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1. Introduction

This paper is the first in a series of papers where we investigate p-jet spaces
(in the sense of [3]) of finite flat schemes/algebras. The understanding of such
p-jet spaces seems to hold the key to a number of central questions about
arithmetic differential equations [4]. The present paper deals with p-isogenies,
and in particular with p-divisible groups; a sequel to this paper [8] will deal
with algebras of Witt vectors of finite length.

Let p be an odd prime and let R = Ẑur
p be the p-adic completion of the

maximum unramified extension of the ring Zp of p-adic numbers. (Throughout
the paper the symbol̂means p-adic completion.) Let k = R/pR be the residue
field of R. Then for each integer n ≥ 0 a functor Jn was introduced in [3] that
attaches to any scheme of finite type X/R a (Noetherian) p-adic formal scheme
Jn(X) over R called the p-jet space of X of order n. For each X there are

morphisms Jn(X) → Jn−1(X), n ≥ 1, functorial in X , and J0(X) = X̂. We
refer to [3, 4] for an exposition of the theory and for some of the applications
of these spaces; see also [6, 2] for a several prime version of the theory.
The functors Jn behave nicely on smooth schemes and étale morphisms: in
particular if X is smooth over R then Jn(X) are p-adic completions of smooth
schemes overR; and ifX → Y is an étale morphism then Jn(X) ≃ Jn(Y )×Y X .
So, in particular, if X → Y is finite and étale then the map Jn(X) → Jn(Y ) is
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again finite and étale. However if X → Y is, say, finite and flat then Jn(X) →
Jn(Y ) is generally neither finite nor flat. This basic pathology can be seen,
in its simplest form, for X a finite flat group scheme of degree a p-power over
Y = Spec R; or for p-isogenies X → Y (i.e. isogenies of degree a p-power)
between smooth group schemes over R. The present paper offers an analysis
of p-jets of p-isogenies [pν ] : X → X and of p-divisible groups (Xν ; ν ≥ 1),
Xν := Ker [pν ], where X is either the multiplicative group, or an elliptic curve,
or a (one dimensional) formal group of finite height. (For the latter case one still
has at one’s disposal a p-jet space theory.) The main moral of the story will be
that although the p-jets of order n of the individual Xν ’s are generally highly
pathological order tends to be restored “in the limit”, when either n → ∞
or ν → ∞. One of our main motivations for trying to understand the p-
jets of p-isogenies is their apparent link with the problem of understanding
the U -operator (and the Hecke operator T (p)) on differential modular forms.
Discussing this link here would lead us too far afield; the interested reader can
see a hint of this in [5, 7].
In order to state some of our main results let us recall/introduce some basic
notation. For any scheme of finite type X/R the rings of global functions
O

n(X) := O(Jn(X)) form an inductive system; its direct limit is denoted by
O
∞(X). There are canonical (non-linear) operators δ : On(X) → O

n+1(X)
that can be viewed as arithmetic analogues of the total derivative operator in
differential geometry/mechanics.
Here is a basic example that we are going to be interested in. Let x, x′, x′′, ...
be variables and consider the rings

An := R[x, x′, ..., x(n)] ⊂ A := R{x} := R[x, x′, x′′, ...]

whose elements are referred to as δ-polynomials. Let φ : R → R be the unique
ring automorphism that lifts the p-power Frobenius on k and let φ : A → A be
the unique ring homomorphism which is the φ above on R and sends x, x′, x′′, ...
into xp + px′, (x′)p + px′′, (x′′)p + px′′′, ... respectively. Then one defines the
following map of sets (the Fermat quotient operator):

δ : A → A, δF =
φ(F )− F p

p
.

This map induces maps δ : An → An+1, and by continuity, maps δ : (An)̂ →
(An+1 )̂ (where ˆ always denotes in this paper the p-adic completion). Note
that if A1 = Spec R[x] = Spec A0 is the affine line over R then Jn(A1) =
Spf (An )̂ and the arithmetic analogues of the total derivatives δ : On(A1) →
O

n+1(A1) identify with the Fermat quotient operators δ : (An )̂ → (An+1 )̂ we
just introduced.
A related example is Gm = Spec R[x, x−1] in which case Jn(Gm) =
Spf An[x−1 ]̂ and δ : On(Gm) → O

n+1(Gm) is induced by the δ above. If
[pν ] : Gm → Gm is the p-isogeny defined by x 7→ xpν

then the induced mor-
phism [pν ] : Jn(Gm) → Jn(Gm) is given by the map

[pν ]∗ : An[x−1 ]̂ → An[x−1 ]̂ , x(i) 7→ δi(xpν

).
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Moreover if µpν = Gm[pν ] is the kernel of [pν ] : Gm → Gm then

O
n(µpν ) =

An[x−1 ]̂

(xpν − 1, δ(xpν ), ..., δn(xpν ))

So it becomes crucial to compute the δ-polynomials δn(xpν

).
Consider the filtration of A by the subrings:

A{n} = An + pAn+1 + p2An+2 + ... ⊂ A

and consider the ideal I = (x′, x′′, ...) ⊂ A. Also consider the ideals I [p
ν ] of

A generated by all δ-polynomials of the form pi(x(s))p
j

, with s ≥ 1, i, j ≥ 0,
i + j = ν. By abuse of notation, we will often denote by [S] an element of
a set S. The starting point of this paper will be the following “leading term
computation”. Let n, ν ≥ 1.

Theorem 1.1.

δn(xpν

) =

{
pν−n+1xpn(pν−1)φn−1(x′) + [(pν−n+2A{1}) ∩ I [p

ν ]] if n ≤ ν + 1

xpn(pν−1)φν(x(n−ν)) + [A{n−ν−1} ∩ I [p
ν ]] if n ≥ ν + 2.

This computation will have a number of consequences (both in characteristic
zero and in characteristic p). Here is a consequence in characteristic zero.
Let Jn(µpν )1 be the kernel of the projection Jn(µpν ) → J0(µpν ) and write
O

n(µpν )1 := O(Jn(µpν )1). Then for n ≥ 1 we have:

Corollary 1.2.
lim
←−

ν

O
n(µpν )1 = R[x′, ..., x(n) ]̂ .

Let us mention some consequences in characteristic p. Before doing so we
introduce some notation. For any ring B we denote B = B/(p); and for any
b ∈ B we let b ∈ B be the image of B. In particular for any scheme of finite
type X/R we set

(1.1) On(X) := O
n(X)/(p), O∞(X) := O

∞(X)/(p).

Note that the morphisms On(X) → O∞(X) are generally not injective ! (They
are injective, however, if X/R is smooth [3].) It turns out that for non-smooth
X/R a special role is then played by the rings:

(1.2) Õn(X) := Im(On(X) → O∞(X)).

According to our notation above we may consider the ring A = k[x, x′, x′′, ...]

and its filtration with subrings A
n

:= An = k[x, x′, ..., x(n)]. Also we may
consider the reduction mod p, I = (x′, x′′, ...) ⊂ A, of the ideal I = (x′, x′′, ...) ⊂

A. Then I [pν ] coincides with the ideal I
[pν ]

in A generated by (x′)p
ν

, (x′′)p
ν

, ....

Moreover clearly A
n
∩ I

[pν ]
is generated in A

n
by (x′)p

ν

, ..., (x(n))p
ν

. So the
reduction mod p of the morphism Jn([pν ]) : Jn(Gm) → Jn(Gm) is given by
the homomorphism

[pν ]∗ : On(Gm) = k[x, x−1, x′, ..., x(n)] → k[x, x−1, x′, ..., x(n)], x(i) 7→ δi(xpν )

Documenta Mathematica 18 (2013) 943–969



946 Alexandru Buium

where, by Theorem 1.1:

Corollary 1.3. The element δn(xpν ) ∈ A
n
satisfies

δn(xpν ) =





0 if 1 ≤ n ≤ ν

xpν+1(pν−1)(x′)p
ν

if n = ν + 1

xpn(pν−1)(x(n−ν))p
ν

+ [A
n−ν−1

∩ I
[pν ]

] if n ≥ ν + 2

The “smallest” interesting case is ν = 1, n = 3,

δ3(xp) = xp3(p−1)(x′′)p −
1

2
xp3(p−2)(x′)2p.

Remark 1.4. By Corollary 1.3, for n ≥ ν + 1, the map [pν ]∗ : On(Gm) →

On(Gm) induces injective finite flat maps

[pν ]∗ : On(Gm)/(x′, ..., x(ν)) → On−ν(Gm).

Indeed finiteness is clear; injectivity follows by looking at dimensions; and
flatness follows from the general fact that finite surjective maps of non-singular
(irreducible) varieties are automatically flat (cf., say, [9], Theorem 18.16.).

Corollary 1.3 trivially implies the following determination of ˜On(µpν ).
Let n, ν ≥ 1.

Corollary 1.5.

˜On(µpν ) ≃
k[x, x′, x′′, ..., x(n)]

((x− 1)pν , (x′)pν , ..., (x(n))pν )
.

The statement of the corollary above should be contrasted with the fact that, as

we shall see, for all n, ν ≥ 1 the the rings On(µpν ) have positive Krull dimension
(actually they are polynomial rings in min{n, ν} variables over some explicit
local Artin rings).

Remark 1.6. As we saw the mod p Corollary 1.5 follows trivially from our
characteristic zero Theorem 1.1. We will also present an alternative proof of
this mod p result using a Witt vector computation; we are indebted to the
referee for this alternative proof. We included both approaches because each
has its own advantage: the Witt vector computation yields a shorter argument
(but apparently working only mod p) whereas the computation in Theorem 1.1
is valid in characteristic zero and has other consequences as well.

The above theory has an analogue for formal groups of height ≥ 2 which we
now explain. We consider the rings

A
n = R[[x]][x′, ..., x(n) ]̂ , A :=

⋃

n≥0

A
n.

Consider the filtration of A by the subrings:

A
{n} = A

n + pAn+1 + p2An+2 + ... ⊂ A
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and consider the ideals I
[pν ] of A generated by all δ-polynomials of the form

pi(x(s))p
j

, with s ≥ 0, i, j ≥ 0, i + j = ν. (Note that, unlike in the case of the
ideals I [p

ν ], the superscript s here is allowed to be 0! So, for instance xpν

∈ I
[pν ]

but xpν

6∈ I [p
ν ].) The lift of Frobenius φ : A → A on A = R{x} and the Fermat

quotient operator δ : A → A induce obvious maps φ : A → A and δ : A → A.
Now let F ∈ R[[x]] be a formal group law (in one variable) of finite height and
let F[pν ] be the kernel of the multiplication by pν viewed as a finite flat group
scheme over R. As we shall see it turns out that

O
n(F[pν ]) =

A
n

(F ◦ν , δ(F ◦ν), ..., δn(F ◦ν))
,

where F (x) = [p]F(x) ∈ R[[xp]] + pR[[x]] is the series giving the multiplication
by p in F and F ◦ν is its ν-th iterate. So we shall be interested in computing
δn(F ◦ν).
More generally start with any series F ∈ R[[xp]] + pR[[x]], F (0) = 0; any F of
the form [p]F(x) (F a formal group) has this shape. Then one easily sees that

(1.3) F ◦ν(x) =

ν∑

j=0

pν−jGj(x
pj

),

where Gj ∈ xR[[x]], j ≥ 0. So the computation of δn(F ◦ν) boils down to

computing the quantities δm(piGj(x
pj

)) for i + j = ν and m ≤ n. Here is our
main characteristic zero “leading term computation” of such quantities.
Assume G(x) ∈ xR[[x]], m ≥ 1, i+ j = ν ≥ 1, i ≥ 0, j ≥ 0. Then:

Theorem 1.7.

δm(piG(xpj

)) =

=




pi−mφm(G(xpj

)) + [(pi−m+1
A
{0}) ∩ I

[pν+1]] if m ≤ i

φi{
(

dG
dx

(xpj

)
)pm−i

δm−i(xpj

)} + [A{(m−ν−1)
+} ∩ I

[pν+1]] if m > i

Here for a an integer we set a+ = max{a, 0}.
The above (and indeed a much weaker statement) implies in particular that
the natural homomorphism

(1.4) A
n → lim

←

ν

O
n(F[pν ])

is injective; this is in the spirit of Corollary 1.2. A more precise consequence
of the above can be obtained by combining Theorems 1.1 and 1.7 to give a
“leading term computation” for δm(F ◦ν) in characterististic zero: all one has

to do is to replace the expression δm−i(xpj

) in the formula of Theorem 1.7
by its value given in Theorem 1.1. Rather than stating this consequence in
characteristic zero we look at some of its effects in characteristic p.
According to our conventions we may consider the ring A = k[[x]][x′, x′′, ...] and

its filtration with subrings A
n
:= An = k[[x]][x′, ..., x(n)]. Also we may consider

the reduction mod p of the ideal I, I = (x, x′, x′′, ...) ⊂ A. Then I[p
ν ] coincides
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with the ideal I
[pν ]

generated by xpν

, (x′)p
ν

, .... Moreover clearly A
n
∩ I

[pν ]
is

generated by xpν

, ..., (x(n))p
ν

in A
n
.

For the next Corollaries we continue to denote by F any series in R[[xp]]+pR[[x]]
with F (0) = 0 and to write its ν-th iterate as in Equation 1.3. Note that
dF◦ν

dx
∈ pνR[[x]] so we may consider the series

p−ν
dF ◦ν

dx
∈ A

0
= k[[x]].

Then our Theorem 1.7 will imply the following. Let ν ≥ 1 and n ≥ 0.

Corollary 1.8. The element δn(F ◦ν) ∈ A
n
is given by

δn(F ◦ν) =





(Gν−n(x
pν−n

))p
n

+ [x2pν

A
0
] if 0 ≤ n ≤ ν

(
p−ν dF◦ν

dx

)pn

(x(n−ν))p
ν

+ [A
n−ν−1

∩ I
[pν ]

] if n ≥ ν + 1.

Remark 1.9. The case ν = 1 of Corollary 1.8 above can be interpreted as
follows. Let us consider A1 = Spec R[x], the affine line overR, and its reduction

mod p, A1 = Spec k[x]. Then the R-morphism Φ : Â1 → Â1 defined by
x 7→ Φ∗(x) = F (x) := xp + pf(x), f(x) ∈ xR[x]̂ , is the most general R-

morphism lifting the relative (k-linear) Frobenius A1 → A1 and sending 0 into
0; Corollary 1.8 provides then, in particular, a description of the reduction mod
p of the induced map

Jn(Φ) : Jn(A1) → Jn(A1) = Spf R[x, x′, ..., x(n) ]̂ ,

(which sends x, x′, ..., x(n) into F, δF, ..., δnF ). Note that the map Jn(Φ) is
generally neither finite nor flat and its behavior depends in an essential way on
the series f(x).

Another immediate consequence of Corollary 1.8 is the following structure the-

orem for ˜On(F[pν ]). We actually prove a slightly more general result covering
cases that do not come from formal groups. Let n, ν ≥ 1.

Corollary 1.10. Assume F (x) ≡ px mod x2. For all ν ≥ 1 consider the

scheme Xν := Spec R[[x]]
(F◦ν) . Then for n ≥ 1 we have:

Õn(Xν) =
k[x, x′, ..., x(n)]

(xpν , (x′)pν , ..., (x(n))pν )
.

Recall that if F = [p]F(x) for some formal group F then the condition F (x) ≡
px mod x2 is automatic and Xν = F[pν ].

Again Corollary 1.10 should be contrasted to the fact that On(Xν) have positive
Krull dimension (they are, again, polynomial rings in min{n, ν} variables over
some explicit local Artin rings).

Remark 1.11. We already mentioned that Corollary 1.5 can be proved inde-
pendently of Theorem 1.1 via a Witt vector computation argument. It would
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be very interesting to find a similar Witt vector argument for Corollary 1.10
which is independent of Theorem 1.7, at least in the case when F (x) is of the
form [p]F(x) for some formal group F.

Remark 1.12. Results similar to Corollaries 1.5 and 1.10 above are obtained in
the body of the paper for the p-divisible groups of elliptic curves. The case of
ordinary elliptic curves is deduced from (a twisted version of) the results for
Gm while the case of supersingular elliptic curves is deduced from the results
on formal groups. In the ordinary case the shape of the results depends on the
value of the Serre-Tate parameter.

Remark 1.13. It would be interesting to have a generalization of our compu-
tations (in characteristic zero or at least in characteristic p) to the case of
arbitrary p-divisible groups.

Remark 1.14. It is interesting to note the following phenomenon. LetX0, ..., Xν

be closed subschemes of the affine line A1 over R which are, say, finite and flat
over R, and let

X =

ν⋃

i=0

Xi

(scheme theoretic union inside A1, defined by the intersection of the defining
ideals). Then, in general,

Jn(X) 6=
ν⋃

i=0

Jn(Xi)

as closed subschemes of Jn(A1). An example is provided by the case when
Xi = Spec R[ζpi ] where ζpi is a pi-th root of unity. In this case Jn(X0) =
Spec R and, as we shall see later in the paper, Jn(Xi) = ∅ for i ≥ 1 and n ≥ 1;
on the other hand X = µpν (kernel of multiplication by pν on Gm over R)
and hence Jn(µpν ) has a non-reduced reduction mod p by Theorem 1.10. It
would be interesting to understand this phenomenon more generally when, for
instance, Xi = Spec R[αi] with αi integers in a finite ramified extension of the
fraction field of R.

Remark 1.15. In a sequel to this paper [8] we shall investigate the p-jet spaces
of another remarkable example of finite flat schemes over R namely schemes
of the form Spec Wm(R) where Wm(R) are the rings of Witt vectors of finite
length on R.

A few words about the structure of the paper. We begin by recalling from
[3, 4] some of the basic concepts we shall be dealing with. Then we will study
the filtrations A{n} and I [p

ν ] in a general setting and we will prove Theorem
1.1. Then, in subsequent sections, we will investigate the p-jets of the divisible
groups of Gm, ordinary elliptic curves, formal groups of finite height, and su-
persingular elliptic curves respectively. The Gm case will be used as a step in
the analysis of all the other cases.
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2. Review of some basic concepts [3, 4]

Rings in this paper will always be assumed commutative with unity. A p-
derivation δ : A → A on a ring A is a set theoretic map satisfying

δ(x+ y) = δx+ δy + Cp(x, y)
δ(xy) = xpδy + ypδx+ pδxδy,

where Cp is the polynomial:

Cp(X,Y ) = p−1(Xp + Y p − (X + Y )p) ∈ Z[X,Y ].

If δ is as above then φ : A → A, φ(x) = xp + pδx, is a ring homomorphism.
Note that δ(xy) = xpδy + φ(y)δx = ypδx+ φ(x)δy. Also δ and φ commute. If
A is p-torsion free then δ is, of course, uniquely determined by φ; also

(2.1) δ(x1 + ...+ xm) = δx1 + ...+ δxm + Cp(x1, ..., xm),

where

Cp(X1, ..., Xm) := p−1(

m∑

i=1

Xp
i − (

m∑

i=1

Xi)
p) ∈ Z[X1, ..., Xm].

Now the ring R = Ẑur
p has a unique p-derivation defined by δx = (φ(x) −

xp)/p where φ : R → R is the unique ring automorphism lifting the p-power
Frobenius on R/pR. Let x be a variable (or more generally an N -tuple of
variables x1, ..., xN .) We consider the δ-polynomial ring R{x} = R[x, x′, x′′, ...];
this is the polynomial ring in variables x, x′, x′′, ..., x(n), ..., where x′, x′′, ... are
variables (or N -tuples of variables), equipped with the unique p-derivation
δ : R{x} → R{x} such that δx = x′, δx′ = x′′, etc. For X a scheme of finite
type over R one defines the p-jet spaces Jn(X), n ≥ 0 [3]. The latter are p-adic
formal schemes over R fitting into a projective system

... → Jn(X) → Jn−1(X) → ... → J0(X) = X̂.

Note that X 7→ Jn(X) are functors commuting with open immersions and more
generally with étale maps in the sense that if X → Y is étale then Jn(X) ≃
Jn(Y ) ×Y X in the category of p-adic formal schemes. If X = Spec R[x]/(f)
for a tuple of variables x and a tuple of polynomials f and then

Jn(X) = Spf R[x, x′, ..., x(n) ]̂ /(f, δf, ..., δnf).

In particular if Y → X is a closed immersion so is Jn(Y ) → Jn(X) for all n.
Moreover Jn commutes with fiber products: Jn(Y ×X Z) ≃ Jn(Y ) ×Jn(X)
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Jn(Z). The rings O
n(X) := O(Jn(X)) form an inductive system, the p-

derivation δ on R{x} induces operators δ : On(X) → O
n+1(X), and the direct

limit of these δ’s induces a p-derivation δ on the direct limit O
∞(X) of the

rings On(X). The following universality property holds. Assume for simplicity
X is affine. Then any R-algebra homomorphism of O(X) into a p-adically com-
plete ring B equipped with a p-derivation δ is induced by a unique R-algebra
homomorphism O

∞(X) → B that commutes with δ.

3. Filtrations

In this section we will introduce and study some basic filtrations, especially on
rings equipped with p-derivations. In the next section we will specialize to the
case when the ring in question is the ring R{x} of δ-polynomials.
Let A be a ring which for simplicity we assume p-torsion free and let I be
an ideal in A. For any integer ν ≥ 0 we denote by I [p

ν ] the ideal generated

by all the elements of the form pifpj

with f ∈ I, i, j ≥ 0, i + j = ν. (N.B.
Sometimes the superscript [ ] is used to denote divided powers of ideals; our
use of this superscript here has nothing to do with divided powers but rather
it generalizes the notation used for Frobenius powers of ideals in characteristic
p.) In particular I [1] = I. Also note that I [p

ν ] ⊂ I(pA + I)ν , where Jν is, as
usual, the ν-th power of an ideal J .

Lemma 3.1.
1) I [p

ν+1] ⊂ I [p
ν ].

2) If f ∈ I [p
ν ] then pf ∈ I [p

ν+1].

3) If f ∈ I [p
ν ] then fp ∈ I [p

ν+1].
4) If I is generated by a family {fs; s ∈ S} then I [p

ν ] is generated by the family

{pifpj

s ; s ∈ S, i, j ≥ 0, i+ j = ν}.

Proof. Assertions 1 and 2 are clear. For assertion 3 if f =
∑N

s=1 p
isfpjs

s gs with
fs ∈ I, gs ∈ A, and is + js = ν for all s then

(3.1) fp ∈
N∑

s=1

(pisfpjs

s gs)
p + pCp(p

i1fpj1

1 g1, ..., p
iN fpjN

N gN ) ⊂ I [p
ν+1].

To check assertion 4 it is sufficient to prove that if g ∈ I then gp
t

is in the ideal

generated by the family {pifpj

s ; s ∈ S, i, j ≥ 0, i + j = t}. One proves this by
induction on t ≥ 0. The case t = 0 is clear. Now if the statement is true for
t = ν and we set f = gp

ν

then we are done by equation (3.1). �

In what follows we assume we are given a p-derivation δ : A → A.

Lemma 3.2. Assume δ(I) ⊂ I. Then:
1) δ(I [p

ν ]) ⊂ I [p
ν ];

2) φ(I [p
ν ]) ⊂ I [p

ν+1].
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Proof. First, for any f ∈ A, we have the following computation:

(3.2)

δ(fpν

) = 1
p
(φ(fpν

)− fpν+1

)

= 1
p
((fp + pδf)p

ν

− fpν+1

)

= pνfp(pν−1)δf + pν+1(δf)2P (f, δf)

where P is a polynomial with Z-coefficients; indeed this is because for 2 ≤ m ≤
pν (and since p is odd) we have

pν+1 |

(
pν

m

)
pm−1.

In particular if f ∈ I then δ(fpν

) ∈ pνI ⊂ I [p
ν ].

Let’s prove assertion 1. In view of the equation (2.1) it is enough to note that

for i+ j = ν, f ∈ I, g ∈ A we have δ(pifpj

g) ∈ I [p
ν ]. Now

δ(pifpj

g) = δ(pi)fpj+1

gp + piδ(fpj

g)

= δ(pi)fpj+1

gp + pi(δ(fpj

)gp + fpj+1

δg + p(δ(fpj

))(δg))

∈ I [p
ν ],

by Lemma 3.1 and because δ(pi) is either 0 or in pi−1A according as i = 0 or
i ≥ 1.
To prove assertion 2 note that if f ∈ I [p

ν ] then φ(f) = fp + pδf ∈ I [p
ν+1] by

Lemma 3.1. �

In what follows we assume we are given, in addition, a filtration on A

A0 ⊂ A1 ⊂ A2 ⊂ ... ⊂ An ⊂ ... ⊂ A,

by subrings An such that δAn ⊂ An+1 for all n ≥ 0. Then we define a new
filtration by subrings

(3.3) A{0} ⊂ A{1} ⊂ A{2} ⊂ ... ⊂ A{n} ⊂ ... ⊂ A,

A{n} :=

∞∑

s=0

psAn+s = An + pAn+1 + p2An+2 + ...

Lemma 3.3.
1) pA{n+1} ⊂ A{n};
2) δ(A{n}) ⊂ A{n+1};
3) φ(A{n}) ⊂ A{n}.

Proof. A trivial exercise. �

We will also need the following general:

Lemma 3.4. For any f, g ∈ A0 we have the following equality of ideals in An:

(f − g, δ(f − g), ..., δn(f − g)) = (f − g, δf − δg, ..., δnf − δng).
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Proof. Induction on n. The induction step follows from the congruence

δ(δn−1f − δn−1g) − (δnf − δng) =
= Cp(δ

n−1f,−δn−1g)
≡ Cp(δ

n−1g,−δn−1g) mod δn−1f − δn−1g
= 0.

�

4. p-jets of p-isogenies of Gm

In this section we specialize the discussion of the previous section to the case
when

(4.1) A = R{x}, An = R[x, x′, ..., x(n)], I = (x′, x′′, ...).

So in this case, explicitly,

A{n} = R[x, x′, ..., x(n)] + pR[x, x′, ..., x(n+1)] + p2R[x, x′, ..., x(n+2)] + ...,

while I [p
ν ] is the ideal of R{x} generated by all δ-polynomials of the form

pi(x(s))p
j

, with s ≥ 1, i, j ≥ 0, i + j = ν; cf. assertion 4 in Lemma 3.1.

We start by proving Theorem 1.1 in the Introduction.

Proof of Theorem 1.1. First note that for n ≤ ν+1 we have φn−1(x′) ∈ I [p
n−1]

by Lemma 3.2 and hence

(4.2) pν−n+1xpn(pν−1)φn−1(x′) ∈ I [p
ν ],

by Lemma 3.1. Similarly, for n ≥ ν + 2, we have

(4.3) xpn(pν−1)φν(x(n−ν)) ∈ I [p
ν ],

by Lemma 3.2. We also claim that

(4.4) δn(xpν

) ∈ I [p
ν ].

To check (4.4) it is enough, by Lemma 3.2, to check that δ(xpν

) ∈ I [p
ν ]; this

however follows from equation (3.2). In view of (4.2), (4.3), (4.4), in order to
prove our theorem it is enough to prove that

δn(xpν

) ∈

{
pν−n+1xpn(pν−1)φn−1(x′) + pν−n+2A{1}, if n ≤ ν + 1

xpn(pν−1)φν(x(n−ν)) +A{n−ν−1}, if n ≥ ν + 2.

We fix ν and proceed by induction on n ≥ 1. For n = 1 we are done by (3.2).
Next assume the theorem is true for n and we prove it for n+ 1.
Assume first n ≤ ν + 1. By Lemma 3.3, φn−1(x′) ∈ A{1}. So we have

δn+1(xpν

) ∈ δ(pν−n+1xpn(pν−1)φn−1(x′)) + δ(pν−n+2A{1})

+Cp(p
ν−n+1A{1}, pν−n+2A{1}).
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Clearly the last term in the last equation is in pν−n+1A{1}. Also, by Lemma
3.3:

δ(pν−n+2A{1}) ⊂ δ(pν−n+2)A{1} + pν−n+2δ(A{1})
⊂ pν−n+1A{1} + pν−n+2A{2}

⊂ pν−n+1A{1}.

Now for n ≤ ν we have

δ(pν−n+1) = pν−n − pp(ν−n+1)−1 ∈ pν−n + pν−n+1Z

hence:

δ(pν−n+1xpn(pν−1)φn−1(x′)) = δ(pν−n+1)xpn+1(pν−1)(φn−1(x′))p

+pν−n+1δ(xpn(pν−1)φn−1(x′))

∈ pν−nxpn+1(pν−1)φn−1((x′)p) + pν−n+1A{1}

+pν−n+1δ(xpn(pν−1))(φn−1(x′))p

+pν−n+1φ(xpn(pν−1))δ(φn−1(x′))

⊂ pν−nxpn+1(pν−1)φn−1((x′)p)

+pν−n+1A{1}

+pν−n(xpn+1(pν−1) + pA1)(φn−1(px′′))

⊂ pν−nxpn+1(pν−1)φn(x′) + pν−n+1A{1}

because δ ◦ φn−1 = φn−1 ◦ δ, (x′)p + px′′ = φ(x′), and

pν−n · pA1 · (φn−1(px′′)) ⊂ pν−n+1 · A1 · pA{2} ⊂ pν−n+1A{1}.

So for n ≤ ν we get

δn+1(xpν

) = pν−nxpn+1(pν−1)φn(x′) + pν−n+1A{1},

which ends the induction step in case n ≤ ν.
For n = ν + 1 we get

δ(pν−n+1xpn(pν−1)φn−1(x′)) = δ(xpn(pν−1)φn−1(x′))
= δ(xpn(pν−1))(φn−1(x′))p

+φ(xpn(pν−1))δ(φn−1(x′))

∈ A{1} + (xpn+1(pν−1) + pA1)(φn−1(x′′))

= xpn+1(pν−1)φn−1(x′′) +A{1},

by Lemma 3.3. Hence

δn+1(xpν

) = xpn+1(pν−1)φν(x(n+1−ν)) +A{n−ν},

which ends the induction step in case n = ν + 1.
Assume now n ≥ ν + 2; then, by Lemma 3.3,

δn+1(xpν

) = δ(xpn(pν−1)φν(x(n−ν))) + δ(A{n−ν−1})

+Cp(A
{n−ν}, A{n−ν−1})

∈ δ(xpn(pν−1)φν(x(n−ν))) +A{n−ν}

= xpn+1(pν−1)δ(φν (x(n−ν)))

+φν+1(x(n−ν))δ(xpn(pν−1)) +A{n−ν}

= xpn+1(pν−1)φν(x(n+1−ν)) +A{n−ν}.

This ends the induction step in case n ≥ ν + 2. �
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Corollary 4.1.

δn(xpν

) ∈

{
A{0} ∩ I [p

ν ] if n ≤ ν,

A{n−ν} ∩ I [p
ν ] if n ≥ ν + 1.

The following will also be useful later.

Lemma 4.2.
1) δn(xp) ∈ R[xp, x′, ..., x(n)] for n ≥ 0.

2) δn(x1x2) ∈ R[xp
1, x

p
2, x
′
1, x
′
2, ..., x

(n)
1 , x

(n)
2 ].

Proof. Trivial induction on n. �

5. p-jets of µpν

Start again with the multiplicative group Gm and the isogeny [pν ]Gm
: Gm →

Gm. Let

µpν = Gm[pν ] := Ker([pν ]Gm
) = Spec R[x, x−1]/(xpν

−1)=Spec R[x]/(xpν

−1)

be the kernel of [pν ]Gm
. More generally, (for the purpose of looking later at

p-divisible groups of elliptic curves) we consider, for any a ∈ R×, the finite flat
scheme

µa
pν := Spec R[x]/(xpν

− a).

Its functor of points is given by µa
pν (S) = {s ∈ S; sp

ν

= a} for any R-algebra
S. Then µa

pν has a natural structure of µpν -torsor. More generally, for any

a, b ∈ R× we have a natural morphism

µa
pν × µb

pν

can
−→ µab

pν

given on S-points by (s, t) 7→ st. We also have a natural isomorphism

µapν b
pν

can
−→ µb

pν

given on points by s 7→ s/a.

Consider the group Um = 1 + pmR = Upm−1

1 .
So if a ∈ Uν+1 then a = bp

ν

, b ∈ U1, so division by b gives an isomorphism

µa
pν ≃ µpν .

Finally the system (µpν ; ν ≥ 1) is a p-divisible group with embeddings µpν ⊂
µpν+1 given by the inclusions on points. More generally for any a ∈ R× and

any ν0 ≥ 1, the schemes (µapν−ν0

pν ; ν ≥ ν0) form an inductive system with
embeddings

(5.1) µa
pν0 ⊂ µap

pν0+1 ⊂ ... ⊂ µapν−ν0

pν ⊂ µapν+1−ν0

pν+1 ⊂ ...

given by the inclusions on points. Note that if a ∈ Uν0+1 then we can write
a = bp

ν0
and hence division by b gives an isomorphism between the inductive

system (5.1) and the inductive system

(5.2) µpν0 ⊂ µpν0+1 ⊂ ... ⊂ µpν ⊂ µpν+1 ⊂ ...
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Recall that Jn(Gm) = Spf R[x, x−1, x′, ..., x(n) ]̂ and that [pν ]Jn(Gm) :

Jn(Gm) → Jn(Gm) is given at the level of rings by x 7→ xpν

, x′ 7→ δ(xpν

),
etc. By the commutation of Jn with fiber products it follows that

Jn(µpν ) = Ker(Jn([pν ]Gm
) = Ker([pν ]Jn(Gm)) =: Jn(Gm)[pν ].

More generally, if a ∈ R×, and if we still denote by a : Spec R → Gm the point
defined by x 7→ a then

Jn(µa
pν ) = Jn([pν ]−1

Gm
(a)) = (Jn([pν ]Gm

)−1(Jn(a)) = ([pν ]Jn(Gm))
−1(Jn(a))

where Jn(a) : Spec R → Jn(Gm) is given, at the level of rings, by

x 7→ a, x′ 7→ δa, ..., x(n) 7→ δna.

It follows that:

Proposition 5.1.

O
n(µa

pν ) =
R[x, x′, ..., x(n) ]̂

(xpν − a, δ(xpν )− δa, ..., δn(xpν )− δna)
.

In particular

O
n(µpν ) =

R[x, x′, ..., x(n) ]̂

(xpν − 1, δ(xpν ), ..., δn(xpν ))
.

Alternatively Proposition 5.1 follows from Lemma 3.4.

Remark 5.2. Let Jn(µpν )1 be the kernel of the projection Jn(µpν ) → J0(µpν ) =
µ̂pν and write O

n(µpν )1 := O(Jn(µpν )1). Since µpν has a lift of Frobenius
x 7→ xp in the category of group schemes we get an isomorphism

O
n(µpν ) ≃ O(µpν )⊗̂O

n(µpν )1

compatible with the group laws. Equivalently we have

Jn(µpν ) = µ̂pν × Jn(µpν )1

as groups in the category of formal p-adic schemes over R.

Proposition 5.3. For all n ≥ 1 we have

lim
←−

ν

O
n(µpν )1 = R[x′, ..., x(n) ]̂ .

Proof. By Proposition 5.1

O
n(µpν )1 =

R[x′, ..., x(n) ]̂

(δ(xpν )|x=1, ..., δn(xpν )|x=1)
.

Since, by Theorem 1.1 the denominator in the last equation is in (pν−n+1) we
are done by the following well known fact (whose proof we recall). �

Lemma 5.4. If A is a Noetherian ring, I is an ideal, A is I-adically complete,
and (Ln) is a descending sequence of ideals such that Ln ⊂ In then

A = lim
←

A/Ln.
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Proof. The map fromA to the projective limit is clearly injective. It is surjective
because if fn ∈ A, fn+1−fn ∈ Ln then fn+1−fn ∈ In hence there exists f ∈ A
such that f − fn ∈ In. Now fix m; since for n ≥ m, f − fm = (f − fn) + (fn −
fm) ∈ In +Lm and (by [13], Theorems 8.2 and 8.14) ∩n≥1(I

n +Lm) = Lm we
get f − fm ∈ Lm �.

According to our general notation (Equations 1.1 and 1.2) we next recall the
rings

On(µa
pν ), ˜On(µa

pν ).

Also recall we set Um = 1 + pmR = Upm−1

1 , m ≥ 1.

Proposition 5.5. Let n, ν ≥ 1 and a ∈ U1.

1) If a 6∈ Uν+1 then ˜On(µa
pν ) = 0.

2) If a ∈ Uν+1 then

(5.3) ˜On(µa
pν ) ≃ Õn(µpν ) ≃

k[x, x′, x′′, ..., x(n)]

((x− 1)pν , (x′)pν , ..., (x(n))pν )
.

(5.4) On(µa
pν ) ≃ On(µpν ) ≃

k[x, x′, x′′, ..., x(n)]

(xpν − 1)
if n ≤ ν,

(5.5) On(µa
pν ) ≃ On(µpν ) ≃

k[x, x′, x′′, ..., x(n)]

(xpν − 1, (x′)pν , ..., (x(n−ν))pν )
if n ≥ ν + 1.

Proof. To prove assertion 1 let a ∈ Um\Um+1, 1 ≤ m ≤ ν. Then a simple
induction shows that δma ∈ R× hence, by Corollary 1.3, the reduction mod p

of δm(xpν

)− δma is in k×. By Proposition 5.1 ON (µa
pν ) = 0 for all N ≥ m and

hence ˜On(µa
pν ) = 0 for all n ≥ 1.

To prove assertion 2 note that the equalities (5.4) and (5.5) follow from Corol-
lary 1.3 and Proposition 5.1; in particular we have

lim
−→

m

Om(µpν ) =
k[x, x′, x′′, ...]

(xpν − 1, (x′)pν , (x′′)pν , ...)
.

Now (5.3) follows from the fact that the intersection

k[x, x′, ..., x(n)] ∩ (xpν

− 1, (x′)p
ν

, (x′′)p
ν

, ...)

in the ring k[x, x′, x′′, ...] equals the ideal

(xpν

− 1, (x′)p
ν

, ..., (x(n))p
ν

).

�

By the above Proposition we get:

Corollary 5.6. Let n, ν0 ≥ 1, a ∈ U1. Then

(5.6) lim
←−

ν

˜
On(µapν−ν0

pν ) =

{
0 if a 6∈ Uν0+1

k[[x− 1, x′, ..., x(n)]] if a ∈ Uν0+1

We also remark the following:
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Proposition 5.7. Assume n, ν ≥ 1. Then
1) O

n(µpν ) is not a finite R-algebra.
2) O

n(µpν ) is not a flat R-algebra.

Proof. If On(µpν ) is a finite R-algebra then On(µpν ) is a finite k-algebra which
is not the case, cf. equations (5.4) and (5.5). If On(µpν ) is a flat R-algebra then

it is torsion free. Since, by equation (3.2), δ(xpν

) ∈ pνxp(pν−1)x′ + pν+1A1 it

follows that an element in x′+pA1 is zero in O
n(µpν ) hence x′ is zero in On(µpν )

hence in ˜On(µpν ). Hence x′ is in the denominator of the ring in equation (5.3),
a contradiction. �

Remark 5.8. The author is indebted to A. Saha for pointing out assertion 2 in
Proposition 5.7 above.

Remark 5.9. We end this section by providing an alternative argument for
Corollary 1.5, hence of Proposition 5.5 in case a = 1; the author is indebted to
the referee for this argument.
We start by recalling that for finitely generated R-algebras B and k-algebras
C there are isomorphisms

Homk−alg(J
n(B), C) ≃ HomR−alg(B,Wn(C))

functorial in both B and C and compatible with varying n. (Here Wn(C) =
(Rn+1,+,×) is the ring of p-typical Witt vectors of length n+1.) This follows
from the theory in [1]; cf. Section 3.4 of that paper. (The indexing of rings of
Witt vectors is also taken from [1] and is not the classical one: the above Wn

are usually denoted by Wn+1.) Using the isomorphism above Corollary 1.5 is
easily seen to be equivalent to the following statement.

Proposition 5.10. For any k-algebra C and any Witt vector x = (x0, ..., xn) ∈
Wn(C) we have

xpν

= 1 ⇐⇒ (x0 − 1)p
ν

= xpν

1 = ... = xpν

n−ν = 0

Here ... has the obvious meaning if ν ≥ n.

Proof. By multiplying x with the inverse of the Teichmüller lift (x0, 0, ..., 0) of
x0 one may reduce to the case when x0 = 1. Assume this from now on. Then
by induction it is enough to show that for all 0 ≤ i ≤ n− ν − 1 and under the

assumption xpν

1 = ... = xpν

i = 0 we have

xpν

= 1 ⇐⇒ xpν

i+1 = 0

To show the latter we may further assume that i = n − ν − 1. Now write
x = 1 + V (z) where V is the Verschiebung and z = (x1, ..., xn). Then we have

(5.7) xpν

= (1 + V (z))p
ν

= 1 + pνV (z) +

pν∑

j=2

(
p
j

)
(V (z))j .
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Since C has characteristic p, if F is the Frobenius, we have FV = V F = p
hence

(5.8)

pνV (z) = V ν+1F ν(z)

= V ν+1(xpν

1 , ..., xpν

n−ν)

= (0, ..., 0, xpν

1 , ..., xpν

n−ν)

= (0, ..., 0, xpν

n−ν).

By Equations 5.7 and 5.8 we are left to prove that for all j ≥ 2,

(5.9)

(
p
j

)
(V (z))j = 0 ∈ Wn(C).

Let r = ordp

(
p
j

)
. Then Equation 5.9 is equivalent (due to the general

identity V (a)V (b) = pV (ab)) to
(5.10)

0 = pr(V (z))j = pr+j−1V (zj) = V r+jF r+j−1(zj) = V r+j(F r+j−1(z)j).

It is therefore enough to show that

0 = F r+j−1(z) = (xpr+j−1

1 , ..., xpr+j−1

n−r−j+1).

Since we know that xpν

1 = ... = xpν

n−ν−1 = 0, it is enough to show that ν + 2 ≤
r + j or, equivalently,

ordp

(
pν

j

)
≥ ν − j + 2

for j ≥ 2, which is true (for p ≥ 3) for elementary reasons. �

6. p-jets of the irreducible components of µpν

Next note that µpν is connected and has ν + 1 irreducible components:

µpν =
ν⋃

i=0

µpν ,i, µpν ,i := Spec R[ζpi ],

where ζpi is a primitive p-root of unity. So ζ1 = 1, R[ζ1] = R = R[x]/(x − 1),
and

R[ζpi ] = R[x]/(Φpi(x)), Φpi(x) :=
xpi

− 1

xpi−1 − 1
, i ≥ 1.

The scheme theoretic intersection of these components is

Spec R[x]/(x− 1, p) = Spec k.

In deep contrast with Proposition 5.5 the p-jets of these components are com-
pletely uninteresting:

Proposition 6.1.
1) O

n(µpν ,0) = R for n ≥ 1;
2) O

n(µpν ,i) = 0 for i ≥ 1 and n ≥ 1.

Proof. The first equality is clear. The second follows from the fact that Φpi(x+
1) is an Eisenstein polynomial plus the following general fact: �
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Proposition 6.2. Let f(x) = xe + a1x
e−1 + ... + ae−1x + ae ∈ R[x] be an

Eisentein polynomial (i.e. e ≥ 2, a1, ..., ae ∈ pR, ae 6∈ p2R) and let X =
Spec R[x]/(f(x)). Then O

n(X) = 0 for n ≥ 1.

Proof. It is enough to show that δf(x) is invertible in O
1(X)⊗k. Now we have:

δf(x) = δ(xe) + δ(a1x
e−1) + ...+ δ(ae−1x) + δae + Cp(x

e, a1x
e−1, ..., ae)

≡ exp(e−1)x′ + xp(e−1)(δa1) + ...+ xp(δae−1) + δae mod p.

Since the image of x in O
1(X)⊗k is nilpotent and the image of δae in the same

ring is invertible it follows that the image of δf(x) in this ring is invertible
which ends the proof. �

7. p-jets of E[pν ] for ordinary elliptic curves

We start with a review of extensions of p−νZ/Z by µpν . For any group (re-
spectively group scheme) G we denote by G[N ] the kernel of the multiplication
by N map. For a finite group Γ we continue to denote by Γ the étale group
scheme over R attached to Γ; so for any connected R-algebra S, Γ(S) = Γ. In
particular we have the connected R-group scheme µpν = Gm[pν ]. Also one can
consider the étale R-group scheme p−νZ/Z. Let Rm = R/pmR, m ≥ 1. We
also view, when appropriate, µpν and p−νZ/Z as Rm-group schemes via base
change. Then, by Kummer theory,

(7.1)
Ext1Rm

(p−νZ/Z, µpν ) ≃ R×m/(R×m)p
ν

≃ (1 + pRm)/(1 + pRm)p
ν

≃ (1 + pRm)/(1 + pν+1Rm).

We will need to recall the following explicit description of the above isomor-
phism. Let q ∈ 1 + pR. Consider the finite flat R-scheme

Γq
pν =

pν−1∐

i=0

µqi

pν .

This is a group scheme with multiplication given by

µqi

pν × µqj

pν

can
−→ µqi+j

pν

can
−→ µql

pν ,

where 0 ≤ l < pν , i+ j ≡ l mod pν . The functor of points of Γq
pν is given by

Γq
pν (S) = {(s, i); s ∈ S×, 0 ≤ i < pν , sp

ν

= qi}

for any R-algebra S with connected spectrum; the multiplication on points is
given by (s, i) · (t, j) = (st, i+ j) if i+ j < pν and (s, i) · (t, j) = (st/q, i+ j−pν)
if i+ j ≥ pν . We have an extension

(7.2) 0 → µpν → Γq
pν → p−νZ/Z → 0

(the second map being given on points by (s, i) 7→ i
pν + Z). Then Kummer

theory gives:
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Lemma 7.1. The isomorphism ( 7.1) is given by attaching to the class of
q ∈ 1 + pR in (1 + pRm)/(1 + pν+1Rm) the class of the extension ( 7.2) in
Ext1Rm

(p−νZ/Z, µpν ).

Note that the system (Γq
pν ; ν ≥ 1) is a p-divisible group via the morphisms

Γq
pν → Γq

pν+1 given on points by (s, i) 7→ (s, pi) and given on schemes by the

inclusions µqi

pν ⊂ µqpi

pν+1. The p-divisible group (Γq
pν ; ν ≥ 1) is an extension of

the p-divisible group (p−νZ/Z; ν ≥ 1) by the p-divisible group (µpν ; ν ≥ 1),
where the latter are viewed as p-divisible groups with respect to the natural
inclusions.

Next we consider an elliptic curve E/R. References for this are [14, 10]. Let
E/k be its reduction mod p and let Efor be the formal group attached to
E. (We use the superscript for rather than ̂ because the latter is used in
the present paper to denote p-adic completion). Let Efor[pν ] be the kernel of
the multiplication by pν on Efor, viewed as a finite flat group scheme over R.
Assume in what follows that E is ordinary. Then

(7.3) Efor ≃ Gfor
m ;

we fix such an isomorphism. So we have induced isomorphisms Efor[pν ] ≃ µpν .
Moreover we fix isomorphisms

(7.4) E(k)[pν ] ≃ Z/pνZ ≃ p−νZ/Z.

With the isomorphisms (7.3) and (7.4) fixed one defines the Serre-Tate param-
eter q = q(E) ∈ 1 + pR of E as follows. The isomorphisms (7.4) define a basis
(αν) of the Tate module TpE = lim←E(k)[pν ], αν ∈ E(k)[pν ] a generator,
pαν = αν−1. If Aν ∈ E(R) lifts αν then one defines the Serre-Tate parame-
ter q(E) ∈ 1 + pR as the image of lim pνAν ∈ Efor(R) via the isomorphism
Efor(R) ≃ 1 + pR induced by (7.3); cf. [10], section 2. On the other hand
with the isomorphisms (7.3) and (7.4) fixed there are induced exact sequences
of finite flat group schemes over R:

(7.5) 0 → µpν → E[pν ] → p−νZ/Z → 0.

Cf., say, [10]. Also by loc.cit. we have

Lemma 7.2. The class of the extension ( 7.5) is the image of the Serre-Tate
parameter q(E) ∈ 1 + pR under the isomorphism ( 7.1).

We conclude by Lemmas 7.1 and 7.2 that if q = q(E) then E[pν ] and Γq
pν are

isomorphic as extensions over Rm for any m; the isomorphisms are compatible
as m varies so we get the following:

Corollary 7.3. E[pν ] and Γq
pν are isomorphic as extensions over R for q =

q(E). In particular if 0 ≤ i < pν and θ = i
pν +Z ∈ p−νZ/Z then the connected

component E[pν ]θ of E[pν ] lying above θ is isomorphic to µqi

pν . Consequently if
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we fix ν0 and an index 0 ≤ i0 < pν0 and if θ = i0
pν0

+ Z ∈ p−ν0Z/Z then the

inductive system

E[pν0 ]θ ⊂ E[pν0+1]θ ⊂ E[pν0+2]θ ⊂ ... ⊂ E[pν ]θ ⊂ ...

identifies with the inductive system

µqi0

pν0 ⊂ µ
(qi0 )p

pν0+1 ⊂ µ
(qi0 )p

2

pν0+2 ⊂ ... ⊂ µ
(qi0 )p

ν−ν0

pν ⊂ ...

Putting together Proposition 5.5 and Corollary 7.3 (and making the change of
variables x 7→ x+ 1) we get:

Proposition 7.4. Let E/R be an elliptic curve with ordinary reduction and
Serre-Tate parameter q = q(E) ∈ U1. Let n ≥ 1, let θ ∈

⋃
m≥1 p

−mZ/Z, and

let ν0 ≥ 1 be minimal with the property that θ ∈ p−ν0Z/Z. Let ν ≥ ν0 and let
E[pν ]θ be the connected component of E[pν ] lying over θ. Then:

1) If q 6∈ Uν0+1 and θ 6= 0 then ˜On(E[pν ]θ) = 0.
2) If q ∈ Uν0+1 or θ = 0 then

(7.6) ˜On(E[pν ]θ) ≃
k[x, x′, x′′, ..., x(n)]

(xpν , (x′)pν , ..., (x(n))pν )
.

(7.7) On(E[pν ]θ) ≃
k[x, x′, x′′, ..., x(n)]

(xpν )
if n ≤ ν,

(7.8) On(E[pν ]θ) ≃
k[x, x′, x′′, ..., x(n)]

(xpν , (x′)pν , ..., (x(n−ν))pν )
if n ≥ ν + 1.

Corollary 7.5. Let n, ν0 ≥ 1, q ∈ U1. Then

(7.9) lim
←−

ν

˜On(E[pν ]θ) =

{
0 if q 6∈ Uν0+1 and θ 6= 0

k[[x, x′, ..., x(n−1)]] if q ∈ Uν0+1 or θ = 0.

Also Proposition 5.7 and Corollary 7.3 imply

Corollary 7.6. Let n, ν ≥ 1. Then the map

Jn([pν ]E) = [pν ]Jn(E) : J
n(E) → Jn(E)

is neither finite not flat.

An analogue of Remark 1.4 should hold nevertheless in the elliptic case as well.

8. p-jets of F[pν ]

Recall that a series F (x) ∈ xR[[x]] without constant term is said to have finite
height if F 6≡ 0 mod p; if this is the case the height of F is defined as the largest

integer h ≥ 0 such that F ∈ R[[xph

]] + pR[[x]].
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Remark 8.1. The main example we have in mind here arises as follows. Con-
sider a formal group law F ∈ R[[x1, x2]]. By [14] the multiplication by p in F

is given by a series F (x) := [p]F(x) satisfying F (x) ≡ px mod x2. The height
of F is defined to be the height of F (x); if the height is finite then it is ≥ 1.
Not every series of height ≥ 1 which is ≡ px mod x2 is the multiplication by
p of a formal group law F; indeed if F (x) = [p]F has height h then one knows
that the x-adic valuation of the reduction mod p of F in k[[x]] is exactly ph;
cf. [14], p.127.

Let F (x) ∈ xR[[x]] be a series of finite height h ≥ 1 and let F ◦ν = F ◦ ... ◦ F
be the ν fold composition of F with itself for ν ≥ 1. Let eph be the x-adic
valuation of the reduction mod p of F . (So if F (x) = [p]F(x) for some formal
group law F then e = 1.) By “Weierstrass preparation” (cf. [11], p. 130)
F ◦ν = Uν · Pν where Uν ∈ R[[x]]× and Pν ∈ R[x] is monic of degree eνphν ,

Pν ≡ xeνphν

mod p. Consider the scheme:

Xν := Spec
R[[x]]

(F ◦ν)
= Spec

R[[x]]

(Pν)
≃ Spec

R[x]

(Pν)
;

the latter isomorphism follows from “Euclid division” by Pν in R[[x]]; cf. [11],
p. 129. So Xν is a finite flat scheme over R of degree eνphν and we have a
natural sequence of closed immersions

(8.1) X1 ⊂ X2 ⊂ ... ⊂ Xν ⊂ ...

Our aim in this section is to understand the rings On(Xν). Note that if F (x) =
[p]F(x) is the multiplication by p on some formal group law F then Xν = F[pν ],
where the latter is the kernel of [pν ]F on F and indeed the inductive system
(8.1) coincides with the p-divisible group

F[p] ⊂ F[p2] ⊂ ... ⊂ F[pν ] ⊂ ...

of F; cf. [15].

Remark 8.2. Recall (cf. [12], p. 480) that any formal group law F over R
of height h = 1 is isomorphic to the multiplicative formal group law hence in
particular F[pν ] ≃ µpν . Hence our analysis in Section 5 applies to O

n(F[pν ]) in
the height one case. We will consider in what follows the case of formal groups
of arbitrary height ≥ 1. More generally we will treat the case of iterates of
series of height ≥ 1 which are not necessarily coming from formal groups; so
even for height 1 our analysis below will not be covered by Section 5.

To understand the rings O
n(Xν) we will first perform some computations in

characteristic zero culminating with a proof of Theorem 1.7. Then we will
reduce mod p the outcome of these computations.
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We begin by noting that:

(8.2)

O
n(Xν) = R[x, x′, ..., x(n) ]̂ /(Pν , δPν , ..., δ

nPν)

= R[[x]][x′, ..., x(n) ]̂ /(Pν , δPν , ..., δ
nPν)

= R[[x]][x′, ..., x(n) ]̂ /(F ◦ν , δ(F ◦ν), ..., δn(F ◦ν)).

So we will be concerned from now on with understanding the structure of the
expressions δi(F ◦ν). To do this we need to develop some filtration machinery
on power series.
We start by considering the decreasing filtration of A0 := R[[x]] by the subrings
A

0
ν , ν ≥ 1, defined by

A
0
ν = R[[xpν

]] + pR[[xpν−1

]] + p2R[[xpν−2

]] + ...+ pνR[[x]] ⊂ R[[x]].

Let vp be the p-adic valuation on R.

Lemma 8.3.
1) A

0
ν = {

∑
n≥0 anx

n ∈ R[[x]] ; vp(an) ≥ ν − vp(n)}.

2) If G1, G2, G3, ... ∈ A
0
ν , Gm ∈ xmR[[x]]. Then

∑
m≥1 Gm ∈ A

0
ν .

3) If H ∈ A
0
ν , H(0) = 0, and G ∈ R[[x]] then G(H(x)) ∈ A

0
ν .

4) pA0
ν ⊂ A

0
ν+1.

5) If G ∈ A
0
ν then Gp ∈ A

0
ν+1.

6) If F ∈ A
0
1 and F (0) = 0 then F ◦ν ∈ A

0
ν .

Proof. Assertion 1 is easy. Assertion 2 clearly follows from assertion 1. Asser-
tion 3 clearly follows from assertion 2. Assertions 4 and 5 are clear. Assertion
6 follows from assertions 3, 4, 5. �

We continue by considering the filtration

A
n = R[[x]][x′, ..., x(n) ]̂ , n ≥ 0

on
A :=

⋃

n≥0

A
n.

(Here A
0 = R[[x]].) There is a natural p-derivation δ on A sending δx = x′,

δx′ = x′′, etc. Note that δAn ⊂ A
n+1 for all n. So according to equation (3.3)

we may then consider the filtration

A
{n} = A

n + pAn+1 + p2An+2 + ...

on A. Finally let
I = (x, x′, x′′, ...) ⊂ A.

So we may consider the descending filtration of I by ideals I
[pν ], ν ≥ 0. Note

that with An, A, I as in 4.1 we have An ⊂ A
n, A ⊂ A, I ⊂ I, and hence

I [p
ν ] ⊂ I

[pν ]. Let n, i ≥ 1. Note also that Lemma 3.2 immediately implies the
injectivity of the map in Equation 1.4 because I

[pν ] ⊂ (pAn + I)ν and because
A

n is separated in the topology given by the maximal ideal pAn + I.
In what follows we prove a series of lemmas that will lead to Theorem 1.7.
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Lemma 8.4.

δn(pix) =

{
pi−nφn(x) + [(pi−n+1

A
{0}) ∩ I

[pi+1]] if n ≤ i

φi(x(n−i)) + [A{n−i−1} ∩ I
[pi+1]] if n ≥ i+ 1

Proof. Induction on n. The case n = 1 is clear. Now assume the above is true
for some n ≥ 1. If n ≤ i− 1 we have

δn+1(pix) ∈ δ(pi−nφn(x)) + δ((pi−n+1
A
{0}) ∩ I

[pi+1])

+Cp(p
i−n

A
{0}, (pi−n+1

A
{0}) ∩ I

[pi+1])

⊂ pi−n−1φn+1(x)− p(i−n)p−1φn(x)p + (pi−nA{0}) ∩ I
[pi+1]

+(pi−n+1
A
{0}) ∩ I

[pi+1]

⊂ pi−n−1φn+1(x) + (pi−nA{0}) ∩ I
[pi+1].

If n ≥ i+ 1 we have

δn+1(pix) ∈ δ(φi(x(n−i))) + δ(A{n−i−1}) ∩ I
[pi+1])

+Cp(A
{n−i},A{n−i−1} ∩ I

[pi+1])

∈ φi(x(n+1−i)) +A
{n−i} ∩ I

[pi+1].

The case n = i is similar. �

Lemma 8.5. Let G ∈ xR[[x]]. Then for all n ≥ 1:

δn(G(x)) =

(
dG

dx

)pn

x(n) + [A{n−1} ∩ I
[p]].

Proof. We proceed by induction on n. To check the statement for n = 1 write
G(x) =

∑
m≥1 amxm; then

δ(G(x)) = 1
p
[
∑

m≥1 φ(am)(xp + px′)m − (
∑

m≥1 amxm)p]

= 1
p
[
∑

m≥1(a
p
m + pδam)(xpm + pmxp(m−1)x′ + ...) − (

∑

m≥1 amxm)p]

∈ xp
A

0 + (
∑

m≥1 mamxm−1)px′ + px′
A

1

⊂
(

dG

dx

)p
x′ + A

{0}
∩ I

[p],

which settles the case n = 1. For the induction step, assuming the statement
true for some n ≥ 1, we have

δn+1(G(x)) ∈ δ
(

(

dG

dx

)pn

x(n)
)

+ δ(A{n−1}
∩ I

[p]) + Cp(A
{n},A{n−1}

∩ I
[p])

∈
(

dG

dx

)pn+1

x(n+1) + φ(x(n)) · δ
(

(

dG

dx

)pn
)

+ A
{n}

∩ I
[p].

Now, using Theorem 1.1, we have

φ(x(n)) · δ
((

dG
dx

)pn)
∈ (An ∩ I) · pnA1

⊂ A
n ∩ pnI

⊂ A
{n} ∩ I

[p]

and we are done. �

Documenta Mathematica 18 (2013) 943–969



966 Alexandru Buium

Next consider any series Σ = Σ(x) ∈ xR[[x]] and consider the unique ring
endomorphism Σ∗ : A → A such that Σ∗x = Σ(x), Σ∗x′ = δ(Σ(x)), Σ∗x′′ =
δ2(Σ(x)), etc. Clearly Σ∗(An) ⊂ A

n for n ≥ 0 and hence Σ∗(A{n}) ⊂ A
{n}

for n ≥ 0. It is trivial to see that Σ∗ and δ commute on A; similarly Σ∗ and
φ commute on A. Moreover for any two series Σ1,Σ2 we have the following
compatibility of upper ∗ with composition: (Σ1 ◦ Σ2)

∗ = Σ∗2 ◦ Σ
∗
1.

Recall that for any integer a ∈ Z we write a+ = max{a, 0}.

Lemma 8.6. Assume Σ(x) = xpm

, m ≥ 1, ν ≥ 0, n ≥ 0; then:

1) Σ∗I[p
ν ] ⊂ I

[pν+m];

2) Σ∗A{n} ⊂ A
{(n−m)+}.

Proof. To check assertion 1 it is enough to check it for m = 1. Now assertion
1 follows from the following computations in which i+ j = ν:

Σ∗(pi(x(s))p
j

) = pi(δs(xp))p
j

∈ piI[p
j+1] ⊂ I

[pi+j+1] = I
[pν+1];

in the above we used the fact that since xp ∈ I
[p] we have δs(xp) ∈ I

[p] hence

(δs(xp))p
j

∈ I
[pj+1]; cf. Lemma 3.1. To prove assertion 2 it is enough, by the

compatibility with composition, to prove these two statements for m = 1 and
n ≥ 1 which we now assume. Now by Theorem 1.1 we have δn(xp) ∈ A

{n−1}

for n ≥ 1. Consequently, for n ≥ 1 and F ∈ A
n+i we have

Σ∗(piF (x, ..., x(n+i))) = piF (xp, ..., δn+i(xp)) ∈ piA{n+i−1} ⊂ A
{n−1}

which proves assertion 2. �

We are ready to prove Theorem 1.7:

Proof of Theorem 1.7. Set Σ(x) = xpj

. Using Lemmas 8.4, 8.5, 8.6 we have
the following computation for 1 ≤ m ≤ i:

δm(piG(xpj

)) = δm(Σ∗G∗(pix))
= Σ∗G∗(δm(pix))

∈ Σ∗G∗{pi−mφm(x) + (pi−m+1
A
{0}) ∩ I

[pi+1]}

⊂ Σ∗G∗(pi−mφm(x)) + (pi−m+1
A
{0}) ∩ I

[pi+1+j]

⊂ pi−mφm(G(xpj

)) + (pi−m+1
A
{0}) ∩ I

[pν+1].

For m ≥ i+ 1 we have:

δm(piG(xpj

)) = Σ∗G∗(δm(pix))

∈ Σ∗G∗{φi(x(m−i)) +A
{m−i−1} ∩ I

[pi+1]}

⊂ Σ∗G∗{φi(x(m−i))} +A
{(m−i−1−j)+} ∩ I

[pi+1+j]

⊂ φiΣ∗(δm−iG) +A
{(m−ν−1)+} ∩ I

[pν+1]

⊂ φiΣ∗{
(
dG
dx

)pm−i

x(m−i) +A
{m−i−1} ∩ I

[p]}

+A
{(m−ν−1)+} ∩ I

[pν+1]

⊂ φi{
(

dG
dx

(xpj

)
)pm−i

· δm−i(xpj

)}+A
{(m−ν−1)+} ∩ I

[pν+1].

�
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Now Theorem 1.7 and Corollary 1.3 trivially imply:

Corollary 8.7. Let m ≥ 0, ν ≥ 1, i + j = ν, i, j ≥ 0, G ∈ xR[[x]]. Then the

element δm(piG(xpj )) ∈ A
m

is given by

δm(piG(xpj )) =



























0 if m < i

G(xpj )p
i

if m = i

[A
0
∩ I

[pν+1]
] if i < m ≤ ν

(

xpj−1 dG

dx
(xpj )

)pm

(x(m−ν))p
ν

+ [A
m−ν−1

∩ I
[pν ]

] if m > ν

In particular δm(piG(xpj )) ∈ A
(m−ν)+

∩ I
[pν ]

.

Lemma 8.8. Let y be an N -tuple y1, ..., yN of variables. Then, for n ≥ 1,

δn

(
N∑

i=1

yi

)
=

N∑

i=1

y
(n)
i + PN,n(y, y

′, ..., y(n−1))

in R{y} where PN,n is a polynomial with Z-coefficients without constant term
or linear terms.

Proof. Induction on n. �

Note that Corollary 8.7 and Lemma 8.8 immediately imply Corollary 1.8. Also
Corollary 1.8 immediately implies Corollary 1.10; one can prove a slightly more
precise result:

Proposition 8.9. Let F (x) ∈ xR[[x]] be a series of finite height h ≥ 1 satis-

fying F (x) ≡ px mod x2. For all ν ≥ 1 consider the scheme Xν := Spec R[[x]]
(F◦ν) .

Then we have:

(8.3) Õn(Xν) =
k[x, x′, ..., x(n)]

(xpν , (x′)pν , ..., (x(n))pν )
if n ≥ 1,

(8.4) On(Xν) =
k[x, x′, ..., x(n)]

(xpν , (x′)pν , ..., (x(n−ν))pν )
if n ≥ ν,

(8.5) On(Xν) =
k[x, x′, ..., x(n)]

(xµ)
if 1 ≤ n ≤ ν − 1,

where µ ≥ pν .

Proof. By assertion 6 in Lemma 8.3 we may write F ◦ν =
∑ν

j=0 p
ν−jGj(x

pj

),

Gj ∈ R[[x]], j ≥ 0. We may choose the Gjs in xR[[x]] and then G0(x) ≡ x

mod x2. Also p−ν dF◦ν

dx
≡ 1 mod x. We conclude by Corollary 1.8 and equation

(8.2). �
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9. p-jets of E[pν ] for supersingular elliptic curves

Proposition 9.1. Let E/R be an elliptic curve with supersingular reduction
and E[pν ] the kernel of the multiplication by p. Then for any n ≥ 1 we have:

(9.1) ˜On(E[pν ]) =
k[x, x′, ..., x(n)]

(xpν , (x′)pν , ..., (x(n))pν )
if n ≥ 1,

(9.2) On(E[pν ]) =
k[x, x′, ..., x(n)]

(xpν , (x′)pν , ..., (x(n−ν))pν )
if n ≥ ν,

(9.3) On(E[pν ]) =
k[x, x′, ..., x(n)]

(xµ)
if 1 ≤ n ≤ ν − 1,

where µ ≥ pν .

Proof. Since E has supersingular reduction E[pν ] is connected so it is equal to
F[pν ] where F is the formal group law of E and we conclude by Proposition
8.9. �
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