1
$$

and

$$
\frac{\left(f_{E}, f_{E}\right)}{q^{\frac{1}{2}(\operatorname{deg} D+1)}}<e_{f_{E}, \mathbf{1}_{D}}, e_{f_{E}, \mathbf{1}_{D}}>=\frac{32}{9}=L(E / K, 1)
$$

Appendix

A JacQuet-Langlands correspondence and multiplicity one theOREM

Let ϖ be a Hecke character on $k^{\times} \backslash \mathbb{A}_{k}^{\times}$. Let \mathcal{D} be a quaternion algebra over k and set $\mathcal{D}_{\mathbb{A}_{k}}:=\mathcal{D} \otimes_{k} \mathbb{A}_{k}$. We embed \mathbb{A}_{k} into $\mathcal{D}_{\mathbb{A}_{k}}$ by $a \longmapsto 1 \otimes a$. A \mathbb{C}-valued function f on $\mathcal{D}^{\times} \backslash \mathcal{D}_{\mathbb{A}_{k}}^{\times}$is called an automorphic form on $\mathcal{D}_{\mathbb{A}_{k}}^{\times}($for $\mathcal{K})$ with central character ϖ if f is a function on the double coset space

$$
\mathcal{D}^{\times} \backslash \mathcal{D}_{\mathbb{A}_{k}}^{\times} / \mathcal{K}
$$

for an open compact subgroup \mathcal{K} of $\mathcal{D}_{\mathbb{A}_{k}}^{\times}$satisfying that for all g in $\mathcal{D}_{\mathbb{A}_{k}}^{\times}$and a in \mathbb{A}_{k}^{\times}

$$
f(a g)=\varpi(a) f(g) .
$$

Suppose $\mathcal{D}=\operatorname{Mat}_{2}(k)$. Then $\mathcal{D}^{\times}=\mathrm{GL}_{2}(k)$ and $\mathcal{D}_{\mathbb{A}_{k}}^{\times}=\mathrm{GL}_{2}\left(\mathbb{A}_{k}\right) . f$ is called a cusp form if for all g in $\mathrm{GL}_{2}\left(\mathbb{A}_{k}\right)$

$$
\int_{k \backslash \mathbb{A}_{k}} f\left(\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right) g\right) d u=0
$$

We denote $\mathbf{A}_{0}(\varpi)$ to be the space of automorphic cusp forms on $\mathrm{GL}_{2}\left(\mathbb{A}_{k}\right)$ with central character ϖ.

We recall Jacquet-Langlands correspondence in A. 1 and use newform theory to explain the claim in $\$ 2.3$. In $\$$ A.2 we use multiplicity one theorem to show that the space $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ in $\S 2.3$ is a free $\mathbb{T}_{\mathbb{C}}$-module of rank one.

A. 1 Jacquet-Langlands correspondence

Let $\mathcal{D}=\mathcal{D}_{\left(N_{0}\right)}$ be a definite quaternion algebra over k where N_{0} is the product of finite ramified primes of \mathcal{D}. Let $\mathbf{A}^{\prime}(\varpi)$ be the space of automorphic forms on $\mathcal{D}_{\mathbb{A}_{k}}^{\times}$with central character ϖ. Jacquet-Langlands correspondence describes the connection between $\mathbf{A}^{\prime}(\varpi)$ and $\mathbf{A}_{0}(\varpi)$:
(9) Chapter 3, Theorem 14.4 and Theorem 16.1) If an irreducible admissible representation $\rho^{\prime}=\otimes_{v} \rho_{v}^{\prime}$ is a constituent of $\mathbf{A}^{\prime}(\varpi)$ and ρ_{P}^{\prime} is infinite dimensional for all finite primes P which are prime to N_{0}, then there exist an irreducible admissible representation $\rho\left(=: \rho^{\prime J L}\right)$ which is a constituent of $\mathbf{A}_{0}(\varpi)$ so that

$$
L\left(s, \varpi^{\prime} \otimes \rho\right)=L\left(s, \varpi^{\prime} \otimes \rho^{\prime}\right)
$$

for all Hecke characters ϖ^{\prime}.
Note that $\rho=\otimes_{v} \rho_{v}$ where $\rho_{v}=\rho_{v}^{\prime}$ for finite primes v not dividing N_{0}. Moreover, for the ramified primes v of \mathcal{D}, ρ_{v} is determined from ρ_{v}^{\prime} via theta correspondence.
Conversely, suppose $\rho=\otimes_{v} \rho_{v}$ is a constituent of $\mathbf{A}_{0}(\varpi)$. If for every ramified primes v of \mathcal{D} the representation ρ_{v} is special or supercuspidal, then there is a
constituent $\rho^{\prime}=\otimes \rho_{v}^{\prime}$ of $\mathbf{A}^{\prime}(\varpi)$ such that $\rho_{v}=\rho_{v}^{\prime J L}$. In particular, ρ_{v}^{\prime} is one dimensional for ramified prime v if and only if ρ_{v} is special.

Let R be a fixed maximal order of \mathcal{D}. From Jacquet-Langlands correspondence one has an isomorphism Ψ between

$$
\left\{\mathbb{C} \text {-valued non-constant functions on } \hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \mathcal{D}^{\times}\right\}
$$

and

$$
\left\{\text { Drinfeld type new forms on } \Gamma_{0}\left(N_{0}\right) \backslash \mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times}\right\}
$$

which satisfies

$$
\Psi\left(t_{m} f\right)=T_{m} \Psi(f)
$$

for all non-constant functions f on $\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \mathcal{D}^{\times}$and monic polynomials m in A. We briefly recall the argument in the following and refer the reader to 9] for further details.

Fix $\varpi=\otimes_{v} \varpi_{v}$ to be the TRIVIAL Hecke character on $k^{\times} \backslash \mathbb{A}_{k}^{\times}$. Let v be a prime of k, \mathcal{O}_{v} be the valuation ring in k_{v}, and π_{v} a uniformizer in \mathcal{O}_{v}. Recall that an irreducible admissible infinite-dimensional representation $\left(\rho_{v}, V_{v}\right)$ of $\mathrm{GL}_{2}\left(k_{v}\right)$ with central character ϖ_{v} has conductor $v^{c(v)}$ if $\pi_{v}^{c(v)} \mathcal{O}_{v}$ is the largest ideal of \mathcal{O}_{v} such that the space of elements $u \in V_{v}$ with

$$
\rho_{v}\left(g_{v}\right) u=u \text { for all } g_{v} \in \mathcal{K}_{0}^{c(v)}
$$

is non-empty. In fact, it is one dimensional. Here

$$
\mathcal{K}_{0}^{c(v)}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathcal{O}_{v}\right): c \in \pi_{v}^{c(v)} \mathcal{O}_{v}\right\} .
$$

It is known that

$$
c(v)= \begin{cases}0 & \text { if } \rho_{v} \text { is an unramified principal series } \\ 1 & \text { if } \rho_{v} \text { is an unramified special representation } \\ \geq 2 & \text { if } \rho_{v} \text { is supercuspidal or ramified }\end{cases}
$$

Let $(\rho, V)=\bigotimes_{v}^{\prime}\left(\rho_{v}, V_{v}\right)$ be a constituent of $\mathcal{A}_{0}(\varpi)$. The conductor of ρ is:

$$
\prod_{v} v^{c(v)} .
$$

The space of elements $f \in V$ with

$$
\rho(g) f=f \text { for all } g \in \prod_{v} \mathcal{K}_{0}^{c(v)}
$$

is one dimensional, and called the space of new-forms of ρ. Any new-form f of ρ is a Hecke eigenform, i.e. $T_{v} f=a_{v} f$ for all v where $a_{v} \in \mathbb{C}$.
Recall that $L(s, \rho)=\prod_{v} L\left(s, \rho_{v}\right)$, where

$$
L\left(s, \rho_{v}\right)=\left(1-\chi_{v, 1}\left(\pi_{v}\right) q^{-s \operatorname{deg} v}\right)^{-1} \cdot\left(1-\chi_{v, 2}\left(\pi_{v}\right) q^{-s \operatorname{deg} v}\right)^{-1}
$$

if ρ_{v} is an unramified principal series $\pi\left(\chi_{v, 1}, \chi_{v, 2}\right)$;

$$
L\left(s, \rho_{v}\right)=\left(1-\chi_{v}\left(\pi_{v}\right) q^{-(s+1 / 2) \operatorname{deg} v}\right)^{-1}
$$

if ρ_{v} is an unramified special representation $\operatorname{sp}\left(\chi_{v}|\cdot|{ }_{v}^{1 / 2}, \chi_{v}|\cdot|{ }_{v}^{-1 / 2}\right)$;

$$
L\left(s, \rho_{v}\right)=1
$$

if ρ_{v} is supercuspidal or ramified. Here $\chi_{v, 1}, \chi_{v, 2}$, and χ_{v} are unramified characters of k_{v}^{\times}with $\chi_{v, 1} \cdot \chi_{v, 2}=1=\chi_{v}^{2}$. It is known that

$$
a_{v}= \begin{cases}q^{\frac{1}{2} \operatorname{deg} v}\left(\chi_{v, 1}\left(\pi_{v}\right)+\chi_{v, 2}\left(\pi_{v}\right)\right) & \text { if } \rho_{v} \cong \pi\left(\chi_{v, 1}, \chi_{v, 2}\right) \\ \chi_{v}\left(\pi_{v}\right) & \text { if } \rho_{v} \cong \operatorname{sp}\left(\left.\chi_{v}|\cdot|\right|_{v} ^{1 / 2},\left.\chi_{v}|\cdot|\right|_{v} ^{-1 / 2}\right)\end{cases}
$$

Suppose $\rho=\otimes_{v} \rho_{v}$ is of conductor $N_{0} \infty$ and $\rho_{\infty} \cong \operatorname{sp}\left(|\cdot|_{\infty}^{1 / 2},|\cdot|_{\infty}^{-1 / 2}\right)$. Then new-forms of ρ are functions on

$$
\mathrm{GL}_{2}(k) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{k}\right) / \mathcal{K}_{0}\left(N_{0} \infty\right) k_{\infty}^{\times}
$$

From the bijection in $\$ 2.1$

$$
\mathrm{GL}_{2}(k) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{k}\right) / \mathcal{K}_{0}\left(N_{0} \infty\right) k_{\infty}^{\times} \cong \Gamma_{0}\left(N_{0}\right) \backslash \mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times},
$$

new-forms of such ρ can be viewed as newforms of Drinfeld type for $\Gamma_{0}\left(N_{0}\right)$. In fact, the space $S^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ of Drinfeld type new forms for $\Gamma_{0}\left(N_{0}\right)$ is spanned by the new-forms of such ρ with conductor $N_{0} \infty$.

Since ρ is of conductor $N_{0} \infty, \rho_{P} \cong \operatorname{sp}\left(\left.\chi_{P}|\cdot|\right|_{P} ^{1 / 2}, \chi_{P}|\cdot|{ }_{P}^{-1 / 2}\right)$ for all $P \mid N_{0}$ where χ_{P} is an unramified character of k_{P}^{\times}with $\chi_{P}^{2}=1$. By Jacquet-Langlands correspondence we can find an irreducible constituent $\left(\rho^{\prime}, V^{\prime}\right)=\otimes_{v} \rho_{v}^{\prime}$ of $\mathbf{A}^{\prime}(\varpi)$ so that $\rho=\rho^{\prime \mathrm{JL}}$. In this case, $\rho_{P}^{\prime}=\chi_{P} \circ \mathrm{Nr}$ for $P \mid N_{0}$ and ρ_{∞}^{\prime} is the trivial representation. Therefore we can find a subspace of elements $f^{\prime} \in V^{\prime}$ which are non-constant functions on

$$
\mathcal{D}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \hat{R}^{\times} .
$$

This subspace is also one dimensional, called the space of new-forms of ρ^{\prime}. Any new-form f^{\prime} of ρ^{\prime} is also a Hecke eigenform, i.e. $t_{v} f^{\prime}=a_{v}^{\prime} f^{\prime}$, where a_{v}^{\prime} appears in the local factor $L_{v}\left(s, \rho_{v}^{\prime}\right)$. Since for any place v

$$
L\left(s, \rho_{v}\right)=L\left(s, \rho_{v}^{\prime}\right),
$$

we have $a_{v}=a_{v}^{\prime}$.
In fact, the space of non-constant functions on $\mathcal{D}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \hat{R}^{\times}$is generated by new-forms such that $\rho^{\prime}=\otimes_{v} \rho_{v}^{\prime}$ where ρ_{∞}^{\prime} is trivial and for $P \mid N_{0}, \rho_{P}^{\prime}=\chi_{P} \circ \mathrm{Nr}$ for an unramified character χ_{P} of k_{P}^{\times}with $\chi_{P}^{2}=1$. By taking congugate, we identify functions on $\mathcal{D}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \hat{R}^{\times}$with functions on $\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \mathcal{D}^{\times}$. From the dimension formula at the end of 2.2 we have a bijective map Ψ from

$$
\left\{\mathbb{C} \text {-valued non-constant functions on } \hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \mathcal{D}^{\times}\right\}
$$

to

$$
\left\{\text { Drinfeld type new forms on } \Gamma_{0}\left(N_{0}\right) \backslash \mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times}\right\}
$$

so that for each monic polynomial m in A,

$$
\Psi\left(t_{m} f\right)=T_{m} \Psi(f)
$$

Since constant functions on $\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \mathcal{D}^{\times}$are eigenfunctions of t_{m} with eigenvalue $\sigma(m)_{N_{0}}$, we extend Ψ by mapping constant functions into the one dimensional subspace $\mathbb{C} \mathcal{E}_{N_{0}}$ of $M^{\text {new }}\left(\Gamma_{0}\left(P_{0}\right)\right)$.

Consider the definite Shimura curve $X=X_{N_{0}}$. We have a canonical bijection between components of X and ideal classes of R and this gives the canonical isomorphism
$\left\{(\mathbb{C}\right.$-valued $)$ functions on $\left.\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \mathcal{D}^{\times}\right\} \cong \operatorname{Hom}(\operatorname{Pic}(X), \mathbb{C}) \cong \operatorname{Pic}(X)^{\vee} \otimes_{\mathbb{Z}} \mathbb{C}$.
Therefore one has:
Theorem A.1. $\Psi: \operatorname{Pic}(X)^{\vee} \otimes_{\mathbb{Z}} \mathbb{C} \cong M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ is an isomorphism so that $\Psi\left(t_{m} f\right)=T_{m} \Psi(f)$ for any monic polynomial m in A. Moreover,

$$
\operatorname{Tr}\left(t_{m}\right)=\operatorname{Tr}\left(T_{m}\right)
$$

and so the \mathbb{C}-algebra $\mathbb{T}_{\mathbb{C}}$ generated by Hecke correspondences t_{m} on X is isomorphic to the \mathbb{C}-algebra generated by Hecke operators T_{m} on $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$.

A. 2 Multiplicity one theorem

Let $\varpi: \mathbb{A}_{k}^{\times} / k^{\times}$be a Hecke character. Let $\rho_{1}=\otimes_{v} \rho_{1, v}$ and $\rho_{2}=\otimes_{v} \rho_{2, v}$ be two irreducible admissible representations which are constituents of $\mathbf{A}_{0}(\varpi)$. The multiplicity one theorem (cf. [3]) tells us that $\rho_{1}=\rho_{2}$ if and only if

$$
\rho_{1, v} \cong \rho_{2, v}
$$

for all place v.
Fix ϖ to be trivial. Choose two irreducible admissible representations $\rho_{1}=$ $\otimes_{v} \rho_{1, v}$ and $\rho_{2}=\otimes_{v} \rho_{2, v}$ of conductor $N_{0} \infty$ which are constituents of $\mathbf{A}_{0}(\varpi)$ satisfying

$$
\rho_{1, \infty} \cong \rho_{2, \infty} \cong \operatorname{sp}\left(|\cdot|_{\infty}^{1 / 2},|\cdot|_{\infty}^{-1 / 2}\right)
$$

and $\rho_{1, P}$ and $\rho_{2, P}$ are unramified special representations for $P \mid N_{0}$. Let f_{1} and f_{2} be new-forms of ρ_{1} and ρ_{2} respectively. Then $T_{P} f_{i}=a_{P, i} f_{i}$ where $a_{P, i} \in \mathbb{C}$ for $i=1,2$ and all prime P in A. If $a_{P, 1}=a_{P, 2}$ for all P, then $L_{P}\left(s, \rho_{1, P}\right)=L_{P}\left(s, \rho_{2, P}\right)$ and so

$$
\rho_{1, P} \cong \rho_{2, P}
$$

for all P. By multiplicity one theorem we have $\rho_{1}=\rho_{2}$ and so f_{1}, f_{2} are linearly dependent.

Recall that $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)=S^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right) \oplus \mathbb{C} \mathcal{E}_{N_{0}}$. for $\Gamma_{0}\left(P_{0}\right)$. As a $\mathbb{T}_{\mathbb{C}^{-}}$ module, the space $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ is a direct sum $\left(\oplus_{i} \mathbb{C} f_{i}\right) \oplus \mathbb{C} \mathcal{E}_{N_{0}}$ of one dimensional submodules and each f_{i} is a new-form of an irreducible admissible representation $\rho_{i}=\otimes_{v} \rho_{i, v}$ which is a constituent of $\mathbf{A}_{0}(\varpi)$ with

$$
\rho_{i, \infty} \cong \operatorname{sp}\left(|\cdot|_{\infty}^{1 / 2},|\cdot|_{\infty}^{-1 / 2}\right)
$$

and $\rho_{i, P}$ is an unramified special representation for $P \mid N_{0}$. According to multiplicity one theorem, each pair of these one dimensional submodules are non-isomorphic. Therefore $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ is a cyclic $\mathbb{T}_{\mathbb{C}}$-module, which is generated by $\mathcal{E}_{N_{0}}+\sum_{i} f_{i}$. Viewing $\mathbb{T}_{\mathbb{C}}$ as a subring of $\operatorname{End}_{\mathbb{C}}\left(M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)\right)$, we have

$$
\operatorname{dim}_{\mathbb{C}} \mathbb{T}_{\mathbb{C}} \leq \operatorname{dim}_{\mathbb{C}} M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)
$$

Therefore
Proposition A.2. The space $M^{\text {new }}\left(\Gamma_{0}\left(N_{0}\right)\right)$ is a free $\mathbb{T}_{\mathbb{C}}$-module of rank one.

B Transformation law of theta series

Fix a definite quaternion algebra $\mathcal{D}=\mathcal{D}_{\left(N_{0}\right)}$ where N_{0} is the product of finite ramified primes of \mathcal{D}. Let R be a maximal order and n be the class number. In this section we deduce the transformation law of the theta series $\theta_{i j}$ for $1 \leq i, j \leq n$ introduced in 2.1.1 Recall that for each (i, j), theta series $\theta_{i j}$ is a function on $k_{\infty}^{\times} \times k_{\infty}$:

$$
\theta_{i j}(x, y)=\sum_{b \in M_{i j}} \phi_{\infty}\left(\frac{\operatorname{Nr}(b)}{N_{i j}} x t^{2}\right) \cdot \psi_{\infty}\left(\frac{\operatorname{Nr}(b)}{N_{i j}} y\right)
$$

where ϕ_{∞} is the characteristic function of \mathcal{O}_{∞} and ψ_{∞} is the fixed additive character on k_{∞}.

B. 1 Fourier Transform

Let $\mathcal{D}_{\infty}=\mathcal{D} \otimes_{k} k_{\infty}$. For $\alpha, \beta \in k_{\infty}^{\times}$with $v_{\infty}(\alpha)>v_{\infty}(\beta)-2$, let

$$
\begin{array}{rlcc}
\Phi_{\alpha, \beta}: & \mathcal{D}_{\infty} & \longrightarrow & \mathbb{C} \\
w & \longmapsto & \phi_{\infty}(\operatorname{Nr}(w) \alpha) \psi_{\infty}(\operatorname{Nr}(w) \beta) .
\end{array}
$$

Define $[\cdot, \cdot]: \mathcal{D}_{\infty} \times \mathcal{D}_{\infty} \rightarrow \mathbb{C}^{\times}$by $\left[w, w^{*}\right]:=\psi_{\infty}\left(\operatorname{Tr}\left(w w^{*}\right)\right)$. The Fourier transform of $\Phi_{\alpha, \beta}$ is given by:

$$
\Phi_{\alpha, \beta}^{*}\left(w^{*}\right):=\int_{\mathcal{D}_{\infty}} \Phi_{\alpha, \beta}(w)\left[w, w^{*}\right] d w, \text { for all } w^{*} \text { in } k_{\infty}
$$

where $d w$ is a Haar measure on \mathcal{D}_{∞}.
We define

$$
S(\alpha, \beta, d w):=\int_{\mathcal{D}_{\infty}} \phi_{\infty}(\operatorname{Nr}(w) \alpha) \psi_{\infty}(\operatorname{Nr}(w) \beta) d w
$$

Then $\Phi_{\alpha, \beta}^{*}\left(w^{*}\right)$ is equal to

$$
S(\alpha, \beta, d w) \phi_{\infty}\left(\operatorname{Nr}\left(w^{*}\right) \frac{\alpha}{\beta^{2}}\right) \psi_{\infty}\left(\operatorname{Nr}\left(w^{*}\right) \frac{-1}{\beta}\right)
$$

More generally, take $h \in k_{\infty}^{\times}, \rho \in \mathcal{D}_{\infty}$. For $\alpha, \beta \in k_{\infty}^{\times}$with $v_{\infty}(\alpha)>v_{\infty}(\beta)-2$, let $\Psi_{\alpha, \beta}(w):=\Phi_{\alpha, \beta}(\rho+h w)$. Then $\Psi_{\alpha, \beta}^{*}\left(w^{*}\right)$ is equal to

$$
q^{4 v_{\infty}(h)} \cdot S(\alpha, \beta, d w) \phi_{\infty}\left(\operatorname{Nr}\left(\frac{w^{*}}{h}\right) \frac{\alpha}{\beta^{2}}\right) \psi_{\infty}\left(\operatorname{Nr}\left(\frac{w^{*}}{h}\right) \frac{-1}{\beta}\right) \psi_{\infty}\left(\operatorname{Tr}\left(-\frac{\rho w^{*}}{h}\right)\right) .
$$

B. 2 Poisson summation

Let $\mathcal{O}_{\mathcal{D}_{\infty}}$ be the maximal order of \mathcal{D}_{∞}. For $v_{\infty}(\alpha)>v_{\infty}(\beta)-2$, we have

$$
S(\alpha, \beta, d w)=-q^{2 v_{\infty}(\beta)-3} \cdot d w\left(\mathcal{O}_{\mathcal{D}_{\infty}}\right)
$$

For the pair $(i, j), 1 \leq i, j \leq n$, we choose Haar measure $d w$ with $d w\left(\mathcal{D}_{\infty} / M_{i j}\right)=1$ and denote the integral $S(\alpha, \beta, d w)$ by $S\left(\alpha, \beta, M_{i j}\right)$. Then

$$
S\left(\alpha, \beta, M_{i j}\right)=-q^{2 v_{\infty}(\beta)-\operatorname{deg}\left(N_{0}\right)} \cdot q^{2 v_{\infty}\left(N_{i j}\right)} .
$$

Let $\tilde{M}_{i j}$ be the dual lattice of $M_{i j}$, i.e.,

$$
\tilde{M}_{i j}=\left\{w \in \mathcal{D}_{\infty}: \operatorname{Tr}(w \mu) \in A \text { for all } \mu \in M_{i j}\right\}
$$

We apply the Poisson summation formula

$$
\sum_{\mu \in M_{i j}} \Psi_{\alpha, \beta}(\mu)=\sum_{\mu^{*} \in \tilde{M}_{i j}} \Psi_{\alpha, \beta}^{*}\left(\mu^{*}\right)
$$

and get
Proposition B.1. Let $\alpha, \beta \in k_{\infty}^{*}$ with $v_{\infty}(\alpha)>v_{\infty}(\beta)-2, h \in k_{\infty}^{\times}, \rho \in \mathcal{D}_{\infty}$. Then

$$
\begin{aligned}
& \sum_{\mu \in M_{i j}} \phi_{\infty}(\operatorname{Nr}(\rho+h \mu) \alpha) \psi_{\infty}(\operatorname{Nr}(\rho+h \mu) \beta) \\
= & q^{4 v_{\infty}(h)} S\left(\alpha, \beta, M_{i j}\right) \sum_{\mu^{*} \in \tilde{M}_{i j}} \phi_{\infty}\left(\operatorname{Nr}\left(\frac{\mu^{*}}{h}\right) \frac{\alpha}{\beta^{2}}\right) \psi_{\infty}\left(\operatorname{Nr}\left(\frac{\mu^{*}}{h}\right) \frac{-1}{\beta}\right) \psi_{\infty}\left(\operatorname{Tr}\left(\frac{\rho \mu^{*}}{h}\right)\right) .
\end{aligned}
$$

Let $x \in k_{\infty}^{\times}, y \in k_{\infty}, M \subset \mathcal{D}_{\infty}$ a discrete A-lattice, $N_{M} \in k$ such that $N_{M} \cdot A$ is the fractional ideal of A generated by $\operatorname{Nr}(\mu)$ for $\mu \in M$. For $h \in A$ with $h \neq 0, \rho \in M$, define "partial theta" series:

$$
\theta\left(x, y, M, N_{M}, h, \rho\right):=\sum_{\mu \in M, \mu \equiv \rho \bmod h M} \phi_{\infty}\left(\frac{\operatorname{Nr}(\mu) x t^{2}}{N_{M} h}\right) \psi_{\infty}\left(\frac{\operatorname{Nr}(\mu) y}{N_{M} h}\right) .
$$

Note that $\theta_{i j}(x, y)=\theta\left(x, y, M_{i j}, N_{i j}, 1,0\right)$, and

$$
\theta\left(x, y, M, N_{M}, h, \rho\right)=\sum_{\mu \in M} \phi_{\infty}(\operatorname{Nr}(\rho+h \mu) \alpha) \psi_{\infty}(\operatorname{Nr}(\rho+h \mu) \beta)
$$

where $\alpha=\frac{x t^{2}}{N_{M} h}, \beta=\frac{y}{N_{M} h}$.
Proposition B.2. Let $x, y \in k_{\infty}^{\times}, v_{\infty}(x)>v_{\infty}(y), 0 \neq h \in A, \kappa \in \tilde{M}_{i j}$. Then

$$
\begin{aligned}
& \theta\left(\frac{x}{y^{2}}, \frac{-1}{y}, \tilde{M}_{i j}, N_{i j}^{-1} N_{0}^{-1}, h, \kappa\right) \\
= & S\left(\frac{x t^{2}}{N_{i j} N_{0} h}, \frac{y}{N_{i j} N_{0} h}, M_{i j}\right)^{-1} \sum_{\rho \in M_{i j} / h M_{i j}} \psi_{\infty}\left(\operatorname{Tr}\left(\frac{\rho \kappa}{h}\right)\right) \theta\left(\frac{x}{N_{0}}, \frac{y}{N_{0}}, M_{i j}, N_{i j}, h, \rho\right) .
\end{aligned}
$$

Proof. By Proposition B. 1 we have

$$
\begin{aligned}
& \theta\left(x, y, M_{i j}, N_{i j}, h, \rho\right) \\
= & q^{4 v_{\infty}(h)} S\left(\alpha, \beta, M_{i j}\right) \sum_{\mu^{*} \in \tilde{M}_{i j}} \phi_{\infty}\left(\operatorname{Nr}\left(\frac{\mu^{*}}{h}\right) \frac{\alpha}{\beta^{2}}\right) \psi_{\infty}\left(\operatorname{Nr}\left(\frac{\mu^{*}}{h}\right) \frac{-1}{\beta}\right) \psi_{\infty}\left(\operatorname{Tr}\left(\frac{-\rho \mu^{*}}{h}\right)\right) .
\end{aligned}
$$

Multiply this by $\psi_{\infty}\left(\operatorname{Tr}\left(\frac{\rho \kappa}{h}\right)\right)$ for $\kappa \in \tilde{M}_{i j}$ and sum over $\rho \in M_{i j} / h M_{i j}$, we obtain

$$
\begin{aligned}
& \sum_{\rho \in M_{i j} / h M_{i j}} \psi_{\infty}\left(\operatorname{Tr}\left(\frac{\rho \kappa}{h}\right)\right) \cdot \theta\left(x, y, M_{i j}, N_{i j}, h, \rho\right) \\
= & q^{4 v_{\infty}(h)} S\left(\alpha, \beta, M_{i j}\right) \sum_{\mu^{*} \in \tilde{M}_{i j}}\left\{\phi_{\infty}\left(\operatorname{Nr}\left(\frac{\mu^{*}}{h}\right) \frac{\alpha}{\beta^{2}}\right) \psi_{\infty}\left(\operatorname{Nr}\left(\frac{\mu^{*}}{h}\right) \frac{-1}{\beta}\right)\right. \\
& \left.\cdot\left[\sum_{\rho \in M_{i j} / h M_{i j}} \psi_{\infty}\left(\operatorname{Tr}\left(\frac{\rho}{h}\left(\kappa-\mu^{*}\right)\right)\right)\right]\right\} .
\end{aligned}
$$

Since

$$
\sum_{\rho \in M_{i j} / h M_{i j}} \psi_{\infty}\left(\operatorname{Tr}\left(\frac{\rho}{h}\left(\kappa-\mu^{*}\right)\right)\right)= \begin{cases}0 & \text { if } \mu^{*}-\kappa \notin h \tilde{M}_{i j} \\ q^{-4 v_{\infty}(h)} & \text { if } \mu^{*}-\kappa \in h \tilde{M}_{i j}\end{cases}
$$

The proposition follows by replacing x with $\frac{x}{N_{0}}$, and y with $\frac{y}{N_{0}}$.

B. 3 Transformation LaW

Let $(x, y) \in k_{\infty}^{\times} \times k_{\infty}$. Suppose a matrix $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{GL}_{2}(A)$ is given such that $c y+d \neq 0$. We define

$$
\gamma \circ(x, y):=\left(\frac{x(a d-b c)}{(c y+d)^{2}}, \frac{a y+b}{c y+d}\right) .
$$

Lemma B.3. Suppose $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(A), c \equiv 0 \bmod N_{0}, v_{\infty}(x)>v_{\infty}(y)$, and $v_{\infty}(c x)>v_{\infty}(c y+d)$. Let $1 \leq i, j, \leq n$. Then

$$
\begin{aligned}
\theta_{i j}(\gamma \circ(x, y))= & S\left(\frac{N_{i j} x t^{2}}{y^{2}}, \frac{-N_{i j}(c y+d)}{d y}, \tilde{M}_{i j}\right)^{-1} \cdot S\left(\frac{x t^{2}}{N_{i j}}, \frac{y}{N_{i j}}, M_{i j}\right)^{-1} \\
& \cdot\left(\sum_{\kappa \in M_{i j} / d M_{i j}} \psi_{\infty}\left(\frac{\operatorname{Nr}(\kappa) b}{N_{i j} d}\right)\right) \theta_{i j}(x, y) .
\end{aligned}
$$

Proof. Put $u=\frac{x}{y^{2}}, v=\frac{-1}{y}$. Then

$$
\begin{aligned}
\theta_{i j}(\gamma \circ(x, y)) & =\theta\left(\frac{u}{(c-d v)^{2}}, \frac{b}{d}+\frac{1}{d(c-d v)}, M_{i j}, N_{i j}, 1,0\right) \\
& =\sum_{\kappa \in M_{i j} / d M_{i j}} \theta\left(\frac{d u}{(c-d v)^{2}}, b+\frac{1}{c-d v}, M_{i j}, N_{i j}, d, \kappa\right) \\
& =\sum_{\kappa \in M_{i j} / d M_{i j}} \psi_{\infty}\left(\frac{\mathrm{Nr}(\kappa) b}{N_{i j} d}\right) \theta\left(\frac{d u}{(d v-c)^{2}}, \frac{-1}{d v-c}, M_{i j}, N_{i j}, d, \kappa\right) .
\end{aligned}
$$

Since $v_{\infty}(c x)>v_{\infty}(c y+d)$, we have $v_{\infty}(d u)>v_{\infty}(d v-c)$ and

$$
\begin{aligned}
\theta_{i j}(\gamma \circ(x, y))= & S\left(N_{i j} u t^{2}, N_{i j}(v-c / d), \tilde{M}_{i j}\right)^{-1} \cdot \sum_{\kappa \in M_{i j} / d M_{i j}}\left[\psi_{\infty}\left(\frac{\operatorname{Nr}(\kappa) b}{N_{i j} d}\right)\right. \\
& \left.\cdot \sum_{\rho \in \tilde{M}_{i j} / d \tilde{M}_{i j}} \psi_{\infty}\left(\operatorname{Tr}\left(\frac{\rho \kappa}{d}\right)\right) \theta\left(\frac{d u}{N_{0}}, \frac{d v-c}{N_{0}}, \tilde{M}_{i j}, N_{i j}^{-1} N_{0}^{-1}, d, \rho\right)\right] .
\end{aligned}
$$

Since $-c / N_{0} \in A$, we have

$$
\begin{aligned}
\theta_{i j}(\gamma \circ(x, y))= & S\left(N_{i j} u t^{2}, N_{i j}(v-c / d), \tilde{M}_{i j}\right)^{-1} \\
& \cdot \sum_{\rho \in \tilde{M}_{i j} / d \tilde{M}_{i j}}\left[\theta\left(\frac{d u}{N_{0}}, \frac{d v}{N_{0}}, \tilde{M}_{i j}, N_{i j}^{-1} N_{0}^{-1}, d, \rho\right)\right. \\
& \left.\cdot \sum_{\kappa \in M_{i j} / d M_{i j}} \psi_{\infty}\left(\frac{\operatorname{Nr}(\kappa) b}{N_{i j} d}+\frac{\operatorname{Tr}(\rho \kappa)}{d}-\frac{\operatorname{Nr}(\rho) c N_{i j}}{d}\right)\right] .
\end{aligned}
$$

Note that $c N_{i j} \bar{\rho} \in M_{i j}$. Replacing κ by $\kappa+c N_{i j} \bar{\rho}$ the last summand equals to

$$
\frac{\operatorname{Nr}(\kappa) b}{N_{i j} d}+a \operatorname{Tr}(\rho \kappa)+N_{i j} a c \operatorname{Nr}(\rho)
$$

Since $a \operatorname{Tr}(\rho \kappa)+N_{i j} a c \operatorname{Nr}(\rho) \in A$, we have

$$
\begin{aligned}
\theta_{i j}(\gamma \circ(x, y))= & S\left(N_{i j} u t^{2}, N_{i j}(v-c / d), \tilde{M}_{i j}\right)^{-1} \cdot\left(\sum_{\kappa \in M_{i j} / d M_{i j}} \psi_{\infty}\left(\frac{\mathrm{Nr}(\kappa) b}{N_{i j} d}\right)\right) \\
& \cdot \theta\left(\frac{u}{N_{0}}, \frac{v}{N_{0}}, \tilde{M}_{i j}, N_{i j}^{-1} N_{0}^{-1}, 1,0\right) .
\end{aligned}
$$

Recall that $u=\frac{x}{y^{2}}, v=\frac{-1}{y}$. By Proposition B. 2 we have

$$
\begin{aligned}
\theta_{i j}(g \circ(x, y))= & S\left(\frac{N_{i j} x t^{2}}{y^{2}}, \frac{-N_{i j}(c y+d)}{d y}, \tilde{M}_{i j}\right)^{-1} \cdot S\left(\frac{x t^{2}}{N_{i j}}, \frac{y}{N_{i j}}, M_{i j}\right)^{-1} \\
& \cdot\left(\sum_{\kappa \in M_{i j} / d M_{i j}} \psi_{\infty}\left(\frac{\operatorname{Nr}(\kappa) b}{N_{i j} d}\right)\right) \theta_{i j}(x, y)
\end{aligned}
$$

Note that

$$
S\left(\frac{N_{i j} x t^{2}}{y^{2}}, \frac{-N_{i j}(c y+d)}{d y}, \tilde{M}_{i j}\right) \cdot S\left(\frac{x t^{2}}{N_{i j}}, \frac{y}{N_{i j}}, M_{i j}\right)=q^{2 v_{\infty}(c y+d)+2 \operatorname{deg} d}
$$

By standard argument we get $\sum_{\kappa \in M_{i j} / d M_{i j}} \psi_{\infty}\left(\frac{\operatorname{Nr}(\kappa) b}{N_{i j} d}\right)=q^{2 \operatorname{deg}(d)}$. Since $\theta_{i j}(x, y)=\theta_{i j}(x, y+h)$ for any $h \in A$, we can drop the assumption $v_{\infty}(x)>$ $v_{\infty}(y)$ and obtain the transformation law of $\theta_{i j}$:

TheOrem B.4. For $1 \leq i, j \leq n$. Let $x \in k_{\infty}^{\times}, y \in k_{\infty}, \gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(A)$. Assume $v_{\infty}(c x)>v_{\infty}(c y+d)$, and $c \equiv 0 \bmod N_{0}$. Then

$$
\theta_{i j}(\gamma \circ(x, y))=q^{-2 v_{\infty}(c y+d)} \cdot \theta_{i j}(x, y) .
$$

Acknowledgements

We would like to thank the referee for referring us to the work of Papikian [10].

References

[1] Artin, E., Quadratische Körper der komplexen Multiplikation, Enzyklopädie der Math. Wiss. Band I, 2. Teil, Heft 10, Teil II.
[2] Bertolini, M. \& Darmon, H., Heegner points on Mumford-Tate curves, Inv. Math., 126 (1996) 413-456.
[3] Bump, D., Automorphic Forms and Representations, Cambridge studies in advanced mathematics 55, (1996).
[4] Eichler, M., Zur Zahlentheorie der Quaternionen-Algebren, Crelle J. 195 (1955), 127-151.
[5] Gekeler, E.-U., Invariants of Some Algebraic Curves Related to Drinfeld Modular Curves, J. Number Theory 90 (2001) 166-183.
[6] Gekeler, E.-U., Improper Eisenstein Series on Bruhat-Tits Trees, manuscripta math. 86 (1995), 367-391.
[7] Gekeler, E.-U. \& Reversat, M., Jacobians of Drinfeld modular curves, J. reine angew. Math. 476 (1996), 27-93.
[8] Gross, B. H., Heights and the Special Values of L-series, CMS Conference Proceedings, H. Kisilevsky, J. Labute, Eds., 7 (1987) 116-187.
[9] Jacquet, H. \& Langlands, R., Automorphic Forms on GL(2), LNM 114, Springer 1970.
[10] Papikian, M., On the variation of Tate-Shafarevich groups of elliptic curves over hyperelliptic curves, J. Number Theory 115 (2005) 249-283.
[11] Rück, H.-G., Theta Series of Imaginary Quadratic Function Fields, manuscripta math. 88 (1995), 387-407.
[12] Rück, H.-G. \& Tipp, U., Heegner Points and L-series of Automorphic Cusp Forms of Drinfeld Type, Documenta Mathematica 5 (2000) 365-444.
[13] Schweizer, A., Strong Weil curves over $\mathbb{F}_{q}(T)$ with small conductor, J. Number Theory 131 (2011) 285-299.
[14] Serre, J.-P., Tree, Springer, Berlin-Heidelberg-New York 1980.
[15] Tan, K.-S. \& Reckmore, D., Computation of L-series for elliptic curves over function fields, J. reine angew. Math. 424 (1992), 107-135.
[16] Vignéras, M.-F., Arithmétique des Algèbres de Quaternions, LNM 800, Springer 1980.
[17] Wei, F.-T., On arithmetic of curves over function fields. Ph.D. thesis, National Tsing Hua University, 2010.
[18] Weil, A., Dirichlet Series and Automorphic Forms, LNM 189, Springer 1971.

Fu-Tsun Wei
Department of Mathematics
National Tsing Hua University
Hsinchu 30013
Taiwan
Jing Yu
TIMS and the
Department of Mathematics
National Taiwan University
Taipei 10617
Taiwan

[^0]: ${ }^{1}$ Both authors were supported by National Science Council grant (100)-2119-M002-007. The first author was also supported by the Graduate Students Study Abroad Program of National Science Council.

