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Abstract. Suppose that G is a finite π-separable group. A classical
result asserts that all irreducible characters of a Hall π-subgroup H
of G extend to G if and only if H has a normal complement in G.
Now, we fix a prime p and analyze when only the p′-degree irreducible
characters of H extend to G.
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1. Introduction

We come back to an old result of C. Sah ([18]) that asserts that in a finite
π-separable group, all irreducible complex characters of a Hall π-subgroup H
of G extend to G if and only if G has a normal π-complement. Now, we fix a
prime p and we wish to characterize when only the p′-degree characters of H
extend to G.

Theorem A. Let G be a finite π-separable group. Let H be a Hall π-subgroup
of G, let K be a π-complement of G, and let p be a prime. Then every α ∈
Irr(H) of p′-degree extends to G if and only if there is P ∈ Sylp(H) such that
NG(P ) ⊆ NG(K).

Of course, Theorem A is far more general than Sah’s theorem, although we
pay the price of using the Classification of Finite Simple Groups. This is not
that surprising, however: in the case where H is normal in G, Theorem A is
equivalent to proving a well-known consequence of the (yet unproven) McKay
conjecture (see [17, Thm. C]) which therefore now becomes established.
As an easy consequence of our main result we obtain:

1The research of the second author is partially supported by the Spanish Ministerio
de Educación y Ciencia proyecto MTM2010-15296, Programa de Movilidad, and Prome-
teo/Generalitat Valenciana.
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Corollary B. Suppose that A acts coprimely on a finite group G, and let
P ∈ Sylp(G) be A-invariant. Then all p′-degree irreducible characters of G are
A-invariant if and only if [NG(P ), A] = 1.

The paper is split into two parts. In Section 2 we prove Theorem A and
Corollary B modulo a statement (Theorem 2.2) on finite quasi-simple groups
which is then shown in Section 3, using the classification, properties of algebraic
groups and Deligne–Lusztig theory.

2. Proof of Theorem A

In our first result we use the Gajendragadkar’s π-special characters (whose
main properties can be found in [3]).

Lemma 2.1. Suppose that G is π-separable and let H be a Hall π-subgroup
of G. Let L ⊳ G. Suppose that α ∈ Irr(H) extends to G and is such that
H ∩ L ⊆ kerα. Then there is an extension β ∈ Irr(G) such that L ⊆ kerβ.
In particular, if all p′-degree irreducible characters of H extend to G, then all
p′-degree irreducible characters of HL/L extend to G/L.

Proof. Let α̃ ∈ Irr(HL) be the unique irreducible character of HL that extends
α and has L in its kernel. Notice that, by using the definition, α̃ is π-special.
By hypothesis, α extends to G. By [6, Thm. F], α has a π-special extension α̂
to G. Now by [3, Prop. (6.1)], we have that α̂HL is a π-special extension of αH

to HL. But, again by the uniqueness part in loc.cit., we have that α̂HL = α̃,
and we are done. �

In order to prove Theorem A, we shall need the following non-trivial result
whose proof (that uses the Classification of Finite Simple Groups) we defer
until Section 3 below.

Theorem 2.2. Let p be a prime. Suppose that M ⊳ G has p-power index, and
has a normal Hall subgroup S such that M/S is not divisible by p. Assume that
S is a non-abelian quasi-simple group of order divisible by p with CG(S) = Z(S)
a p′-group. Let P ∈ Sylp(G). Then the following are equivalent:

(i) all p′-degree P -invariant irreducible characters of S are M -invariant, and
(ii) there exists a complement K of S in M normalized by P and with

[NS(P ),K] = 1.

We shall frequently write condition (ii) of the above theorem in the following
more convenient form.

Lemma 2.3. Let S⊳ M . Suppose that P,K are subgroups of M with S∩K = 1.
Then P normalizes K and [NS(P ),K] = 1 if and only if NSP (P ) ⊆ NM (K).

Proof. Since P ⊆ NSP (P ), by Dedekind’s lemma we have that NSP (P ) =
NS(P )P . Thus, if P normalizes K and [NS(P ),K] = 1 it is clear that
NSP (P ) ⊆ NM (K). Conversely, we have that P and NS(P ) normalize K.
Then, using that S ⊳ M , we have that [NS(P ),K] ⊆ S ∩K = 1. �
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Also, the group theoretical conclusion in Theorem A has another convenient
form.

Lemma 2.4. Suppose that G is a π-separable group with a Hall π-subgroup H
and a Hall π-complement K. Let P ∈ Sylp(H). If P normalizes K, then
NG(P ) = NH(P )NK(P ). In particular, NG(P ) ⊆ NG(K) if and only if
NH(P ) ⊆ NG(K).

Proof. This is an application of Lemma (2.1) of [10]. �

Lemma 2.5. Suppose that P is a p-group acting on a group S that does not have
a normal p-complement. Then there exists 1 6= χ ∈ Irr(S) which is P -invariant
of p′-degree.

Proof. The semidirect product SP cannot have a normal p-complement. By
Thompson’s Theorem (Corollary (12.2) of [5]), there exists a non-linear γ ∈
Irr(SP ) of degree not divisible by p. Now, γS = χ is irreducible (by Corollary
(11.29) of [5]) and P -invariant. It is clear that χ is not trivial since otherwise
γ would be a p′-degree character of a p-group, while γ is not linear. �

The following is one direction of Theorem A.

Theorem 2.6. Let G be a finite π-separable group. Let H be a Hall π-subgroup
of G, let K be a π-complement of G, and let p be a prime. Suppose that every
α ∈ Irr(H) of p′-degree extends to G. Then there is P ∈ Sylp(H) such that
NG(P ) ⊆ NG(K).

Proof. If p does not divide |H |, then all irreducible characters of H extend to
G, and G has a normal π-complement by Sah’s Theorem (see [18, Thm. 5]).
So we may assume that p ∈ π.
We prove that there exists P ∈ Sylp(H) such that NG(P ) ⊆ NG(K) by in-
duction on |G|. Since H is a Hall subgroup of G, notice that every Sylow
p-subgroup of H is a Sylow p-subgroup of G.
Let N be a fixed but arbitrary minimal normal subgroup of G.

Step 1.We can assume that there is P ∈ Sylp(H) such thatNG(P ) ⊆ NG(K)N .
Also, N ⊆ H . In particular, Oπ′(G) = 1.

By Lemma 2.1, we know that all p′-degree irreducible characters of HN/N
extend to G/N . Therefore, by induction and using that NG(KN) = NG(K)N ,
we conclude that there is P ∈ Sylp(H) such that NG(P ) ⊆ NG(K)N . Now,
since G is π-separable, we have that either N is a π-group or a π′-group. In
the second case, N ⊆ K, and NG(P ) ⊆ NG(K). So we will assume in the
following that N is a π-group. Hence, N ⊆ H .

Step 2. It suffices to show that there is m ∈ N such that NNP (P
m) normalizes

K.

Indeed, suppose that NNP (P
m) normalizes K for some m ∈ N . Hence Pm,

which is contained in NP , normalizes K. Then we have by Step 1 that
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NG(P
m) ⊆ NG(K)N = G1. Now, P

m ∈ Sylp(G1), and we may apply Lemma
(2.1) of [10] to conclude that

NG1
(Pm) = NN (Pm)NNG(K)(P

m) ⊆ NG(K) .

However NG(P
m) ⊆ G1, so NG1

(Pm) = NG(P
m). Now, Pm ⊆ PN ⊆ H is a

Sylow p-subgroup of H , and we are done in this case.

Step 3. If θ ∈ Irr(N) of p′-degree extends to PN , then θ is K-invariant.

If η ∈ Irr(PN) is such an extension, then ηH has p′-degree. Hence there exists
ψ ∈ Irr(H) over η of p′-degree. By hypothesis, we have that ψ extends to some
χ ∈ Irr(G). Let T be the stabilizer of θ in G, so that PN ⊆ T . If ν ∈ Irr(T |θ)
is the Clifford correspondent of χ over θ, then νG = χ has π-degree. It follows
that T contains some π-complement of G. Thus Kg is contained in T for
some g ∈ G. Now, we know that P normalizes KN by Step 1, and hence
|G : NG(K)N | is not divisible by p. Thus |G : NG(K

g)N | is not divisible by
p. By Corollary (1.2) of [19] applied in the group G/N with respect to the
subgroup T/N , we have that |T : NT (K

g)N | divides |G : NG(K
g)N |, and

therefore |T : NT (K
g)N | is not divisible by p either. It follows that there is

some R ∈ Sylp(T ) normalizing KgN . Hence R ∈ Sylp(G). Now, R and P g

are Sylow p-subgroups of NG(K
g)N . Thus P gmn0 = R for some m ∈ NG(K

g)
and n0 ∈ N . Also, R = P v for some v ∈ T because R and P are Sylow p-
subgroups of T . Now, writem = xg for some x ∈ NG(K), so that gm = xg. We
have that P xgn0 = R = P v and thus xgn0v

−1 ∈ NG(P ) ⊆ NG(K)N . Hence,
gn0v

−1 ∈ NG(K)N , and gn0v
−1 = wn for some w ∈ NG(K) and n ∈ N .

Finally, since Kg ⊆ T , we have that Kgn0v
−1 ⊆ T (because n0, v ∈ T ). Thus

Kwn ⊆ T and K = Kw ⊆ T n−1

= T , as claimed.

Step 4. We can assume that NKP = G. Thus H = NP and M = NK ⊳ G.

By Step 1, we have that P ⊆ NG(KN) = NG(K)N , so G0 = NKP is a
subgroup of G and NK ⊳ G0. Write H0 = NP and G0 = NKP , and notice
that H0 is a Hall π-subgroup of G0. Also, K is a π-complement of G0. Let
η ∈ Irr(H0) with p

′-degree. Since |H0 : N | is a power of p, then, by Corollary
(11.29) of [5], we have that θ = ηN ∈ Irr(N) has p′-degree. Now θ has an
extension to H0. By Step 3, we conclude that θ is K-invariant. Now, (|KN :

N |, |N |) = 1 and therefore θ has a canonical extension θ̂ to KN by Corollary
(8.16) of [5], which is by uniqueness, therefore P -invariant. Hence, by Corollary
(4.2) of [6], it follows that restriction defines a bijection

Irr(G0|θ̂) → Irr(H0|θ) .
We conclude that η extends to G0. Now suppose that G0 < G. Then, by
induction, we conclude that there is P0 ∈ Sylp(H0) such that NG0

(P0) ⊆
NG0

(K). Since P ∈ Sylp(H0), we have that P0 = Pn for some n ∈ N . Then
NNP (P

n) ⊆ NG0
(P0) ⊆ NG(K), and we apply Step 2 in this case. Hence, we

are reduced to the case where G0 = G, H = NP and M = NK ⊳ G.

Step 5. We can assume that N is a direct product of non-abelian simple groups
of order divisible by p which are transitively permuted by G. In particular,
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Op′(G) = Op(G) = 1. Also, we can assume that every p′-degree P -invariant
irreducible character of N is M -invariant.

Suppose first that N is a p′-group. Hence, P acts coprimely on NK, and
because NK is π-separable, it follows (using, for instance, that the number
of Hall ρ-subgroups of KN is not divisible by p, where ρ is the set of prime
divisors of |K|) that P normalizes some Kn for some n ∈ N . Now every
P -invariant character of N extends to PN (by Corollary (8.16) of [5]), and
by Step 3 is K-invariant. Therefore, every P -invariant character of N is NK-
invariant, and therefore Kn-invariant. Thus every irreducible P -invariant char-
acter of N is PKn-invariant and by Lemma (2.2) of [16], we conclude that
CN (PKn) = CN (P ). Hence, NN (P ) = CN (P ) ⊆ CN (Kn) ⊆ NG(K

n). We

had that Pn−1

normalizes K and now we have that NN (Pn−1

) ⊆ NG(K).

Thus NNP (P
n−1

) = NN (Pn−1

)Pn−1 ⊆ NG(K), and this case is complete by
Step 2.
Suppose now that N is a p-group. Hence N ⊆ P and H = P . In this case,
the hypotheses tell us that every linear character of P extends to G. By Tate’s
Theorem (use, for instance, Theorem (6.31) of [5]), we conclude that G has a
normal p-complement. Hence K ⊳ G, and in this case the theorem is proved.
So we may assume that N is a direct product of non-abelian simple groups
of order divisible by p, which are transitively permuted by G. In particular
O

p(N) = N , and it follows that every P -invariant p′-degree irreducible charac-
ter of N extends to PN by Corollary (8.16) of [5]. Therefore by Step 3, every
P -invariant p′-degree character of N is K-invariant, and hence M -invariant.

Step 6. We can assume that N is a minimal normal subgroup of NP . Hence
N = Sg1 × · · · × Sgt , where {Sg1 , . . . , Sgt} is the P -orbit of S, a non-abelian
simple group of order divisible by p, gi ∈ P , and g1 = 1. Also, we can assume
that t > 1.

We can write N = U×V , where U > 1 and V ≥ 1 are P -invariant, and U is the
direct product of the P -orbit of a simple group S. That is, U = Sg1 ×· · ·×Sgt ,
where {Sg1 , . . . , Sgt} is the P -orbit of S, gi ∈ P , and g1 = 1. By Lemma 2.5,
let 1 6= η ∈ Irr(S) be NP (S)-invariant of p

′-degree. Then it is straightforward
to show that ν = ηg1 × · · · × ηgt is P -invariant. Now, let τ = ν × 1V ∈ Irr(N),
which is P -invariant of p′-degree. Then τ is K-invariant by Step 5. Hence
ker τ < N is K-invariant, and therefore G-invariant. Since V ⊆ ker τ , we
conclude that V = 1, because N is a minimal normal subgroup of G.
Suppose now that N is simple. Since Z(N) = 1, we have that CM (N) is
a π′-group. Since by Step 1, we know that Oπ′(G) = 1, then we have that
CM (N) = 1. Since G/M is a p-group, then we conclude that CG(N) is a p-
group. But we know that Op(G) = 1, and thus we conclude that CG(N) = 1.
Then, and using Step 5, we are in the hypothesis of Theorem 2.2. We conclude
by this theorem (and Lemma 2.3) that there is a complement K1 of N in M
such that NNP (P ) ⊆ NG(K1). Now, K1 = Kn for some n ∈ N , and we have

that NNP (P
n−1

) ⊆ NG(K). Then we are done by Step 2.

Step 7. Conclusion.
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As before, write N = S1 × · · · × St, where Si = Sgi , gi ∈ P and S = S1. Also
recall that t > 1 and therefore NG(S) < G.
By using Steps 5 and 6, we have that G = PNG(S). Thus |G : NG(S)|
is a power of p. Now, since G/N has a normal p-complement M/N , and
N ⊆ NG(S), we conclude that M ⊆ NG(S). In particular, M ⊆ NG(S

gi) for
all i.
Now, using that G/M is a p-group, let G2 ⊳ G be containing NG(S) with
|G2| < |G|. Notice that NP (S) is a Sylow p-subgroup ofNG(S). AlsoNP (S) ⊆
P2 = P ∩ G2 ∈ Sylp(G2). Now, let η ∈ Irr(NP2) of p′-degree. We have that
ηN ∈ Irr(N) is P2-invariant of p′-degree. Write ηN = θ1 × · · · × θt, where
θi ∈ Irr(Si). Then θ1 is NP (S)-invariant, because we can write N = S × S′,
where S and S′ are NP (S)-invariant. Now, let

θ = θ1 × (θ1)
g2 × · · · × (θ1)

gt ,

which is P -invariant. By Step 5, the character θ is M -invariant. In particular
θ1 is M -invariant. Since NP (S

gi) ⊆ P2 ⊳ P , we can repeat the same argument
with every Sgi and every θi to conclude that ηN is M -invariant. By induction
applied in the group G2 with respect to the Hall π-subgroup NP2 and Hall
π-complement K, we conclude that there exists P3 ∈ Sylp(P2N) such that
NG2

(P3) ⊆ NG(K). Hence P3 normalizes K and is such that [NN (P3),K] = 1
by Lemma 2.3. Now, P3∩N ∈ Sylp(N), and also [P3∩N,K] = 1. In particular,
P3 ∩ N ⊆ NN(K) and by the Frattini argument, we see that |G : NG(K)| is
not divisible by p.
Now, P3 ⊆ P1 ∈ Sylp(NG(K)), and we have that P1 ∈ Sylp(G). Recall that

G = MP = (KN)P . Since P ∈ Sylp(G), we may write (P1)
kn−1x = P for

some k ∈ K, x ∈ P and n ∈ N . Hence (P1)
k = Pn. Since P1 normalizes

K, we have that (P1)
k normalizes K and thus Pn normalizes K. Also, since

[NN (P3),K] = 1, we have that [NN ((P3)
k),K] = 1, where (P3)

k ⊆ Pn.
Finally, let Q = (P3)

k ∩ N = (P3 ∩ N)k ∈ Sylp(N). Now, notice that, by
elementary group theory, if R is any p-subgroup of G such that R ∩ N = Q,
then NG(R) ⊆ NG(Q) and NN(R)/Q = CNN (Q)/Q(R).

Since (P3)
k ∩N = Q ∈ Sylp(N), and (P3)

k ⊆ (P1)
k, we also have that (P1)

k ∩
N = Q. In particular,

NN ((P1)
k)/Q = CNN (Q)/Q((P1)

k) ⊆ CNN (Q)/Q((P3)
k) = NN ((P3)

k)/Q

and we conclude that NN((P1)
k) ⊆ NN ((P3)

k) ⊆ CG(K). Hence, we have
found (P1)

k ∈ Sylp(G) such that (P1)
k normalizes K and [NN ((P1)

k),K] = 1.
Hence

NN(P1)k((P1)
k) ⊆ NG(K)

using Lemma 2.3. Since (P1)
k = Pn ∈ Sylp(H), we use Step 2 to finish the

proof of the theorem. �

In order to prove the remaining direction of Theorem A, we need one more
lemma.
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Lemma 2.7. Suppose that A acts as automorphisms on a finite group G, where
G is a direct product of a set of subgroups X , which are permuted by A. Let
B ⊆ A, and suppose that B acts transitively on X . Let S ∈ X . Then CG(A) =
CG(B) if and only if CS(NA(S)) = CS(NB(S)).

Proof. By [9, Lemma 2.2], we have that CG(A) ∼= CS(NA(S)) and CG(B) ∼=
CS(NB(S)). SinceCG(A) ⊆ CG(B) andCS(NA(S)) ⊆ CS(NB(S)), the proof
easily follows. �

The following completes the proof of Theorem A.

Theorem 2.8. Let G be a finite π-separable group. Let H be a Hall π-subgroup
of G, let K be a π-complement of G, and let p be a prime. Suppose that there is
P ∈ Sylp(H) such that NG(P ) ⊆ NG(K). Then every α ∈ Irr(H) of p′-degree
extends to G.

Proof. Again, we can assume that p ∈ π. We argue by double induction, first
on |G : Oπ(G)|, and second on |G|. If U ≤ G and N ⊳ G, then notice that
|U : Oπ(U)| ≤ |G : Oπ(G)|, and that |G/N : Oπ(G/N)| ≤ |G : Oπ(G)|.
By hypothesis, we have that K⊳ KP ≤ G. Also, if KP ≤ U < G, by induction,
we have that the theorem is valid for U with respect to any Hall subgroup of U
containing P . Let α ∈ Irr(H) be of p′-degree. We want to show that α extends
to G. If N ⊳ G, then we have that NG/N (PN/N) ⊆ NG/N (KN/N). Therefore,
if 1 < N is a π′-group, we easily see that |G/N : Oπ(G/N)| < |G : Oπ(G)|,
and we deduce that α̂ ∈ Irr(HN/N) (the unique extension of α to HN having
N in its kernel) extends to G/N , by induction. Hence, we may assume that
Oπ′(G) = 1.
Now, let N = Oπ(G) ⊆ H . Suppose that Z ⊆ N is normal in G. Since α has p′-
degree, there exists η̂ ∈ Irr(ZP ) of p′-degree under α. Hence η = η̂Z ∈ Irr(Z),
because ZP/Z is a p-group. Now, if ZPK < G, by induction, the group
ZPK with Hall subgroup ZP and complement K satisfies the hypothesis of
the theorem. We conclude that η̂ extends to ZPK, and therefore that η is
K-invariant. Hence PK ⊆ T = IG(η), the stabilizer of η in G. We have that
HT = G because K ⊆ T . Let ν ∈ Irr(T ∩H) be the Clifford correspondent of α
over η. If T < G, by induction, we conclude that ν has an extension ν̂ ∈ Irr(T ).
Then (ν̂G)H = νH = α (using Mackey), and we are done in this case. Hence,
we conclude that whenever Z ⊆ N is normal in G then either ZKP = G or η
is G-invariant.
In the latter case, where η is G-invariant, we use the theory of character triple
isomorphisms, as developed in [7]. Since η extends to ZP , then by using
Theorem 5.2 of [7] and its proof, we can find a character triple (G∗, Z∗, η∗)
isomorphic to (G,Z, η), where Z∗ is a p′-group, and also a π-group. Now,
(PZ)∗ = P ∗ × Z∗ for a unique Sylow p-subgroup P ∗ of G∗. Also, H∗ is a
Hall π-subgroup of G∗ and, using the Schur–Zassenhaus theorem, we have that
(KZ)∗ = K∗ × Z∗ for a unique subgroup K∗ of G∗, which turns out to be
a Hall π-complement of G∗. Also, using that NG(PZ)

∗ = NG∗(P ∗ × Z∗) =
NG∗(P ∗) and that NG∗(K∗ × Z∗) = NG∗(K∗), we see that the hypotheses of
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the theorem are satisfied in G∗. Furthermore, N∗ = Oπ(G
∗), and therefore

|G : Oπ(G)| = |G∗ : Oπ(G
∗)|.

Now let θ ∈ Irr(N) be an irreducible constituent of αN . Suppose that θ is G-
invariant. Then, using the notation of the previous paragraph with Z = N , we
have that N∗ = Oπ(G

∗) is central in G∗. By the Hall–Higman’s 1.2.3 Lemma,
it follows that V = Oπ′(G∗) > 1. Then |G∗/V : Oπ(G

∗/V )| < |G∗ : N∗| = |G :
Oπ(G)|, and by induction, and arguing as in the first paragraph of the proof,
we conclude that α∗ extends to G∗, and therefore that α extends to G. Hence,
by the previous paragraph, we may assume that NPK = G. Thus H = NP .
Suppose now that θ is K-invariant. In this case, θ has a canonical extension
ρ to M = NK ⊳ G, using that (|M : N |, |N |) = 1. Also ρ is P -invariant by
uniqueness. Also, in this case, we know by Corollary (4.2) of [6] that restriction
defines a bijection Irr(G|ρ) → Irr(NP |θ), and we conclude that α extends to
G. Hence, it is enough to show that θ is K-invariant.
Now, let N/Z be a chief factor of G. Since ZKP < G, we conclude by the
second paragraph of the proof that αZ has aG-invariant irreducible constituent.
Hence, by using again character triple isomorphisms, it is no loss to assume
that Z is a central p′-subgroup of G.
In our present situation, and using Lemma 2.3, notice that our hypotheses now
are that P normalizes K (that is, M ⊳ G) and that [NN (P ),K] = 1. If N/Z
is a p′-group, then NN(P ) = CN (P ), and thus CN (KP ) = CN(P ). In this
case, and using that θ is P -invariant, θ is K-invariant by Lemma (2.2) of [16].
If N/Z is a p-group, since P normalizes K, we have that [Op(G),K] = 1, and
in this case we have that θ is K-invariant too (since N ⊆ Op(G)× Z).
Hence we may assume that N/Z is the direct product S1/Z× . . .×St/Z of non-
abelian simple groups of order divisible by p which are transitively permuted
by G. In particular Op(G) = 1. Since Oπ′(G) = 1, we easily deduce that
CM (N) = Z(N) = Z. Now, CH(N) is a Hall π-subgroup of CG(N), and
CK(N) is a Hall π-complement of CG(N). Hence CG(N) = CH(N)CK(N).
Since CK(N) = Z, we see that CG(N) ⊆ H = NP . In particular, CG(N)/Z
is a p-group. Since Op(G) = 1, we see that CG(N) = Z. Now, since N/Z is
a direct product of non-abelian simple groups, we have that N ′Z = N . Since
Z is a p′-group, then N/N ′ is a p′-group, and N ∩ P = N ′ ∩ P . Suppose
that N is not perfect. If N ′P = NP , then N = N ∩ N ′P = N ′(N ∩ P ) ⊆
N ′. Thus N ′P < P . By Corollary (4.2) of [6], restriction then defines a
bijection Irr(NP |λ) → Irr(N ′P |λZ∩N ′), and also Irr(N |λ) → Irr(N ′|λZ∩N ′).
By the inductive hypothesis applied in N ′PK, we conclude that αNP ′ extends
to N ′PK. Thus αN ′ is K-invariant. By uniqueness in the restriction map, we
deduce that αN = θ is also K-invariant, and we are done in this case too. Thus
we may assume that N is perfect.
If t = 1, that is, if N/Z is simple, then we may apply Theorem 2.2 to conclude
that θ is K-invariant. So we may assume that t > 1. Hence NG(S1) < G.
Let Q = P ∩ N ∈ Sylp(N), and let Qi = Q ∩ Si = P ∩ Si ∈ Sylp(Si). Since
[NN (P ),K] = 1, we have that [Q,K] = 1. Now, let 1 6= x ∈ Qi, and let k ∈ K.
Then x = xk ∈ Si ∩ (Si)

k. If (Si)
k 6= Si, then (Si)

k ∩ Si = Z, a p′-group, and
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this is not possible. We conclude that K ⊆ NG(Si) for all i. Since Si ⊳ N ,
then M ⊆ NG(Si) and we conclude that all the Si’s are P -conjugate, and
PNG(Si) = G.
Now, using that Z is a p′-group, we have that Q = Q1 × · · · × Qt. Write
Si = Sgi for some gi ∈ P , where S = S1. Let P0 = NP (S) ∈ Sylp(NG(S)).
Since N ⊆ NG(S), we have that P0 ∩ N ∈ Sylp(N) and P0 ∩ S ∈ Sylp(S).
Necessarily, P0 ∩N = Q and P0 ∩ S = Q1. Also, since P normalizes K, then
P0 normalizes KS. Thus KS ⊳ KSP0 = G0 < G.
We wish to apply the inductive hypothesis in G0, where hereH0 = SP0 is a Hall
π-subgroup of G0, andK is a π-complement of G0. Notice that P0 ∈ Sylp(SP0),
since P0 ∩ S ∈ Sylp(S) and |SP0 : P0| = |S : S ∩ P0|.
By Lemma 2.4, we need to check that NSP0

(P0) normalizes K. By Lemma
2.3, we need to check that P0 normalizes K and [NS(P0),K] = 1. Since P
normalizes K, we only need to check that [NS(P0),K] = 1. By hypothesis, we
know that [NN (P ),K] = 1.
Now, P0 ∩NS(Q1) = Q1 and therefore NG0

(P0) ⊆ NG0
(Q1). We easily con-

clude that
NS(P0)/Q1 = CNS(Q1)/Q1

(P0) .

By the same argument,

NN (P )/Q = CNN (Q)/Q(P ) .

Since [NN (P ),K] = 1, then CNN (Q)/Q(P ) = CNN (Q)/Q(PK).
Now, we have that NN(Q)/Q is KP -isomorphic to the direct product of
NSi

(Qi)/Qi and that these factors are transitively permuted by P . By Lemma
2.7, we know that

CNN (Q)/Q(KP ) = CNN (Q)/Q(P )

if and only if

CNS(Q1)/Q1
(KP0) = CNS(Q1)/Q1

(P0) = NS(P0)/Q1 .

We conclude that K acts trivially on NS(P0)/Q1. Since [Q1,K] = 1, by
coprime action we have that [K,NS(P0)] = 1, as desired.
Hence, we can apply the inductive hypothesis inG0. Now, by using the notation
of central products used in Section 5.1 of [8], we can write θ = θ1 · . . . ·θt, where
θi ∈ Irr(Si). Since θ is P -invariant, then we conclude that θ1 is P0-invariant.
Since the determinantal order and the degree of θ1 are coprime to p, we see
that θ1 extends to a p′-degree character of SP0. By induction, this character
extends to G0, and we conclude that θ1 is K-invariant. The same argument
applies to every θi, and we conclude that θ is K-invariant. This finishes the
proof of the theorem. �

The proof of Corollary B now is immediate:

Proof of Corollary B. Let Γ = GA be the semidirect product. Then Γ has
a Hall π-subgroup G and a π-complement A. By coprime action, G has an
A-invariant Sylow p-subgroup P , and all of them are CG(A)-conjugate. Also
NΓ(P ) = NG(P )A and NΓ(A) = CG(A) × A. Suppose that [NG(P ), A] = 1.
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Then NΓ(P ) ⊆ NΓ(A) and by Theorem A, we have that all irreducible p′-
degree characters of G extend to Γ and are, therefore, A-invariant.
Conversely, if all p′-degree irreducible characters of G are A-invariant, then all
of them extend to Γ since (|Γ : G|, |G|) = 1. Hence, by Theorem A, there is a
Sylow p-subgroup P1 of G such that NΓ(P1) ⊆ NΓ(A). Hence [NG(P1), A] = 1.
In particular, P1 is A-invariant, and we conclude that (P1)

c = P for some
c ∈ CG(A). Then [NG(P ), A] = 1, and the proof is complete. �

3. Proof of Theorem 2.2

The aim of this section is the proof of Theorem 2.2 which we restate as follows:

Theorem 3.1. Let S be quasi-simple, normal in a group X with S/Z(S) ≤
X/Z(S) ≤ Aut(S/Z(S)), and let p be a prime dividing |S|, with |Z(S)| prime
to p. Let M/S be normal in X/S of order prime to |S|, such that X/M is a
p-group. Let P ∈ Sylp(X). Then the following are equivalent:

(i) all P -invariant characters in Irrp′(S) are M -invariant;
(ii) there exists a complement K of S in M normalized by P with

[NS(P ),K] = 1.

The statement is trivially true when M = S, so we may assume that the
quasi-simple group S has outer automorphisms of order prime to |S|, which
by the classification forces S to be of Lie type and M/S to consist of field
automorphisms:

Proposition 3.2. Let S be finite quasi-simple and σ ∈ Aut(S) with
gcd(o(σ), |S|) = 1. Then S is of Lie type and σ is a field automorphism.
In particular, Out(S) has a cyclic central π′-Hall subgroup, where π = π(|S|).
Proof. According to [4, Cor. 5.1.4], any automorphism of a finite quasi-simple
group S is induced by an automorphism of the simple quotient S/Z(S), so it
suffices to deal with the case that S is simple. Since the outer automorphism
group of finite simple groups not of Lie type has order a power of 2, clearly
S must be of Lie type. In this case, Out(S) is described in [4, §2.5]: it is
an extension of the normal subgroup D of diagonal automorphisms (which is
cyclic or a Klein four group) by the commuting product of the cyclic group of
field automorphisms with the group of graph automorphisms (the latter being
a subgroup of S3). Now the order of D is only divisible by prime divisors of
the order of the Weyl group of S. But by Remark 3.3 below, since o(σ) is prime
to |S|, it is only divisible by primes larger than those occurring in |D|, so σ can
only act trivially on D. This shows the claim. �

Remark 3.3. In the preceding proof, we used the following observation: if W is
a Weyl group, and p a prime divisor of its order, then all primes dividing p− 1
also divide |W |. This can easily be checked by inspection. It also follows from
the rationality of Weyl groups.
In fact, even more is true: all primes smaller than p divide |W |; no a priori
proof of this is known to the authors.
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3.1. The general setup. We fix the following notation throughout this sec-
tion. Let G be a simple linear algebraic group of simply connected type over
the algebraic closure of a finite field of characteristic r, and T ≤ G a maximal
torus. Then for any graph automorphism of the Dynkin diagram of G and any
integral power q = ra there exists a Steinberg endomorphism Fa : G → G such
that Fa acts as qφ on the character group X(T) of T, with φ of finite order
inducing the given graph automorphism on the Weyl group. Similarly, if G
is of type B2, G2 or F4, and r = 2, 3, respectively 2, then for any odd power
q =

√
r
a
of

√
r there exists a Steinberg endomorphism Fa : G → G such that

Fa acts as qφ on X(T)⊗ZR and φ induces the non-trivial graph automorphism
of the Coxeter diagram of G (see [15, Thm. 22.5], for example).
Now for a Steinberg endomorphism F = Fa as above, let G = G

F be the corre-
sponding finite group of fixed points. Then, with a finite number of exceptions,
G is a quasi-simple group of Lie type, and all finite simple groups of Lie type
arise by this setup as G/Z(G), except for 2F4(2)

′. Since the latter group has no
coprime automorphisms, this exception is of no importance for our question.
So we may and will now assume that G = G

F is perfect. Then, except for
a finite number of cases, G is the universal Schur cover of the simple group
G/Z(G). Since none of the simple groups of Lie type with exceptional Schur
multiplier have coprime automorphisms (see [4, §6.1]), we may assume that
G/Z(G) is none of these. Thus, the quasi-simple group S from the statement
of Theorem 3.1 can be realized as a central quotient S = G/Z of a group G
as above, for some Z ≤ Z(G), and in particular all irreducible characters of S
occur among the characters of G.
According to Proposition 3.2 we will have to consider field automorphisms of
S. Now any coprime field automorphism γ of G, and hence of S, is induced by
a Steinberg endomorphism of G as follows. For fixed r and G, we may assume
the Fa to be chosen compatibly such that Fan = Fn

a for any n coprime to
o(φ). In this setting, if γ is a coprime field automorphism of G of order f , then
in particular, f is prime to the order of φ, and thus there exists a Steinberg
endomorphism Fc : G → G such that F = Fcf = F f

c and 〈γ〉 = 〈Fc|G〉 in
Out(G). The centralizer of γ in G is then just the fixed point group G

Fc under
Fc, a finite group of Lie type of the same type as G.

3.2. Action on Irr(G). In order to determine the action of coprime auto-
morphisms on Irr(G), we first recall Lusztig’s parametrization. For this, let
G

∗ be a group in duality with G, with compatible Steinberg endomorphisms
F ∗
a : G∗ → G

∗, a ≥ 1 (respectively a odd, when G is a Suzuki or Ree group).

We’ll write G∗ := G
∗F

∗

for the group of fixed points of F ∗ = F ∗
a . Then by the

results of Lusztig, there is a partition

Irr(G) =
⊔

s∈G∗/∼

E(G, s)

into Lusztig series E(G, s), indexed by semisimple elements s of the dual group
G∗ modulo conjugation. Now recall that S = G/Z for some subgroup Z ≤
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Z(G). Let T ≤ G be a maximal torus, with dual torus T ∗ ≤ G∗. So any
s ∈ T ∗ is a linear character of T , and χ ∈ E(G, s) is trivial on Z ≤ T if
and only if Z ≤ ker(s) (see [13, Lemma 2.2]). This defines a subgroup of T ∗

of index |Z|; we denote by S∗ the normal subgroup of G∗ generated by all
these subgroups, so G∗/S∗ ∼= Z (and hence [G∗, G∗] ≤ S∗). Thus, for s ∈ G∗

semisimple, the characters in E(G, s) have Z in their center, so descend to
S = G/Z, if and only if s ∈ S∗.

G∗
ss

param. irred. of // G

����
S∗
ss

?�

OO

param. irred. of // S

Now any field automorphism of G permutes the various Lusztig series E(G, s).
More precisely, if γ is induced by Fc as described above, then by Lusztig E(G, s)
is γ-stable if and only if the G∗-class of s is F ∗

c -stable. We need the following:

Lemma 3.4. In the above situation, assume that E(G, s) is γ-stable. Then γ
fixes each orbit in E(G, s) under diagonal automorphisms.

Proof. Let H = CG∗(s). Lusztig [12, Prop. 5.1] proves the existence of a
surjection

ψ : E(G, s) → E(H◦F , 1) (mod H
F /H◦F )

with fibres the orbits under the action of diagonal automorphisms, such that
multiplicities of ρ ∈ E(G, s) in Deligne–Lusztig characters are determined by
those of elements of ψ(ρ). We claim that ψ can be chosen γ-equivariant. The
result then follows since field automorphisms act trivially on E(H◦F , 1) (see
e.g. [2, Prop. 6.6]).
Now unipotent characters are uniquely determined by their multiplicities in
Deligne–Lusztig characters, and thus the claim follows, unless H has a compo-
nent of exceptional type (see [2, Prop. 6.3]). But in the latter case, characters
with same multiplicities in all Deligne–Lusztig characters have distinct eigen-
values of Frobenius attached, and since γ commutes with F , these are respected
by γ. �

In our situation, as remarked in the proof of Proposition 3.2, any prime divisor
of o(γ) is larger than the order of the group of diagonal automorphisms. Thus
γ must in fact fix all elements in E(G, s). We hence get the following charac-
terization of γ-stable characters of S (recall that all irreducible characters of S
occur among those of G):

Proposition 3.5. Let γ be a coprime automorphism of S, where S = G/Z
with G = G

F , Z ≤ Z(G) as above. Then χ ∈ Irr(S) is γ-stable if and only if
χ ∈ E(G, s) for some F ∗

c -stable semisimple element s ∈ S∗, where γ is induced
by Fc.
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Proof. This follows from the above, using the fact that any F ∗
c -stable conjugacy

class of the connected group G contains an F ∗
c -stable (and hence F ∗ = F ∗

c
f -

stable) element (see e.g., [15, Thm. 21.11]). �

3.3. Defining characteristic. We now first dispose of an easy case; ob-
serve that in defining characteristic, all semisimple characters lie in Irrp′(G),
by Lusztig’s Jordan decomposition of characters (but note that when r is bad
Irrp′(G) may contain non-semisimple characters).

Proposition 3.6. Let S be quasi-simple of Lie type, γ a coprime automorphism
of S. Let p = r, the defining characteristic of S. Let A be a p-group of
automorphisms of S. Then γ does not centralize a Sylow p-subgroup of S,
and moreover not all A-invariant elements of Irrp′(G) are γ-invariant. In
particular, Theorem 3.1 holds in this situation.

Proof. Let f denote the order of γ. As above, we may choose F, Fc : G → G

such that S is a central quotient of G = G
F , F = F f

c and γ is induced by Fc|G.
Then G0 := G

Fc is a group of the same type as G, but over a subfield Fq0 of Fq,
of index [Fq : Fq0 ] = f . The order formula for groups of Lie type (see e.g., [15,
Table 24.1]) then shows that the p-parts of G and G0 differ. Since Z(G) has
order prime to p, the same holds for the p-parts of S and CS(γ). In particular,
γ does not centralize a Sylow p-subgroup of S, whence (ii) of Theorem 3.1 does
not hold.
Since diagonal automorphisms have order prime to the defining characteristic,
A consists of graph and field automorphisms only. Thus, A induces a group of
automorphisms A∗ on the dual G∗ of G, and we write H := CG∗(A∗) for its
fixed point group. Now let s ∈ H ∩ [G∗, G∗] be semisimple, not centralized by
γ∗ (which exists by Zsigmondy’s theorem). Then by Proposition 3.5 the Lusztig
series E(G, s) consists of characters with Z(G) in their kernel, invariant under
A, but not invariant under γ. Moreover, the semisimple character in E(G, s)
is of p′-degree. This shows that (i) of Theorem 3.1 is not satisfied either, thus
completing the proof. �

3.4. Sylow subgroups. We now turn to the non-defining primes. There we
require the following crucial result from [13, Prop. 7.3]:

Proposition 3.7. Let G be as above, p 6= r and χ ∈ Irrp′(G). Then there
is some semisimple s ∈ G∗ centralizing a Sylow p-subgroup of G∗ with χ ∈
E(G, s). Conversely, if s ∈ G∗ centralizes a Sylow p-subgroup, then there is
some χ ∈ E(G, s) of p-height 0.
We next consider the following generic case, which occurs for all large enough
primes p:

Proposition 3.8. Let S = G/Z be quasi-simple of Lie type, with G = G
F ,

Z ≤ Z(G) as above. Let p 6= r and P a Sylow p-subgroup of G, P ∗ a Sylow
p-subgroup of G∗.

(a) Then P is contained in a proper F -stable Levi subgroup of G if and only
if P ∗ is contained in a proper F ∗-stable Levi subgroup of G∗.
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(b) Assume that the condition in (a) is satisfied, and that moreover S has no
diagonal or graph automorphism of order p. Then neither (i) nor (ii) in
Theorem 3.1 holds.

Proof. Let L be a proper F -stable Levi subgroup of G containing P . If L∗

denotes an F ∗-stable Levi subgroup of G∗ dual to L, then |G∗| = |G| and
|L∗F

∗ | = |LF |, so L
∗ contains a Sylow p-subgroup P ∗ of G∗. Since we may

exchange the roles of G, G∗ in this argument, we obtain (a).
Now assume that P is contained in the F -stable proper Levi subgroup L. Then
T := Z(L) is an F -stable torus of dimension at least 1 (see [15, Prop. 12.6]).
Thus, for a coprime automorphism γ of S, induced by Fc, T

F \ T
Fc is non-

empty. Let κ : G → G/Z = S denote the canonical epimorphism. Since
κ(TF ) ≤ CS(κ(P )) ≤ NS(κ(P )), this shows that NS(κ(P )) is not centralized
by γ.
On the other hand, the non-trivial torus T

∗ := Z(L∗) lies in CG∗(P ∗). It

follows that there exists a semisimple s ∈ T
∗F

∗ \T∗F
∗

c ⊆ CG∗(P ∗) which hence
is not F ∗

c -invariant. Then, by Proposition 3.5, the elements of E(G, s) are not
γ-invariant. But E(G, s) contains characters of height 0 by Proposition 3.7
above.
Furthermore, by assumption the Sylow p-subgroup B of Out(S) consists of field
automorphisms, hence is cyclic. Thus there exists Fb : G → G such that β :=
Fb|G generates B modulo inner automorphisms. Then we may argue as before

with semisimple elements in T
Fb \T〈Fb,Fc〉, respectively s ∈ T

∗F
∗

b \T∗〈F
∗

b
,F∗

c
〉

to see that neither (i) nor (ii) of Theorem 3.1 are satisfied. �

3.5. Bad primes and torsion primes. It remains to deal with the primes p
not satisfying the condition in Proposition 3.8(a). As announced before, these
are small:

Proposition 3.9. Let H be a simple algebraic group in characteristic r with
Steinberg endomorphism F : H → H. Let p 6= r be a prime and P a Sylow
p-subgroup of H := H

F . If P is not contained in any proper F -stable Levi
subgroup of H, then every semisimple element centralizing P is quasi-isolated,
and in particular, p is a bad prime or torsion prime for H.

Proof. Clearly we have that P 6= 1. Let g ∈ CH(P ) be semisimple, so P ≤
CH(g). Now the connected group C◦

H
(g) acts by conjugation on the set Ω

of proper Levi subgroups of H containing CH(g), and any orbit therein is
F -stable; hence by [15, Thm. 21.11], if Ω is non-empty then it contains an F -
stable element L, and then P ≤ CH(g) ≤ L, which is not the case. So CH(g)
is not contained in any proper Levi subgroup of H, whence, by definition, g is
quasi-isolated in H (see [15, Exmp. 14.4(2)]).
Apply this to 1 6= g ∈ Z(P ). If p is not a torsion prime for H, the index
|CH(g) : C◦

H
(g)| is prime to p (see [15, Prop. 14.20]), so P ≤ C◦

H
(g). By

assumption, this does not lie in any proper Levi subgroup of H, so by definition
g is isolated. Now by a result of Deriziotis (see [15, Rem. 14.5]) and the
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algorithm of Borel and de Siebenthal (see [15, Thm. 13.12]), this implies that
all prime divisors of o(g) are bad for H. �

We need the following two elementary results, where we write Φm for the mth
cyclotomic polynomial:

Lemma 3.10. Let q ≥ 1, p a prime not dividing q, and e the multiplicative
order of q modulo p. Then p|Φd(q) if and only if d = epi for some i ≥ 0.

See e.g. [13, Lemma 5.2] for a proof.

Lemma 3.11. Let m, f ≥ 1. Then

Φm(Xf ) =
∏

d

Φd(X)

where the product runs over all divisors d of mf which do not divide m′f for
any m′ < m. In particular, when gcd(m, f) = 1 then Φm(Xf) =

∏

d|f Φmd(X).

Proof. The roots of Φm(X) are the primitive mth roots of unity. Thus the
roots of Φm(Xf ) are mfth roots of unity whose fth power is a primitive mth
root of unity, hence whose order is not a divisor of m′f , for any m′ < m. �

Proposition 3.12. Let G be connected reductive with Steinberg endomor-
phisms Fc, F = F f

c such that gcd(f, |GF |) = 1, H ≤ G a connected reductive
Fc-stable subgroup, p a prime dividing the order of the Weyl group of G, p 6= r.
Then H

Fc contains a Sylow p-subgroup of HF .

Proof. The group H0 = H
Fc is a group of the same type as H = H

F . Thus
there are non-negative integers a(d) such that |H0|r′ =

∏

d Φd(q0)
a(d) and

|H |r′ =
∏

d Φd(q)
a(d), with qf0 = q, and d divides the order of the Weyl group

W of G whenever a(d) > 0 (see [15, Cor. 24.6 and 24.7]). Since f is coprime
to |H |, it’s coprime to p − 1 by Remark 3.3, so q, q0 have the same order e

modulo p. Now, if p divides Φd(q) = Φd(q
f
0 ), then d = epi for some i ≥ 0 by

Lemma 3.10, and hence gcd(f, d) = 1. Then the only factor of Φd(q
f
0 ) (in the

factorization given by Lemma 3.11), which is divisible by p, is Φd(q0) (again
using Lemma 3.10). Thus the p-parts of Φd(q) and Φd(q0) coincide, and hence
|H0|p = |H |p. �

Corollary 3.13. Let S be quasi-simple of Lie type as above, γ a coprime
automorphism and p a prime dividing the order of the Weyl group of S. Then
the fixed group CS(γ) contains a Sylow p-subgroup of S.

Proof. Write S = G/Z with G = G
F , Z ≤ Z(G). Now γ is induced by some

Steinberg endomorphism Fc with F f
c = F , where f = o(γ) is coprime to |S|.

Then |G0|p = |G|p by the preceding result, with G0 = G
Fc . Since the subgroup

Z ≤ Z(G) has order only divisible by prime divisors of the order of the Weyl
group, it is fixed by Fc (again by Remark 3.3) and hence G0/(Z∩G0) = G0/Z ≤
CS(γ), which shows that |S|p = |CS(γ)|p. �

After these preparations we can return to the proof of Theorem 3.1.
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Proposition 3.14. Let S = G/Z be quasi-simple of Lie type, with G = G
F

and Z ≤ Z(G) as above, p 6= r a prime such that no proper F -stable Levi
subgroup of G contains a Sylow p-subgroup of G. Then (i) in Theorem 3.1
holds.

Proof. Let χ ∈ Irrp′(S), so χ ∈ E(G, s) for some semisimple element s ∈
G∗ centralizing a Sylow p-subgroup P ∗ of S∗, by Proposition 3.7. Now by
Proposition 3.8, P ∗ is not contained in a proper F ∗-stable Levi subgroup of
G∗, so by Proposition 3.9, applied to H = G

∗, we conclude that all semisimple
elements in CG∗(P ∗) are quasi-isolated, their order is only divisible by torsion
primes and bad primes, so in particular only by divisors of the order of the
Weyl group of G∗. Let T

∗ be an F ∗-stable torus of G∗ containing s. Then

Proposition 3.12 applied with H = T
∗ shows that s ∈ T

∗F
∗

c . But then χ is
Fc-stable by Proposition 3.5. �

For p odd let ep(q) denote the order of q modulo p, respectively the order of q
modulo 4 when p = 2.

Proposition 3.15. Let S = G/Z be quasi-simple of Lie type, with G = G
F

and Z ≤ Z(G) as above, p 6= r a prime such that no proper F -stable Levi
subgroup of G contains a Sylow p-subgroup of G. Then (ii) in Theorem 3.1
holds.

Proof. By Proposition 3.9 our assumptions imply that p is a torsion or bad
prime for S. By [13, Thms. 5.14, 5.19, 8.4] the normalizer of a Sylow p-subgroup
Sp of S is contained in the normalizer of a Φe-torus Te, where e = ep(q), unless
S = SL3(q), SU3(q), G2(q),

2F4(q
2) with p = 3 or S = Sp2n(q),

2G2(q
2) with

p = 2.
Now first assume that S is of exceptional type. Since a Sylow 2-subgroup of
(2)E6(q) (with q odd) is contained in a Levi subgroup of type (2)D5(q), and a
Sylow 3-subgroup of E7(q) (with 3 6 |q) is contained in a Levi subgroup of type
E6(q) or 2E6(q), these situations do not arise here. In the remaining cases,
which are collected in Table 1, the Sylow normalizers may easily be worked
out explicitly inside NS(Te), respectively they are already given in [14, Sect. 3
and 4] (see also [11, Sect. 4] for the case p = 2). In particular they depend only
on the integer a, which is the same for S and for the centralizer of any coprime
automorphism by Corollary 3.13.
Now consider the case where S is of classical type. If S is not of type A,
then p = 2 is the only torsion prime, and from the above mentioned result on
NS(Sp) (or from [1, Thm. 4]) it follows that a Sylow 2-subgroup S2 of S is
self-normalizing, or an extension of S2 of degree 3t where t is the number of
summands in the 2-adic expansion of n for S = Sp2n(q) with q ≡ ±3 (mod 8).
In particular, it’s the same in S and in CS(γ).
Finally, when S is linear the possible torsion primes are divisors of gcd(n, q −
1). For SL3(q) with p = 3 and q ≡ 4, 7 (mod 9) the Sylow p-normalizers is
isomorphic to 31+2.Q8, independently of q (see [14, Sect. 3.1]), whence the
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Table 1. Normalizers for Sylow subgroups of exceptional
groups not contained in proper Levi subgroups

G p N(Sp)
2G2(3

2f+1) 2 23.7.3
G2(q) 2 (2a)2.22

3

{

(3a)2.W (G2) q ≡ 1, 8 (mod 9)

31+2.Q8.2 q ≡ 2, 4, 5, 7 (mod 9)
3D4(q) 2 (2a)2.22

3 (3a × 3a+1).W (G2)

2F4(2
2f+1) 3

{

(3a)2.W (G2) 22f+1 ≡ 8 (mod 9)

31+2.Q8.2 22f+1 ≡ 2, 5 (mod 9)

F4(q) 2 (2a)4.S2(W (F4))
3 (3a)4.32.23

E6(q) 3

{

(3a)6.S3(W (E6)).2
2 q ≡ 1 (mod 3)

(3a)4.32.23 q ≡ 2 (mod 3)

2E6(q) 3

{

(3a)6.S3(W (E6)).2
2 q ≡ 2 (mod 3)

(3a)4.32.23 q ≡ 1 (mod 3)

E7(q) 2 (2a)7.S2(W (E7))
E8(q) 2 (2a)8.S2(W (E8))

3 (3a)8.S3(W (E8)).2
4

5

{

(5a)8.S5(W (E8)).[2
6] q ≡ ±1 (mod 5)

(5a)4.5.42 q ≡ ±2 (mod 5)

Here, pa = |Φe(q)|p with e = ep(q), respectively 3a = |Φ4(22f+1)|3 for the Ree groups, and
Sp(H)

denotes a Sylow p-subgroup of H. Moreover, pa stands for a cyclic group of that order, [pk]
for an un-

specified group of order pk, Hk for a direct product of k copies of H.

claim holds. Exclude this case. Let n =
∑

i p
ki be the p-adic expansion of n

(thus, any pki occurs at most p− 1 times). If this has at least two summands,
then a proper Levi subgroup GLn1

(q) ◦GLn2
(q), with n1 = pk1 , n2 = n − n1,

contains a Sylow p-subgroup of S. Thus we may assume that n = pk is a
p-power. For p = 2 the Sylow 2-subgroups are self-normalizing by [1, Thm. 4].
For odd p an easy matrix calculation shows that the normalizer of Sp (modulo
the center) is an extension of a homocyclic group (pa)n−1 by the normalizer
in Sn of one of its Sylow p-subgroups, where pa = |q − 1|p. So again, it is
the same in S as in the centralizer of any coprime automorphism. The case of
unitary groups is entirely similar. �
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The proof of Theorem 3.1 is now complete by Propositions 3.6, 3.8, 3.14
and 3.15. In the course of the proof we have established the following: if S is of
Lie type and p not the defining characteristic, then (i) and (ii) in Theorem 3.1
are equivalent to

(iii) a Sylow p-subgroup of S is not contained in any proper Levi subgroup
of S.
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