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Abstract. We write out and prove the trace formula for a convolu-
tion operator on the space of cusp forms on GL(2) over the function
field F of a smooth projective absolutely irreducible curve over a finite
field. The proof – which follows Drinfeld – is complete and all terms
in the formula are explicitly computed. The structure of the homo-
geneous space GL(2, F )\GL(2,A) is studied in section 2 by means
of locally free sheaves of OX -modules. Section 3 deals with the reg-
ularization and computation of the geometric terms, over conjugacy
classes. Section 4 develops the theory of intertwining operators and
Eisenstein Series, and the trace formula is proven in section 5.
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1 Introduction and statement of the Trace Formula

1.1 Introduction

The (non-invariant) trace formula for GL(2) over a number field was stated
and its proof sketched in chapter 15 of the influential book of Jacquet and
Langlands [JL70] of 1970. It was used there for comparison of automorphic
representations of the multiplicative group of a quaternion algebra, with auto-
morphic representations of GL(2).
Drinfeld used the trace formula for GL(2) over a function field F to prove
Langlands’ conjecture for GL(2, F ), and to count in [D81] the number of two
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dimensional irreducible representations of the fundamental group of a smooth
projective geometrically irreducible curve X over a finite field. To check the
statement of the trace formula of [JL70] in the function field case, Drinfeld gave
a detailed (but unpublished) proof. It differs from the one sketched in [JL70].

It is this proof of Drinfeld which is given in this paper.

The main reason why this proof is still interesting is the elementary and un-
conventional treatment of Eisenstein series (see subsections 4.7-4.8 below), and
the computation of traces in the spirit of Tate [T68], see subsection 5.2. In
both cases it is based on a “baby model” (see Proposition 4.31, Corollary 4.32,
Lemma 5.11), which cries out for generalization.

Let us describe the contents of this article.

The trace formula itself is stated in subsection 1.2 with a few comments. More
comments, including informal ones, are given in section 3.

Section 2 contains a dictionary between the language of adèles and the lan-
guage of vector bundles on the smooth projective curve X corresponding to
F . In particular, the set of rank n vector bundles on X is identified with
GL(n, F )\GL(n,A)/GL(n,OA), where OA ⊂ A is the ring of integral adèles.
This dictionary goes back to A. Weil [W38], although in an older language. It
underlies Drinfeld’s Geometric Langlands program [BD].

The terms which appear in the geometric part of the trace formula – orbital in-
tegrals and weighted orbital integrals – are estimated and regularized in section
3.

In section 4 intertwining operators, Eisenstein series, and L-functions are in-
troduced. The rationality of the intertwining operator M(µ1, µ2, t) and the
functional equation M2 = 1 are first proven using local computations: nor-
malization of the intertwining operators by L-functions and ε-factors, and the
functional equation of the L-functions.

In subsections 4.7-4.8 these facts are proven using an alternative, global ap-
proach. The ideas might go back to Selberg. But technically the exposition is
quite different and more elementary: in the case of function fields the analytic
problems disappear.

The trace formula is proven in section 5. The logarithmic derivative of the
intertwining operator appears as a result of a computation of the trace of some
operator in a power series space, see Lemma 5.11. This computation is probably
related to Tate’s article [T68].

Here are some questions.

1. Could the methods of subsections 4.7-4.8 and section 5 be extended to
prove the functional equation for Eisenstein series, and the trace formula, for
an arbitrary reductive group over a function field?

2. Is there a modification of the technique from subsections 4.7-4.8 that would
work in the case of number fields, e.g., for GL(2,Q)? One could try to replace
the space of formal power series used in subsections 4.7-4.8 by some space of
holomorphic functions.

3. What is the precise relationship between Lemma 5.11 and Tate’s [T68]?
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4. What is the relationship between the approach to Eisenstein series of subsec-
tions 4.7-4.8, and the classical approaches: that of Selberg-Langlands-Arthur,
and that of scattering theory (see [FP72] or [LP76])?

This author’s initial motivation to write out Drinfeld’s expression and proof of
the trace formula for GL(2) over a function field stems from his search for higher
rank analogues of Drinfeld’s formula [D81]. This led us to count with Deligne
[DF13] the number of rank n (≥ 2) local systems with principal unipotent
local monodromy at least at two places. There we use the trace formula in the
compact quotient case, and the transfer of automorphic representations from a
compact form to GL(n). This explains the condition: “at least at two places”.
The case of [D81] is rank n = 2, no monodromy. To complete the study
of [D81] and of [DF13] in rank two one has to consider the case of principal
unipotent local monodromy at a single place. This is done in [F], using the
explicit computations of the trace formula for GL(2) over a function field of
the present work. This was our initial motivation to write out this formula.
Drinfeld’s proof in the case of rank two, no ramification, is also given in [F].
Of course there are numerous expositions of the trace formula of [JL70], e.g.
[GJ79], geared to explain the lifting application of [JL70], mainly in the number
field case. But none computes explicitly (and accurately, cf. [D81]) all the terms
which appear in the trace formula. The latter is precisely what is needed for the
counting applications of [D81] and [F]. An attempt at a complete exposition
of the computations for GL(2) in the number field case is at [AFOO].
Of course the trace formula of [JL70] was generalized to the higher rank case
by Arthur, see e.g. [A05], in the number field case, and by Lafforgue, see e.g.
[Lf97], in the function field case. But the important applications of these works
did not require explicit evaluation of all the terms which appear in the trace
formula, so our results are not included in those of [Lf97], even in the case of
GL(2) considered here.
In the number field case, the Remark on p. 112 of [A05] states: “As a matter
of fact, it is only in the case of GL(2) that the general coefficients have been
evaluated. It would be very interesting to understand them better in other
examples, although this does not seem to be necessary for presently conceived
applications of the trace formula”. Indeed the applications of [D81], [DF13],
[F] – counting rather than comparing – are of different nature than those of
[JL70], [A05], [Lf97], where most terms can be erased a-priori in the comparison
so they need not be computed.
To repeat what is explained above, we also think the approach of subsections
4.7-4.8 and section 5 is original, substantially different from the currently known
methods (which are developed in [A05], [Lf97]), interesting and warrants further
development.
I am deeply grateful to V. Drinfeld for making available to me his unpublished
notes, for teaching me lots of mathematics in the process, and for his per-
mission to publish this paper; to A. Beilinson for telling me at IHES about
Drinfeld’s notes; to the referee for the very careful reading. The author was
a Schonbrunn visiting Professor at the Hebrew University, Jerusalem. Work
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1.2 Statement of the Trace Formula

Let us write the trace formula for GL(2) over a function field F of a smooth
projective geometrically connected curve X over a finite field Fq, and a test
function f in C∞

c (GL(2,A)) (subscript c for “compactly supported”, super-
script ∞ for “locally constant”, A denotes the ring of adèles of F ).
Let r0 be the representation of GL(2,A) by right translation on the space
A0,α of cusp forms on αZ · GL(2, F )\GL(2,A), and r0(f) =

∫

f(g)r0(g)dg
(g ∈ GL(2,A)) the convolution operator; dg = ⊗vdgv is a Haar measure. Here
α is a fixed idèle of degree 1, whose components are almost all equal to 1.
A cusp form is a function φ : GL(2, F )\GL(2,A)→ E (E is a fixed algebraically
closed subfield of C) which is invariant on the right by some open compact
subgroup of GL(2,A), and

∫

N(F )\N(A)
φ(nx)dn = 0 for all x in GL(2,A). Here

N denotes the unipotent upper triangular subgroup of GL(2). We also write A
for the diagonal subgroup, and A′ = A−Z where Z is the center of GL(2). By
a well known result of G. Harder, when F is a function field (but not a number
field) a cusp form is compactly supported modulo Z(A).

Theorem 1.1. For any f ∈ C∞
c (GL(2,A)) we have tr r0(f) =

∑

1≤i≤8 Si(f).
The terms are:

S1(f) =
∣

∣αZ ·GL(2, F )\GL(2,A)
∣

∣

∑

γ∈αZ·F×

f(γ).

S2(f) =
∑

F2

S2,F2(f),

S2,F2(f) = |AutF F2|−1
∑

γ∈αZ(F2−F )

∫

GL(2,A)/αZ·F×

2

f(xγx−1)dx.

Here F2 ranges over the set of isomorphism classes of quadratic extensions of

the field F . For each F2 we fix an embedding F2 →֒ M(2, F ) into the ring of

2× 2 matrices over F .

S3(f) =
∑

γ∈αZ·A′(F )

∫

A(A)\GL(2,A)

f(x−1γx)v(x)dx.

Any x ∈ GL(2,A) can be written in the form ank, a ∈ A(A), k ∈ GL(2, OA),
n = ( 1 b0 1 ), b is determined uniquely by x up to b 7→ ub+ w, u ∈ O×

A
, w ∈ OA.

Put v(x) =
∑

v logq(max(1, |bv|v)).

S4(f) =
∑

a∈F×αZ

θ̃a,f (1), θ̃a,f (t) =
1

2
(θa,f (t) + θa,f (t

−1)),

θa,f (t) =

∫

F×αZN(F )\GL(2,A)

f
(

x−1 ( a a0 a )x
)

tht
+(x)dx,
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ht+ : GL(2,A)→ Z is defined by ht+ (( a c0 b ) k) = deg a− deg b (k ∈ GL(2, OA);
a, b ∈ A×; c ∈ A).

S5(f) =
−1
4πi

∑

µ1,µ2

∮

|z|=1

tr I(µ1νz, µ2νz−1 , f)
m′(µ1/µ2, z)

m(µ1/µ2, z)
2zdz.

Here m(µ, z) = L(µ, z)/L(µ, z/q). The µ1, µ2 range over the set of characters

of A×/F× · αZ, νz(x) = zdeg(x). Also I(µ1, µ2) is the space of right locally

constant functions φ on GL(2,A) with

φ (( a c0 b )x) = |a/b|1/2µ1(a)µ2(b)φ(x) (x ∈ GL(2,A); a, b ∈ A×; c ∈ A).

It is a GL(2,A)-module by right translation, and tr I(µ1νz , µ2νz−1 , f) is the

trace of the indicated convolution operator.

S6(f) =
−1
4πi

∑

µ1,µ2

∮

|z|=1

tr[I(µ1νz , µ2νz−1 , f) ·R(µ1, µ2, z)
−1 d

dz
R(µ1, µ2, z)]dz.

Notations are as in S5(f), and R(µ1, µ2, z) : I(µ1νz , µ2νz−1)→ I(µ2νz−1 , µ1νz)
is an operator, rational in z, defined as a product ⊗vR(µ1v, µ2v, zv), zv =
zdeg(v). The product is well defined as the local operator maps the function in

the source whose restriction to GL(2, Ov) is 1 to such function in the target.

Further, R(µ1v, µ2v, z) is defined to be

[L(µ1v/µ2v, z
2/qv)/L(µ1v/µ2v, z

2)]M(µ1v, µ2v, z).

The operator M(µ1v, µ2v, z) =M(µ1vνz, µ2vνz−1) is defined first by an integral

φ 7→
∫

φ
((

0 −1
1 0

) (

1 y
0 1

)

x
)

dy if |(µ1v/µ2v)(πππv)z
2| < 1,

then by analytic continuation, as it is a rational function in z. The operators

I(µ1νz, µ2νz−1 , f) and R(µ1, µ2, z) are considered as operators on

I0(µ1, µ2) = {φ ∈ C∞(GL(2, OA)); φ ((
a c
0 b )x) = µ1(a)µ2(b)φ(x);

x ∈ GL(2, OA), a, b ∈ O×
A
; c ∈ OA}.

S7(f) =
1

4

∑

µ

tr I(µ, µ, f), S8(f) = −
∑

µ

∫

GL(2,A)

f(x)µ(det x)dx.

Both sums range over all characters µ of A×/F× · α2Z. The sum of S8 is over

all automorphic one dimensional representations (µ◦det) of αZ\GL(2,A). The
integral there represents the trace of the convolution operator associated with f .

The terms S1(f) and S2(f) are finite by Proposition 3.5, 3.6, 3.9. The argument
used in the proof of Proposition 3.9 shows that for any γ ∈ αZ(A(F ) − Z(F ))
the function x 7→ f(x−1γx) on A(A)\GL(2,A) has compact support, hence the
integral in S3(f) converges.
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By Proposition 3.11 the function θa,f (t) is rational and may have at t = 1 a

pole of order at most 1, for each a ∈ A×. Hence θ̃a,f (t) is regular at t = 1.
From Proposition 3.5 it follows that the sums in S3(f) and S4(f) are finite, so
these terms are well defined.
For any f = ⊗fv in C∞

c (GL(2,A)), the operator I(µ1, µ2, f) is zero unless µi
are unramified at each v where fv is GL(2, Ov) biinvariant. This implies that
the sums in Si(f) (5 ≤ i ≤ 8) are finite, for a given f . To see that S5(f) and
S6(f) are well defined, note that the rational functions m(µ, t), R(µ1, µ2, t),
R(µ1, µ2, t)

−1 are regular on |t| = 1 for all characters µ, µ1, µ2 of A×/F× ·αZ.
For m(µ, t) this follows from Proposition 4.11, for R and R−1 from Corollary
4.28.
The distributions [linear forms on C∞

c (GL(2,A))] f 7→ tr r0(f), Si(f) (i =
1, 2, 5, 7, 8) are invariant, namely take the same value at f and fh(x) =
f(h−1xh), h ∈ GL(2,A). For i = 3, 4, 6 we have Si(f

h) = Si(f) if h ∈
GL(2, OA), but Si is not invariant.
If f ∈ C∞

c (GL(2,A)) takes values in Q then tr r0(f) ∈ Q, since the representa-
tion r0 is defined over Q. For i = 1, 2, 3, 4, 8 it is clear that Si(f) ∈ Q. For i = 7
the integrand contains the factor µ(ab)|a/b|1/2 which involves

√
q. However the

sum includes with µ also µε, ε(α) = −1, and so the sum of the terms indexed
by µ and µε can be written as an integral over the domain where |a/b| is in
q2Z.
To see that S5(f) is rational, we put a(µ1, µ2) =

1
2πi

∮

|t|=1
f(µ1, µ2, t)dt where

f(µ1, µ2, t) = tr I(µ1νt, µ2νt−1 , f) · d
dt

lnm(µ1/µ2, t
2),

and claim that for any σ ∈ Gal(Q/Q) one has σ(a(µ1, µ2)) = a(σµ1,
σµ2). Note

that Gal(Q/Q) acts on the group of characters on A×/F× · αZ as they are all
Q-valued. Now a(µ1, µ2) is the sum of the residues of f(µ1, µ2, t) at the points
of the unit disc. We have that σ(f(µ1, µ2, t)) = f(σµ1,

σµ2, ε(σ) · σt) with
ε(σ) = σ(

√
q)/
√
q. However, if f(µ1, µ2, t) has a pole at t = t0 and |t0| < 1,

then by Proposition 4.11, |σ(t0)| < 1 for any σ ∈ Gal(Q/Q). Hence S5(f) ∈ Q.
To see that S6(f) ∈ Q one proceeds similarly, using the results of Corollary
4.28 on the poles of R(µ1, µ2, t) and R(µ1, µ2, t)

−1.

2 Locally free sheaves of OX-modules

2.1 Stable bundles

Let X be a smooth geometrically connected projective curve over Fq (we take
minimal q). Denote by OX the structure sheaf of X . Denote by Bunn the set of
isomorphism classes of rank n locally free sheaves ofOX -modules. By a (vector)
bundle we mean here simply a locally free sheaf. In particular, Bun1 = PicX .
The Picard group PicX of invertible, or rank 1, locally free sheaves L of OX -
modules, is naturally isomorphic to the group of classes D of (Weil) divisors
D =

∑

v nvv (nv ∈ Z, v ∈ |X |). Here |X | is the set of closed points of X ,
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and the divisors D, D′ lie in the same class (are linearly equivalent) if their
difference is the (principal) divisor (f) =

∑

v ordv(f)v where f is a nonzero
rational function on X and ordv(f) is the order of f at v ∈ |X | (ordv(f) > 0 if
v is a zero, ordv(f) < 0 if v is a pole, ordv(f) = 0 otherwise). If L,M ∈ PicX
correspond to the divisors D, D′ then L⊗M corresponds to D +D′.

There is a degree map deg on PicX : deg(
∑

v nvv) =
∑

v nv deg(v) defines
deg(L) = deg(D), where deg(v) = [kv : Fq]. Here kv is the residue field of the
function field F = Fq(X) of X over Fq at v; assume Fq is algebraically closed
in F . We write Fv for the completion of F at v,Ov for its ring of integers. The
cardinality of the residue field kv = Fqv at v is denoted by qv, thus qv = qdeg(v).
We also write deg(D) for deg(D), as the degree of a principal divisor is 0; recall
that D denotes the class of D.

Denote by χ(L) = dimFq H
0(X,L)− dimFq H

1(X,L) the Euler-Poincaré char-
acteristic of L ∈ PicX . Here Hi(X,L) are finite dimensional vector spaces
over Fq. Then χ(OX) = 1− g where g = dimFq H

1(X,OX) is named the genus
of X . The Riemann-Roch theorem asserts that χ(L) − deg(L) = χ(OX) is
independent of L ∈ PicX .

Define the degree of a locally free sheaf E of OX -modules of rank n to be
deg E = χ(E) − nχ(OX). The determinant of E is det E =

∧n E ∈ PicX . We
have deg E = deg det E . This gives an alternative definition of the degree. A
proof of this equality is as follows. If E is a line bundle, then there is nothing
to prove. In the general case, use the fact that both deg E and deg det E are
additive (if E ′ ⊂ E is a subbundle, then deg E = deg E ′+deg(E/E ′) and similarly
for deg det E), and that each vector bundle has a flag, Ei, such that Ei/Ei−1 are
line bundles.

The height of a rank two locally free sheaf E of OX -modules is the integer
ht(E) = maxL(2 degL− deg E), L ranges over all invertible subsheaves of E .

Proposition 2.1. We have −2g ≤ ht(E) <∞.

Proof. Let L be an invertible subsheaf of E . From the Riemann-Roch theorem
χ(L) = degL + 1 − g we obtain dimFq H

0(X,L) ≥ degL + 1 − g, whence
degL ≤ dimFq H

0(X,L) + g − 1 ≤ dimFq H
0(X, E) + g − 1, so ht(E) is finite.

Let L be an invertible subsheaf of E of maximal degree. LetM be an invertible
sheaf with degM = degL + 1. Then Hom(M, E) = 0. Also, by Riemann-
Roch for the rank 2 sheaf E , dimFq Hom(M, E) = dimFq H

0(X,M−1E) ≥
deg(M−1E) + 2 − 2g = deg E − 2 degM + 2 − 2g = deg E − 2 degL − 2g,
so 2 degL − deg E ≥ −2g.

A rank two locally free sheaf E of OX -modules is called stable if ht(E) < 0
and semistable if ht(E) ≤ 0. In general, the slope µ(E) of a locally free sheaf
E over an algebraic curve is defined to be deg E/ rk E , and E is called stable if
µ(F) < µ(E) for all proper nonzero subbundles F of E (semistable if ≤). A
locally free sheaf E of rank two is called almost stable if ht(E) < 2g − 1, and
very unstable if ht(E) ≥ 2g − 1. If g = 0, every E is very unstable.
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Remark 1. A very unstable vector bundle E of rank 2 splits into the direct
sum of two line bundles. We give here a relatively elementary treatment. An
extension can be found in the work of Harder and Narasimhan. If E is very
unstable, L is an invertible subsheaf of E of maximal degree, and M = E/L,
thenM is invertible and Ext(M,L) = H1(X,M−1L) is 0 since

degM−1L = degL− degM = 2degL − deg E = ht E ≥ 2g − 1.

Indeed, by Serre dualityH1(X,M−1L) = H0(X,L−1Mω) where ω denotes the
canonical bundle. But degL−1Mω ≤ 2g− 2− (2g− 1) < 0, and H0(X,F) = 0
for an invertible sheaf F with negative degree.

Proposition 2.2. The number of isomorphism classes of almost stable rank

two locally free sheaves E of OX-modules with a fixed degree is finite.

Proof. The height of an almost stable sheaf lies in [−2g, 2g − 2]. Hence it
suffices to show the finiteness for E with a fixed degree n and height h. Every
such sheaf lies in an exact sequence 0 → L → E → M → 0, where L and
M are invertible sheaves and 2 degL − deg E = h. Then degL = (n + h)/2,
degM = (n − h)/2. Since the degrees of L and M are fixed, there are only
finitely many possibilities for L andM (set of cardinality of the Fq-points on
the abelian variety Pic0(X)). With L andM fixed there are only finitely many
choices for E as Ext(L,M) is finite.

The group PicX acts on Bun2 : (L ∈ PicX, E ∈ Bun2) 7→ L ⊗ E . As

deg(L ⊗ E) = 2 deg(L) + deg(E),

the set of almost stable sheaves is invariant under this action. In a PicX-orbit
we may choose E to have deg(E) in {0, 1}. Hence we deduce

Corollary 2.3. The number of PicX-orbits on the set of isomorphism classes

of almost stable rank two locally free sheaves of OX-modules is finite.

2.2 Bundles and lattices

Let E be a rank n locally free sheaf of OX -modules. Denote by Eη the fiber
(= stalk) of E over the generic point η of X . Let E(v) be the stalk of E at the
closed point v ∈ |X |. Let O(v) be the local ring of X at v. Then Eη is an
n-dimensional vector space over F , and E(v) is an O(v)-lattice in Eη, namely a
rank n free O(v)-submodule of Eη.
A set M of O(v)-lattices M(v) in a finite dimensional vector space V over F , v
ranges over the set |X | of closed points in X , is called adelic if there exists a
basis {e1, . . . , en} in V such that M(v) = O(v)e1 + · · ·+O(v)en for almost all v
in |X |. “Almost all” means “with at most finitely many exceptions”. If M is
adelic then it is adelic with respect to any basis {e1, . . . , en} of V .
The set of stalks {E(v); v ∈ |X |} of a locally free sheaf E of OX -modules is
adelic. Conversely, an adelic set of lattices M = {M(v); v ∈ |X |} in a finite
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dimensional vector space V over F is the set of stalks of the locally free sheaf
E of OX -modules defined by

H0(U, E) = {s ∈ V ; ∀v ∈ U, s ∈M(v)}

for any open subset U of X . Obtained is an equivalence of the category of finite
rank locally free sheaves ofOX -modules, with the category of finite dimensional
vector spaces over F with adelic sets of O(v)-lattices.

Let Ov be the completion of O(v). The completion of F at v is denoted Fv.
Let V be a finite dimensional vector space over F . Put Vv = V ⊗F Fv. There
is a natural bijection between the set of O(v)-lattices in V , and Ov-lattices in
Vv: an O(v)-lattice M ⊂ V corresponds to the lattice M ⊗O(v)

Ov in Vv; an
Ov-lattice N ⊂ Vv corresponds to the O(v)-lattice N ∩ V .

The category C whose objects are finite dimensional F -vector spaces V with
adelic sets {Mv; v ∈ |X |} of Ov-lattices Mv in Vv is equivalent to the category
of finite rank locally free sheaves of OX -modules E , by E 7→ (Eη, {Ev}), where
Eη is the generic fiber of E and Ev is the completion of the stalk of E at the
closed point v ∈ |X |.
Let Rn be the set of isomorphism classes of pairs (E , i) where E is a rank n
locally free sheaf of OX -modules, and i is an isomorphism from the generic
fiber of E to Fn. The pairs (E , i) and (E ′, i′) are isomorphic if there is an
isomorphism E→̃E ′ which induces a commutative diagram when restricted to
the generic fiber with sides i and i′ and the identity Fn → Fn. The group
GL(n, F ) acts on Rn by g : (E , i) 7→ (E , g ◦ i). Then GL(n, F )\Rn = Bunn is
the set of isomorphism classes of rank n locally free sheaves of OX -modules.

The set Rn is the set of adelic collections of Ov-latticesMv ⊂ Fnv , v ∈ |X |. The
group GL(n, Fv) acts transitively on the set of Ov-lattices in F

n
v . The stabilizer

of the standard lattice Onv in Fnv is GL(n,Ov). Thus the set of Ov-lattices in
Fnv is GL(n, Fv)/GL(n,Ov), and Rn is GL(n,A)/GL(n,OA), where A is the
ring of adèles in F and OA =

∏

v∈|X|Ov. Thus

Bunn = GL(n, F )\GL(n,A)/GL(n,OA).

The elements of GL(n,A)/GL(n,OA) are called matrix divisors, and the ele-
ments of GL(n, F )\GL(n,A)/GL(n,OA) classes of matrix divisors. For n = 1,
the identification of GL(n, F )\GL(n,A)/GL(n,OA) with Bunn is the identifi-
cation of classes of divisors with invertible sheaves.

The group GL(n,A) can be identified with the set of triples

(E , iη : Eη ∼→ Fn, (iv : Ev ∼→ Onv )).

Given a rank n locally free sheaf E , an isomorphism iη : Eη ∼→ Fn, and for each

closed point v in |X | an isomorphism iv : Ev ∼→ Onv of the completion Ev of the
stalk E(v) at v with Onv , let us define the corresponding g = (gv) in GL(n,A).
Each gv has to be an automorphism Fnv → Fnv , with gv(O

n
v ) = Onv for almost
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all v. Construct gv as the composition iv ◦ i−1
η :

Fnv = Fn ⊗F Fv
iη
∼← Eη ⊗F Fv = EFv = Ev ⊗Ov Fv

iv
∼→ Onv ⊗Ov Fv = Fnv .

Note that since E is locally free, for almost all v the map gv = iv ◦ i−1
η takes

Onv ⊂ Fnv to Ev ⊂ Eη⊗FFv via i−1
η , and then to Onv via iv. To show that the map

{(E , iη, (iv))} → GL(n,A) is bijective one shows that GL(n,A) acts on the set
of triples, simply transitively. Viewing the trivial locally free sheaf as On

A
(space

of columns), g(E , iη, (iv)) is defined to be (gE , iη, (iv◦g−1
v )), where iv◦g−1

v maps
the stalk gvEv of gE at v to Onv . The set of pairs {(E , iη)} then corresponds to
GL(n,A)/GL(n,OA), the set of pairs {(E , (iv))} to GL(n, F )\GL(n,A), and
the set {E} to GL(n, F )\GL(n,A)/GL(n,OA).
To an idèle a = (πππ−nv

v uv; v ∈ |X |), where πππv denotes a generator of the maximal
ideal in the ring Ov of integers in Fv, uv ∈ O×

v and nv ∈ Z, we associate the
divisor D =

∑

v nvv, and the degree

deg(a) = deg(D) =
∑

v

nv deg(v), deg(v) = [Fv : Fq],

where Fv is the residue field of F at v, a finite field of qv = qdeg(v) elements.
For g ∈ GL(2,A) write deg g for deg det g. Recall that OA =

∏

v Ov (v ∈ |X |).
For t ∈ C× we write

νt(a) = t− deg(a) =
∏

v

t−nv
v

where tv = tdeg(v). Then νq−1 (a) =
∏

v q
nv
v = |a| is equal to ν(a) = qdeg(a).

Also νt(πππv) = tv, νq−1(πππv) = |πππv|.
Let L andM be invertible sheaves. Fix isomorphisms iL, iM of their generic
fibers with F . Each of (L, iL) and (M, iM) defines an element of A×/O×

A
,

namely a divisor on X . Choose representatives a, b in A×, for example
∑

v nvv
is represented by (πππ−nv

v ). Given an exact sequence 0 → L → E → M → 0 of
locally free sheaves, choose an isomorphism ϕ between the generic fiber of E and
F 2 so that the induced exact sequence of generic fibers 0→ F → F 2 → F → 0
is standard

(

x 7→ ( x0 ) , (
x
y ) 7→ y

)

. The isomorphism ϕ is defined uniquely up
to left multiplication by an automorphism of F 2 of the form ( 1 t0 1 ), t ∈ F .
The pair (E , ϕ) determines an element of GL(2,A)/GL(2, OA), of the form
u = ( 1 z0 1 ) (

a 0
0 b ), with z in A. Since u is defined up to right multiplication by

an element of GL(2, O), z is uniquely defined up to addition of an element of
a
bOA. Replacing ϕ by ( 1 t0 1 )ϕ with t ∈ F replaces z by z + t. Thus we get a
bijection

Ext(M,L)→ A/(F +
a

b
OA).

This is an isomorphism of Fq-vector spaces.
In summary, if the invertible sheaves L and M correspond to idèles a and
b, then Ext(M,L) ≃ A/(F + a

bOA), and the map Ext(M,L) → Bun2 which
associates to the exact sequence 0 → L → E → M → 0 its middle term,
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coincides with the map A/(F + a
bOA) ≃ H1(X,M−1L), see [S97], II. 5. The

isomorphism A/(F + a
bOA)

∼→ Ext(M,L) is H1(X,M−1L)→̃Ext(M,L).

2.3 The space GL(2, F )\GL(2,A)

Proposition 2.4. Given a ∈ A×, deg a ≥ 2g − 1, then aOA + F = A.

Proof. If L is an invertible sheaf on X associated with a, then A/(F + aOA) =
H1(X,L). By Serre dualityH1(X,L) ≃ H0(X,L−1ω), where ω is the canonical
bundle of degree 2g − 2. Then deg(L−1ω) ≤ (2g − 2) − (2g − 1) = −1 < 0,
hence H0(X,L−1ω) = {0}.

Define a function

ht+ : GL(2,A)→ Z by ht+ (( a c0 b ) k) = deg a− deg b

for all a, b ∈ A×, c ∈ A, k ∈ GL(2, OA). It is clearly a well defined function on
B(F )\GL(2,A). For x ∈ GL(2,A), put

ht(x) = max
γ∈GL(2,F )

ht+(γx).

On GL(2, F )\GL(2,A) it is well defined.

Proposition 2.5. For any x ∈ GL(2,A) we have −2g ≤ ht(x) <∞.

Proof. This follows from Proposition 2.1 as if E is a rank two locally free sheaf
of OX -modules associated to the image of x in GL(2, F )\GL(2,A)/GL(2, OA),
then ht(x) = ht(E).

Put HB = {x ∈ B(F )\GL(2,A); ht+(x) > 0} and

H = {x ∈ GL(2, F )\GL(2,A); ht(x) > 0}.

Proposition 2.6. (1) The restriction p to HB of the natural projection p′ :
B(F )\GL(2,A)→ GL(2, F )\GL(2,A) is a homeomorphism HB → H.

(2) The set {x ∈ GL(2, F )\GL(2,A); ht(x) ≤ n} is compact modulo the center

Z(A) of GL(2,A) for every integer n.

Proof. (1) The map p is clearly onto. To show that p is injective it suffices to
show for any x in GL(2,A), γ ∈ GL(2, F ), that ht+(x) > 0 and ht+(γx) > 0
implies γ ∈ B(F ). This is a typical application of the Harder-Narasimhan
filtration. In simple, explicit terms, this follows from

Lemma 2.7. If g ∈ GL(2, F )−B(F ) then ht+(x) + ht+(gx) ≤ 0.

Proof. Write g as g1wg2 with g1, g2 in B(F ), w = ( 0 1
1 0 ). Put x′ = g2x.

Then ht+(x) = ht+(x′), ht+(gx) = ht+(wx′). Thus we need to show that
ht+(x′) + ht+(wx′) ≤ 0. Suppose x′ =

( a1 c1
0 b1

)

k1, wx
′ =

( a2 c2
0 b2

)

k2 with
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k1, k2 ∈ GL(2, OA). Put k2k
−1
1 =

(

α β
γ δ

)

. Then
( a2 c2

0 b2

)

(

α β
γ δ

)

= w
( a1 c1

0 b1

)

=
(

0 b1
a1 c1

)

. Hence b2γ = a1. Thus deg a1 ≤ deg b2 (as deg γ ≤ 0, since γ ∈ OA).

But deg a2b2 = deg a1b1. Hence deg a2 ≤ deg b1. Then ht+(x′) + ht+(wx′) =
deg a1 − deg b1 + deg a2 − deg b2 ≤ 0.

Now the natural projection p′ : B(F )\GL(2,A)→ GL(2, F )\GL(2,A) is open
and HB is an open subset of B(F )\GL(2,A). Hence the bijection p = p′|HB :
HB → H is open. Since it is also continuous, p is a homeomorphism.

(2) The image of the set S = {x ∈ B(F )\GL(2,A);−2g ≤ ht+(x) ≤ n} in
GL(2, F )\GL(2,A) under p′ contains the set {x ∈ GL(2, F )\GL(2,A); ht(x) ≤
n}. So it suffices to show that S is compact mod Z(A). Choose a compact C
in A× with

CF× = {t ∈ A×;−2g ≤ deg t ≤ n}.
Choose an idèle d with deg d ≥ 2g − 1. Put

Y =
{

( 1 c0 1 ) (
a 0
0 b ) k; k ∈ GL(2, OA), a, b ∈ A×,

a

b
∈ C, c ∈ dOA

}

.

Lemma 2.8. The map Y → S is surjective.

Proof. Let x ∈ GL(2,A),−2g ≤ ht+(x) ≤ n. We need to show that x can
be written as hy with y ∈ Y and h ∈ B(F ). Write x as ( r s0 t )K with k ∈
GL(2, OA), r, t ∈ A×, s ∈ A. It remains to show that ( r s0 t ) can be expressed as
( α γ
0 β

)

( 1 c0 1 ) (
a 0
0 b ) with a, b ∈ A×, ab ∈ C, c ∈ dOA, α, β ∈ F×, γ ∈ F . Thus we

need to show the existence of a, b, c, α, β, γ such that
(*) aα = r, βb = t, a, b ∈ A×, α, β ∈ F×, a

b ∈ C,
(**) b(αc+ γ) = s, c ∈ dOA, γ ∈ F.
By definition of x, deg r − deg t lies in [−2g, n], so the existence of a, b, α, β
satisfying (*) follows from the definition of C. The existence of c ∈ dOA and
γ ∈ F satisfying αc+ γ = s/b follows from: cOA +F = A if deg c ≥ 2g− 1.

Since Y is compact mod Z(A), so is S, and (2) follows. �

In summary, the homogeneous space GL(2, F )\GL(2,A) is the union of the
compact mod Z(A) set {x ∈ GL(2, F )\GL(2,A); ht(x) ≤ 0}, and the set
H = {x ∈ GL(2, F )\GL(2,A); ht(x) > 0}, whose structure is simpler. The set
HB, hence also the sets H and GL(2, F )\GL(2,A), are noncompact modulo
Z(A). Indeed the function ht+ takes arbitrary large values.
The image of H in Bun2 = GL(2, F )\GL(2,A)/GL(2, OA) is the set of non-
semistable locally free sheaves.
The set GL(2, F )\GL(2,A)/GL(2, OA) is analogous to the set

SL(2,Z)\ SL(2,R)/ SO(2) = SL(2,Z)\h,

where h = {z ∈ C; Im z > 0}, the upper half plane, is isomorphic to
SL(2,R)/ SO(2), by

g 7→ g(i) = (ai + b)/(ci+ d).
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The set B(F )\GL(2,A)/GL(2, OA) is analogous to N\h where N is the group
of transformations z 7→ z+n (n ∈ Z) on h. The function ht+ is analogous to the
function z 7→ ln Im z on N\h. The statement −2g ≤ ht(x) <∞ corresponds to
the statement that the natural map from the half plane {z ∈ C; Im z ≥

√
3/2}

to SL(2,Z)\h is onto. The statement that p : HB → H is homeomorphism
corresponds to the statement that the map N\{z ∈ C; Im z > 1} → SL(2,Z)\h
is injective, and the compactness of {x ∈ GL(2, F )\GL(2,A); ht(x) ≤ n}
corresponds to the statement that the complement in SL(2,Z)\h of the image
of the half plane {z ∈ C; Im z > h} is compact.

2.4 ℓ-groups

An ℓ-space is a Hausdorff topological space such that each of its points has a
fundamental system of open compact neighborhoods.
We shall consider on ℓ-spaces only measures for which every open compact
subset is measurable, and its volume is a rational number. If dx is such a
measure on an ℓ-space Y , and f is a locally constant compactly supported
function on Y with values in a field E of characteristic zero, then

∫

Y f(x)dx
reduces to a finite sum, and it is well defined.
On topological groups we consider only left- or right-invariant measures.
An ℓ-group is a topological group with an ℓ-space structure.

Proposition 2.9. Let G be an ℓ-group. Then (1) there exists a fundamen-

tal system of neighborhoods of the identity in G consisting of open compact

subgroups;
(2) there exists a left Haar measure on G such that the volume of each open

compact set is a rational number.

Proof. (1) Let U be a neighborhood of the identity in G. We shall show that U
contains an open compact subgroup. Since G is ℓ-space, we may assume that U
is open and compact. Put V = {x ∈ G;xU ⊂ U}. Then V = ∩u∈UUu−1, hence
it is compact. Now for each v in V and u in U , by continuity of multiplication
m there exists an open subsetWu containing v, and Uu in U containing u, such
that m(Wu, Uu) ⊂ U . As U is compact and U = ∪u∈UUu, there are finitely
many u1, . . . , un in U with U = ∪1≤i≤nUui . Then W = ∩1≤i≤nWui is open
in V and it contains v. Thus V is an open neighborhood of the identity, and
V · V = V . Then V ∩ V −1 is an open compact subgroup in U .
(2) Fix some left Haar measure on G. Denote the volume of an open compact
subgroup U by |U |. For two such groups, U1 and U2 we have

|U1|
|U2|

=
|U1|

|U1 ∩ U2|
/
|U2|

|U1 ∩ U2|
=

[U1 : U1 ∩ U2]

[U2 : U1 ∩ U2]
∈ Q.

Consequently the Haar measure on G can be chosen to assign rational volume
to every open compact subgroup of G. But then the volume of every open
compact subset K in G is rational, since as in (1) for such K there is a compact
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open subgroup U of G with KU ⊂ K, and then |K| = [K : U ]|U | is rational,
where K is a disjoint union of [K : U ] translates of U .

Fix an ℓ-groupG and a left Haar measure onG such that the volume of any open
compact set is a rational number. Fix a field E of characteristic zero. The E-
vector space HG of compactly supported locally constant functions f : G→ E
is an algebra under the convolultion (f1 ∗ f2)(g) =

∫

G f1(h)f2(h
−1g)dh. For an

open compact subgroup U in G the set of U -biinvariant functions in HG is a
subalgebra HU

G , called the Hecke algebra of (G,U). Although HG has no unit
(unless G is discrete, when the δ-function is in HG), H

U
G does: it is δU : G→ Q,

the characteristic function of U divided by |U |.
A representation π of the group G on a vector space V is called smooth if
the stabilizer of any vector of V is open, and admissible if it is smooth and
for any open subgroup U of G the space V U of U -fixed vectors in V is finite
dimensional.
If π is a smooth representation of an ℓ-group G on a vector space V over E, for
each f ∈ HG define the operator π(f) : V → V by π(f)v =

∫

G f(g)π(g)vdg.
This integral reduces to a finite sum since π is smooth, and π(f1 ∗ f2) =
π(f1) ◦ π(f2). Then V is naturally an HG-module, and for any open compact
subgroup U of G, the space V U is a unital module over HU

G .

Proposition 2.10. (1) A smooth G-module V 6= {0} is irreducible iff for

every open compact subgroup U of G either V U = 0 or V U is an irreducible

HU
G -module.

(2) Given an open compact subgroup U of G and an irreducible unital HU
G -

module M , there exists a smooth irreducible G-module V such that V U is iso-

morphic to M as an HU
G -module, and V is determined by this property up to

isomorphism.

For a proof see [BZ76], 2.10. See [BZ76], 2.11 for
Schur’s Lemma. Let π be an irreducible admissible representation of G in a

vector space V over an algebraically closed field E. Then any nonzero G-module

morphism (intertwining operator) V → V is a scalar.

Proposition 2.11. Let π be an irreducible admissible representation of G in

a vector space V over an algebraically closed field E. For any field extension

E′ of E, the representation of G in V ⊗E E′ is also irreducible.

Proof. By Proposition 2.10, the statement reduces to a similar statement for
finite dimensional algebras, since π is assumed to be admissible.

Let E be a subfield of C invariant with respect to complex conjugation. A
representation of G on a vector space V over E is unitary if there is a G-
invariant scalar product on V (thus a bilinear function (·, ·) : V × V → E with
(v, w) = (w, v) and (v, v) = 0 iff v = 0, and (gv, gw) = (v, w) for all v, w in V
and g in G).
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Note that we do not require V to be complete with respect to the scalar product,
even in the case E = C. If E is algebraically closed and the representation of
G in E is irreducible and admissible, then the G-invariant inner product on V
is unique up to a scalar multiple, if it exists.

Proposition 2.12. Let π be an admissible unitary representation of G in the

E-space V . Fix a G-invariant scalar product on V . Let L be an invariant

subspace of V , and L⊥ its orthogonal complement. Then V = L⊕ L⊥.

Proof. Given x ∈ V , we need to express it as x1 + x2 with x1 ∈ L and x2 ∈
L⊥. Since π is smooth there exists a compact open subgroup U of G with
x ∈ V U . Since π is admissible, dimE V

U is finite. Thus x = x1 + x2 for
some x1 ∈ LU , x2 ∈ V U , x2 orthogonal to LU . It remains to show that x2 is
orthogonal to the entire space L. Let δU be the unit in HU

G . Then π(δU ) is the
orthogonal projector V 7→ V U . Hence for every y in L, (x2, y) = (π(δU )x2, y) =
(x2, π(δU )y) = 0 since π(δU )y ∈ LU .

It follows that every admissible unitary representation of G is a direct sum
of irreducible representations. This sum is not necessarily finite. However,
given an open compact subgroup U of G, only finitely many summands contain
nonzero U -invariant vectors.

2.5 Automorphic forms

Let E be an algebraically closed field of characteristic zero. An automorphic

form is a smooth function φ : GL(2, F )\GL(2,A) → E, where by smooth we
mean that there is an open subgroup Uφ of GL(2,A) such that φ(xu) = φ(x)
for all u ∈ Uφ and x ∈ GL(2,A). A cusp form is an automorphic form φ with
∫

A/F φ ((
1 z
0 1 )x) dz = 0 for all x ∈ GL(2,A).

Since φ is right locally constant (= smooth) and A/F is compact, the integral
here is well defined and reduces to a finite sum.
Let AE0 be the space of cusp forms φ : GL(2, F )\GL(2,A) → E. The group
GL(2,A) acts on AE0 by right translation: (r(h)φ)(g) = φ(gh). By a character

of an ℓ-group G with values in E we mean a locally constant homomorphism
χ : G→ E×. If E ⊂ C such χ is called a unitary character if |χ(g)| = 1 for all
g in G.
Denote by AE0 (χ) the space of φ ∈ AE0 with φ(ax) = χ(a)φ(x), a ∈ A× (identi-
fied with the center of GL(2,A)), x ∈ GL(2, F )\GL(2,A). The space AE0 (χ) is
invariant under the GL(2,A)-action.
Let π be an irreducible representation of GL(2,A) over E. By Schur’s lemma,
there is a character χ : A× → E× such that for every a in A×, π(a) is multipli-
cation by χ(a). This χ is called the central character of π.
If V ⊂ AE0 is an irreducible admissible representation π of GL(2,A) and χ is
the central character of V , then V ⊂ AE0 (χ). Since the center of GL(2, F ) acts
trivially on AE0 , χ is trivial on F×. Thus every irreducible admissible π ⊂ AE0
lies in AE0 (χ), where χ is the central character of π, which is a character of
A×/F×. The following is known also e.g. for GL(n).

Documenta Mathematica 19 (2014) 1–62



16 Yuval Z. Flicker

Proposition 2.13. Fix an open subgroup U of GL(2,A). There exists a com-

pact mod Z(A) subset K of GL(2, F )\GL(2,A) such that the support of any

U -invariant cusp form is contained in K.

Proof. We first show that there is an integer n such that given z ∈ A and
x ∈ GL(2,A) with ht+(x) ≥ n, there exist u ∈ U and β ∈ F with ( 1 z

0 1 )x =
(

1 β
0 1

)

xu.
To see this, fix an effective divisor −D =

∑

v∈|X| nvv on X , put d = (πππnv
v )

and let JD = dOA be the corresponding ideal in OA. The groups Γ(D) = {γ ∈
GL(2, OA); γ ≡ I mod JD} make a basis of neighborhoods of the identity in
GL(2,A). Thus we may assume in this proof that U = Γ(D). In this case
we shall show that n = 2g − 1 − deg(d). Indeed, fix z ∈ A and x = ( a c0 b ) k
with k ∈ GL(2, OA) and ht+(x) = deg a − deg b ≥ 2g − 1 − deg(d) (note:
deg(d) = − degD =

∑

v nv deg v). Then ad
b OA + F = A and z = ad

b t + β
for some β ∈ F and t ∈ OA. Put u = k−1 ( 1 td0 1 ) k. Then u ∈ Γ(D) and
( 1 z0 1 ) x =

(

1 β
0 1

)

xu.
We claim the proposition holds with K = {x ∈ GL(2, F )\GL(2,A); ht(x) <
n}. This K is compact modulo Z(A). Let φ be a U -invariant cusp form,
x ∈ GL(2,A), ht(x) ≥ n. We shall show that φ(x) = 0. Replacing x by
γx for suitable γ ∈ GL(2, F ), we assume that ht+(x) ≥ n. By our choice of
n, φ (( 1 z0 1 ) x) = φ(x) for all z in A. Since φ is a cusp form, φ(x) = 0.

Corollary 2.14. The representation of GL(2,A) in AE0 (χ) is admissible.

Proposition 2.15. Let E′ be an extension of E, and χ : A×/F× → E× a

character. Then AE
′

0 (χ) = AE0 (χ)⊗E E′.

Proof. The space AE0 (χ) ⊗E E′ consists of the functions φ in AE
′

0 (χ) whose
values span a finite dimensional space over E, since φ ∈ AE0 (χ) takes finite
number of values times the set Γ of values of χ. But every φ in AE

′

0 (χ) has this
property, since the set of its values lies in finitely many cosets of Γ.

Given a representation π of GL(2,A) over E and a character ω : A× → E×,
write ωπ or πω or ω⊗π or π⊗ω for the representation (πω)(x) = ω(detx)π(x)
in the space of π.

Proposition 2.16. For any characters χ, ω : A×/F× → E×, we have

AE0 (χ)⊗ ω = AE0 (χω
2).

Proof. We need to construct an invertible linear map L : AE0 (χ) → AE0 (χω
2)

such that for every φ ∈ AE0 (χ) and h ∈ GL(2,A) we have r(h)L(φ) =
ω(deth)L(r(h)φ), where (r(h)φ)(x) = φ(xh).
Such L is (Lφ)(x) = φ(x)ω(det x).

Proposition 2.17. Given a character χ : A×/F× → E× there exists a char-

acter ω : A×/F× → E× such that χ(x)ω(x)2 is a root of unity for every x in

A×/F×.
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Proof. Fix α ∈ A×/F× with degα = 1. Such α exists since in the finite field
extension F/Fq(t), where t ∈ F is transcendental over Fq, there are always
primes which split completely. Fix c in the algebraically closed field E with
c2 = χ(α). Define ω : A×/F× → E× by ω(x) = c− deg(x), put χ1(x) =
χ(x)ω2(x), put αZ = {αn;n ∈ Z}. Then χ1 is a character of the profinite
group A×/F× · αZ, hence the values of χ1 are roots of 1.

Proposition 2.18. Let E be a subfield of C invariant under complex conjuga-

tion, χ an E×-valued unitary character of A×/F×. Then the representation of

GL(2,A) in AE0 (χ) is unitary.

Proof. The function x 7→ φ1(x)φ2(x) on GL(2, F )\GL(2,A), where φ1,
φ2 ∈ AE0 (χ), is invariant under Z(A) and is compactly supported as a
function on PGL(2, F )\PGL(2,A). Let dx be an invariant measure on
PGL(2, F )\PGL(2,A). It exists since PGL(2, F ) is a discrete subgroup of
PGL(2,A), a group with a two-sided invariant measure. Then

(φ1, φ2) =

∫

φ1(x)φ2(x)dx (x ∈ PGL(2, F )\PGL(2,A))

is an invariant scalar product on AE0 (χ).

Corollary 2.19. The representation of GL(2,A) in AE0 (χ) is a direct sum of

irreducible subrepresentations.

Note that we may assume that all values of χ are roots of unity, and that
E = Q.
The multiplicity one theorem asserts that in AE0 (χ) any irreducible representa-
tion of GL(2,A) occurs with multiplicity one.
An irreducible representation of GL(2,A) over an algebraically closed field E
is called cuspidal if it is isomorphic to a subrepresentation of AE0 .

2.6 Factorizability

Irreducible admissible representations of GL(2,A) are factorizable, as we pro-
ceed to show. Let E denote an algebraically closed subfield of C. An irre-
ducible representation of GL(2, Fv) in an E-space V is unramified if V contains
a nonzero GL(2, Ov)-invariant vector.

Proposition 2.20. The space of GL(2, Ov)-invariant vectors V
GL(2,Ov) in an

unramified representation (π, V ) of GL(2, Fv) is one dimensional.

Proof. Denote by Hv = Cc(GL(2, Ov)\GL(2, Fv)/GL(2, Ov)) the Hecke con-
volution algebra of compactly supported GL(2, Ov)-biinvariant E-valued func-
tions on GL(2, Fv). We claim it is a commutative algebra. Indeed, for any
f ∈ Hv, the function

tf(x) = f(tx), where tx is the transpose of x, is also inHv.
Since t(xy) = tytx, we have t(f1 ∗ f2) = tf2 ∗ tf1 for all f1, f2 ∈ Hv. By Cartan
decomposition every GL(2, Ov)-double coset in GL(2, Fv) contains a diagonal
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matrix. Hence tf = f for all f ∈ Hv, and f1∗f2 = t(f1∗f2) = tf2∗ tf1 = f2∗f1
for all f1, f2 ∈ Hv. If V is unramified, V GL(2,Ov) is a nonzero irreducible Hv-
module. But Hv is commutative, so dimE V

GL(2,Ov) is 1.

Given an irreducible admissible representation πv of GL(2, Fv) in a space Vv
for every closed point v ∈ |X | such that πv is unramified for all v ∈ S, S ⊂ |X |
finite, construct a representation π = ⊗πv of GL(2,A) as follows. For each

v ∈ |X | − S choose a nonzero vector ξ0v ∈ V
GL(2,Ov)
v . For any finite set S′ ⊃ S

of closed points of X put VS′ = ⊗v∈S′Vv. If S′′ ⊃ S′ ⊃ S, define an inclusion
VS′ →֒ VS′′ by x 7→ (⊗v∈S′′−S′ξ0v) ⊗ x. Put V = lim

→

S′⊃S

VS′ . It is the span of

the vectors ⊗v∈|X|ξv, ξv = ξ0v for almost all v, and ξv ∈ Vv for all v ∈ |X |.
Then V is a GL(2,A)-module in a natural way; denote by π the corresponding
representation of GL(2,A). The vectors ξ0v are determined uniquely up to a
scalar multiple, hence π is uniquely determined by the πv for all v ∈ |X |.
Reducing to irreducible finite dimensional representations of tensor products
of algebras, we have

Proposition 2.21. Given an irreducible admissible representation πv of

GL(2, Fv) for every v in |X | which is unramified for almost all v, π = ⊗vπv is

an irreducible admissible representation of GL(2,A). Every irreducible admis-

sible representation π of GL(2,A) equals ⊗vπv for some irreducible admissible

representations πv of GL(2, Fv) which are almost all unramified. The represen-

tations πv are determined by π uniquely up to isomorphism.

3 Looking for a trace formula

3.1 Trace formula in the compact case

Let X be an ℓ-space. Denote by C∞(X) the space of E-valued locally constant
(= smooth) functions on X . Here E is a fixed algebraically closed subfield of C.
Let C∞

c (X) be the space of smooth compactly supported E-valued functions on
X . Let r be an admissible representation of an ℓ-group G in an E-space V . Fix
a Haar measure dx on G. Given f ∈ C∞

c (G), define r(f) =
∫

G f(x)r(x)dx, an
endomorphism of V . Since f is C∞, that is smooth, it is right invariant under
an open subgroup U of G. Then Im r(f) ⊂ V U , so Im r(f) is finite dimensional,
and the trace tr r(f) is well defined. Let r be now the representation of G on
C∞(Γ\G) by right translation, where Γ is a discrete cocompact subgroup of G.
Since r is admissible, tr r(f) is defined.

Proposition 3.1. Let G be an ℓ-group. Let Γ be a discrete cocompact sugroup

of G. Then G has a two sided invariant measure and Γ\G has a G-invariant
measure.

Proof. Since (see [BZ76]) Γ\G admits a measure which when translated by x
in G is multiplied by ∆(x), where ∆ is the modulus of G, we have |Γ\G| =
∆(x)|Γ\G|, thus ∆ = 1.
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Proposition 3.2. Let X be an ℓ-space, dx a measure on X, K ∈ C∞
c (X×X).

Define a linear endomorphism A of C∞(X) by (Aφ)(y) =
∫

X K(x, y)φ(x)dx.
Then the image of A is finite dimensional and trA =

∫

X
K(x, x)dx.

Proof. We may assume that K(x, y) is of the form ϕ(x)ψ(y), as such functions
span C∞

c (X ×X). In this case the claim is clear.

Proposition 3.3. Let G be an ℓ-group, Γ a discrete cocompact subgroup, r the

representation of G in C∞(Γ\G) by right translation, dx a Haar measure on

G, f ∈ C∞
c (G), S a set of representatives of the conjugacy classes in Γ, ZΓ(γ)

the centralizer of γ in Γ. Then tr r(f) =
∑

γ∈S

∫

G/ZΓ(γ)
f(xγx−1)dx.

Proof. We first show that for each γ ∈ Γ the function x 7→ f(xγx−1) on
G/ZΓ(γ) is compactly supported, and that there are at most finitely many
γ ∈ S for which x 7→ f(xγx−1) is not identically zero. For this, fix a compact
subset K in G with KΓ = G. Given x ∈ G there are k ∈ K, δ ∈ Γ, with
x = kδ. Fix γ ∈ Γ. If f(xγx−1) 6= 0 then kδγδ−1k−1 lies in suppf , thus
δγδ−1 ∈ Kf = K·suppf ·K. Since Kf is compact Kf ∩ Γ is finite, and there
are only finite number of possibilities for δγδ−1. Hence there are only a finite
number of possibilities δ1, . . . , δn for δ modulo ZΓ(γ). Then f(xγx−1) 6= 0
implies that x ∈ K ′ZΓ(γ), where K

′ = ∪1≤i≤nKδi is compact. If f(xγx−1) 6=
0, the conjugacy class of γ in Γ intersects the finite set Kf ∩Γ. The number of
such classes is finite. Thus the sum is finite and the integrals converge.
Now given φ in C∞(Γ\G), for any y in G we have

(r(f)φ)(y) =

∫

G

f(x)φ(yx)dx =

∫

G

f(y−1x)φ(x)dx =

∫

Γ\G

Kf(x, y)φ(x)dx

where Kf (x, y) =
∑

γ∈Γ f(y
−1γx). Then

tr r(f) =

∫

Γ\G

Kf (x, x)dx =

∫

Γ\G

∑

γ∈Γ

f(x−1γx)dx

=

∫

Γ\G

∑

γ∈S

∑

δ∈ZΓ(γ)\Γ

f(x−1δ−1γδx)dx =
∑

γ∈S

∫

Γ\G

∑

δ∈ZΓ(γ)\Γ

f(x−1δ−1γδx)dx

=
∑

γ∈S

∫

ZΓ(γ)\G

f(x−1γx)dx.

3.2 Case of GL(2), oversimplified

Let now AE0 denote the space of E-valued cusp forms on GL(2, F )\GL(2,A).
The right-shifts representation of GL(2,A) on AE0 is not admissible since the
center Z(A) of GL(2,A) is not compact. Fix a degree-one idèle α and put
αZ = {αn;n ∈ Z}. It is a cyclic subgroup of A×, and we view A× as the
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center of GL(2,A). Denote by AE0,α the space of cusp forms in AE0 invariant

under α, and by r0 the representation of GL(2,A) on AE0,α by right translation.

Since A×/F×αZ is compact and every U -invariant cusp form – where U is an
open subgroup of GL(2,A) – is supported on some compact modulo Z(A) set
K ⊂ GL(2, F )\GL(2,A), the representation r0 is admissible. Hence tr r0(f) is
defined for every f ∈ C∞

c (GL(2,A)).
Put Ac,α = C∞

c (αZ · GL(2, F )\GL(2,A)). Fix f ∈ C∞
c (GL(2,A)). Let r be

the right representation of GL(2,A) on Ac,α. We proceed to compute tr r(f)
as if the space αZ ·GL(2, F )\GL(2,A) were compact, to see what needs to be
corrected. This space is not compact and r is not admissible, so that in fact
tr r(f) makes no sense.
For any ringR define A(R) = {diag(a, b); a, b ∈ R×}, A′(R) = {diag(a, b); a, b ∈
R×, a 6= b}, N(R) = {( 1 a0 1 ) ; a ∈ R}. Let Q be the set of quadratic extensions
of the field F . For each L ∈ Q choose an embedding L →֒M(2, F ); it exists and
is unique up to an automorphism of M(2, F ); all automorphisms of M(2, F )
are inner. Given γ ∈ αZ · GL(2, F ), denote by Z(γ) the centralizer of γ in
αZ GL(2, F ).

Proposition 3.4. Every conjugacy class of αZ · GL(2, F ) intersects precisely

one of : F× · αZ; a ( 1 1
0 1 ), a ∈ F× · αZ; αZ · A′(F ); αZ · (L× − F×) for some

L ∈ Q. In the first two cases the number of intersection points is 1, in the

3rd case 2, in the 4th case: the number of automorphisms of L over F . The

centralizers Z(γ) are αZ ·GL(2, F ), αZF×N(F ), αZ ·A(F ), αZL×, respectively.

Immitating the trace formula in the compact case, one may expect

tr r(f) = S1(f) +
∑

L∈Q

S2,L(f) + S3(f) + S4(f)

with
S1(f) = |αZ ·GL(2, F )\GL(2,A)|,

S2,L(f) = |AutF (L)|−1
∑

γ∈αZ·(L×−F×)

∫

αZ·L×\GL(2,A)

f(x−1γx)dx,

S3(f) =
1

2

∑

γ∈αZA′(F )

∫

αZA(F )\GL(2,A)

f(x−1γx)dx,

S4(f) =
∑

a∈αZ·F×

∫

αZF×N(F )\GL(2,A)

f(x−1a ( 1 1
0 1 )x)dx.

The left side of this wrong trace formula is divergent. So is S3(f), since the
homogeneous space A(A)/αZ ·A(F ) is not compact. We shall show that S1(f)
and

∑

L∈Q S2,L(f) converge, and although S4(f) diverges, we shall show in
which way it does.

Proposition 3.5. Given f ∈ C∞
c (GL(2,A)), the number of conjugacy classes

of γ ∈ αZ ·GL(2, F ) with x ∈ GL(2,A) and f(xγx−1) 6= 0 is finite.
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Proof. The sets K1 = {tr h;h ∈ suppf} ⊂ A, K2 = {deth;h ∈ suppf} ⊂
A× are compact. It suffices to show that the set {γ ∈ αZ · GL(2, F ); tr γ ∈
K1, det γ ∈ K2} is a union of finitely many conjugacy classes. Put γ = αnx for
some x ∈ GL(2, F ). Then 2n = deg γ, so n lies in a finite set. Fix n. Then
tr x ∈ α−nK1, detx ∈ α−2nK2. But the sets F ∩ α−nK1 and F× ∩ α−2nK2

are finite. Hence the trace and determinant of x can take only finitely many
values. As the number of conjugacy classes of elements in GL(2, F ) with fixed
trace and determinant is at most two, we are done.

3.3 Central elements

Proposition 3.6. The volume |GL(2, F ) · αZ\GL(2,A)| is finite.

Proof. This volume is equal to (below x ∈ αZ GL(2, F )\GL(2,A)/GL(2, OA))

∑

x |αZ GL(2, F ) ∩ xGL(2, OA)x
−1\xGL(2, OA)|

= |GL(2, OA)|
∑

x |αZ GL(2, F ) ∩ xGL(2, OA)x
−1|−1.

For x in GL(2,A)/GL(2, OA), let E = xO2
A
be the associated rank 2 locally free

sheaf on X . Then Aut(E) consists of the g ∈ GL(2,A) which map (E =)xO2
A

to xO2
A
and the generic fiber F 2 to itself, thus Aut E is

GL(2, F ) ∩ xGL(2, OA)x
−1 = αZ GL(2, F ) ∩ xGL(2, OA)x

−1.

We then need to show the convergence of

∑

E∈Bun2 /J

|Aut E|−1,

J being the image of αZ under the natural homomorphism A× → PicX . The
number of J-orbits on the set of stable rank two locally free sheaves on X is
finite, so it remains to show that the sum of |Aut E|−1 over the set Bunun2 of
J-orbits of unstable rank two locally free sheaves on X is convergent.

Lemma 3.7. (1) A rank two locally free sheaf E on X is very unstable (ht(E) ≥
2g−1) iff E ≃ L⊕M where L,M are invertible sheaves with degL−degM≥
2g − 1.
(2) If L,M ∈ PicX and degL− degM≥ max(2g − 1, 1) then

|Aut(L ⊕M)| = (q − 1)2qdegL−degM+1−g.

(3) If L ⊕M ≃ L′ ⊕M′ with degL > degM, degL′ > degM′ then L ≃
L′,M≃M′.

Proof. (1) If L is an invertible sheaf of E of maximal degree and M = E/L,
then M is invertible, and Ext(M,L) = H1(X,M−1L) is 0 (by Serre duality)
as

degM−1L = degL − degM = 2degL− deg E = ht(E) ≥ 2g − 1.
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The exact sequence

0→ Hom(M,L)→ Aut(L ⊕M)→ AutL ×AutM→ 0

implies (2) since Hom(M,L) = H0(X,M−1L) and H1(X,M−1L) = {0}, so
the Riemann-Roch theorem implies that dimH0(X,M−1L) = deg(M−1L) +
1−g. If the invertible sheaf L corrsponds to aOA, then AutL consists of g ∈ A×

which map the generic fiber F onto itself (thus g ∈ F×) and map aOA onto
itself (thus g ∈ O×

A
). Then AutL = F× ∩O×

A
= F×

q has cardinality q − 1.

For (3), put E = L ⊕ M ∼→ L′ ⊕M′. Since degL > (deg E)/2 > degM′,
we have Hom(L,M′) = {0}. Hence the image of L under the isomorphism
L ⊕M ∼→ L′ ⊕M′ lies in L′. Hence L ≃ L′ andM≃ E/L ≃ E/L′ ≃M′.

Assume g ≥ 1, so that 2g − 1 ≥ 1 (the case g = 0 is similar). The lemma
implies

∑

E∈Bunun
2 /J

|Aut E|−1 = (q − 1)−2|Pic0(X)|
∑

n≥2g−1

qg−1−n <∞.

Corollary 3.8. If the Haar measure on GL(2,A) is normalized so that

|GL(2, OA)| is a rational number, then |αZ ·GL(2, F )\GL(2,A)| ∈ Q.

This follows from the proof of the last proposition.

3.4 Elliptic elements

Proposition 3.9. Let L be a quadratic extension of F, γ ∈ αZ · (L× − F×) ⊂
GL(2,A), and f ∈ C∞

c (GL(2,A)). Then the function x 7→ f(xγx−1) on

GL(2,A)/αZ · L× has compact support.

Proof. We need to show that the map x 7→ xγx−1 on GL(2,A)/αZ ·L× is proper
(the preimage of a compact is compact). Since (L⊗F A)×/αZ ·L× is compact,
it suffices to show that the map ψ(x) = xγx−1, ψ : GL(2,A)/A×

L → GL(2,A),
is proper (AL = L⊗F A is the ring of adèles of L).

Lemma 3.10. Let F be a local field in this lemma. Suppose γ ∈ M(2, F )
is regular, i.e. the subalgebra E = F [γ] generated by γ is a field or is F × F .
Then the map ψ : GL(2, F )/E× → GL(2, F ), x 7→ xγx−1, is proper. Moreover,

if γ ∈ GL(2, O) and the ring O[γ] is integrally closed, then ψ−1(GL(2, O)) =
GL(2, O)/E× ∩GL(2, O).

Proof. The conjugacy class C of γ is a closed subset of GL(2, F ), since γ is
regular. So it suffices to show that ψ maps GL(2, F )/E× homeomorphically
onto C. It is clear that ψ is continuous, injective and Imψ = C. It remains to
show that the map ψ′ : GL(2, F )→ C, x 7→ xγx−1, is open. For this, it suffices
to show that C is the set of F -points of a smooth variety C over F , and that ψ′
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is smooth, that is its differential is everywhere onto. Since C is a homogeneous
space under a connected group G is suffices to show that the tangent map dψ′

of ψ′ at the identity is onto. When verifying these properties of C and ψ′, we
may replace F with an extension, thus we may assume that γ is of the form
diag(a, b) with a 6= b, or ( a 1

0 a ) (if E is nonseparable over F ). To compute the
tangent map dψ′ : Lie G → Tγ(C) of ψ′(x) = xγx−1 near the identity x = 1,
let Y be in Lie G, and put x = 1+ ǫY , where ǫ2 = 0. Then x−1 = 1− ǫY and
ψ′(x) = (1 + ǫY )γ(1 − ǫY ) = 1 + ǫ(Y γ − γY ), so dψ′(Y ) = Y γ − γY is onto
the tangent space Tγ(C) of C at γ, and ψ is proper.
If x ∈ GL(2, F ) and xγx−1 ∈ GL(2, O), put M = x−1O2. Then γM ⊂ M . In
addition, γ ∈ GL(2, O), so γO2 ⊂ O2. ThusM and O2 are O[γ]-submodules in
F 2. Both modules are of finite type. As F 2 is a rank one free E = F [γ]-module,
and we assume that O[γ] is integrally closed, namely it is the ring of integers in
E = F [γ], both M and O2 are rank one torsion free over the discrete valuation
ring O[γ] (being rank two over O). Hence there exists a ∈ E× with M = aO2.
Thus xaO2 = O2, that is xa ∈ GL(2, O).

Now for γ as in the proposition, for almost all closed points in X the component
of α at v is 1, γ ∈ GL(2, Ov), and the ring Ov[γ] is integrally closed. This and
the lemma imply the proposition. �

3.5 Regularization of the unipotent terms

To study the integral which occurs in S4(f), we regularize it as

θa,f(t) =

∫

αZ·F×N(F )\GL(2,F )

f(ax−1 ( 1 1
0 1 )x)t

ht+(x)dx.

Proposition 3.11. (1) For every f ∈ C∞
c (GL(2,A)) and a ∈ A×, the integral

θa,f (t) converges as an element of C((t)), and ζF (q
−1t)−1θa,f (t) ∈ C[t, t−1],

where ζF (t) =
∏

v∈|X|(1 − tv)−1, tv = tdeg v.

(2) If f is the characteristic function of GL(2, OA) in GL(2,A), then

θ1,f (t) = |GL(2, OA)| · (q − 1)−1qg−1 · |Pic0(X)|ζF (q−1t).

Proof. (1) It suffices to consider f(x) =
∏

v fv(xv), x = (xv) ∈ GL(2,A), where
fv ∈ C∞

c (GL(2, Fv)) for all v ∈ |X | and fv is the characteristic function f0
v of

GL(2, Ov) at almost all v, since such functions span C∞
c (GL(2,A)). Normalize

the measures on F×
v and Fv so that |O×

v | = 1 = |Ov|. Denote by valv(xv) the
valuation of xv ∈ F×

v , normalized by valv(πππv) = 1. Define a function

h+v : GL(2, Fv)→ Z by h+v ((
a b
0 c ) k) = valv(a)− valv(c), k ∈ GL(2, Ov).

Then h+v is well-defined and ht+(x) =
∑

v∈|X| h
+
v (xv) deg(v). We have

θa,f (t) = |A×/αZ · F×| · |A/F |
∏

v

θav ,fv (tv)
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where

θav,fv (tv) =

∫

F×

v N(Fv)\GL(2,Fv)

fv(avx
−1 ( 1 1

0 1 )x)t
h+
v (x) deg vdx

and tv = tdeg(v). To compute it, note that pn,v = diag(πππnv , 1) (n ∈ Z) make a
set of representatives of the two sided coset space

F×
v N(Fv)\GL(2, Fv)/GL(2, Ov).

Then

θav,fv (tv) =
∑

n∈Z

tnv

∫

F×

v N(Fv)∩p
−1
n,v GL(2,Ov)pn,v\p

−1
n,v GL(2,Ov)

fv(avx
−1 ( 1 1

0 1 )x)dx

=
∑

n∈Z

tnv |F×
v N(Fv) ∩ p−1

n,vGL(2, Ov)pn,v|−1

∫

p−1
n,v GL(2,Ov)

fv(avx
−1 ( 1 1

0 1 )x)dx

=
∑

n∈Z

q−nv tnv

∫

GL(2,Ov)

fv(avypn,v ( 1 1
0 1 ) p

−1
n,vy

−1)dy =
∑

n∈Z

τn(fv)q
−n
v tnv ,

where τn(fv) =
∫

GL(2,Ov)
fv(avy

(

1 πππn
v

0 1

)

y−1)dy is 0 if n << 0 and τn(fv) =

fv(av) for n >> 0.
If av ∈ O×

v and fv is the characteristic function of GL(2, Ov), then τn(fv) =
|GL(2, Ov)| for n ≥ 0 and un,v = 0 for n < 0, so

θav ,fv(tv) = |GL(2, Ov)|(1− tv/qv)−1.

(2) It remains to compute (note that |O×
A
| = 1 and |OA| = 1) :

|A×N(A)/αZF×N(F )| = (|A×/αZF×|/|O×
A
|)(|A/F |/|OA|).

The exact sequence 1→ F×
q → O×

A
→ A×/αZF× → PicX/αZ(= Pic0(X))→ 1

implies that the first factor on the right is |Pic0(X)|/(q−1). The exact sequence

0→ Fq → OA → A/F → H1(X,OX)→ 0

implies that the second factor on the right is qg−1.

4 Intertwining operators and Eisenstein series

4.1 Intertwining operators

Let E be an algebraically closed field of characteristic zero, and v ∈ |X | a
closed point of X . Denote by |a|v the absolute value of a ∈ F×

v normal-
ized by |πππv| = q−1

v . It is an E×-valued character of F×
v . Fix a square root√

q = q1/2 of q in E. If E ⊂ C we choose q1/2 > 0. For E-valued characters
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µ1, µ2 of F×
v denote by I(µ1, µ2) both the space of right locally constant func-

tions φ : GL(2, Fv) → E with φ(
(

a1 b
0 a2

)

x) = |a1/a2|1/2v µ1(a1)µ2(a2)φ(x) (x ∈
GL(2, Fv); a1, a2 ∈ F×

v ; b ∈ Fv), and the action of the group GL(2, Fv) by right
translation on I(µ1, µ2). The induced representation I(µ1, µ2) is admissible
by the Iwasawa decomposition G = BK. It is unitarizable when µ1, µ2 are

unitary. It is possible to work with I(| · |1/2v µ1, | · |1/2v µ2), in whose definition

the factor |a1/a2|1/2v µ1(a1)µ2(a2) becomes |a1|vµ1(a1)µ2(a2), but later we shall

need to multiply back by | · |−1/2
v . The following is a standard basic result.

Proposition 4.1. If µ1/µ2 6= | · |v, | · |−1
v , then the representations of GL(2, Fv)

in I(µ1, µ2) and I(µ2, µ1) are irreducible and isomorphic. If µ1/µ2 = | · |v or

| · |−1
v then I(µ1, µ2) contains a unique proper invariant subspace I ′(µ1, µ2) and

there is a GL(2, Fv)-isomorphism I ′(µ1, µ2) ≃ I(µ2, µ1)/I
′(µ2, µ1). If µ2/µ1 =

| · |v, the subspace I ′(µ1| · |−1/2
v , µ1| · |1/2v ) is one dimensional; x ∈ GL(2, Fv)

acts on I ′(µ1| · |−1/2
v , µ1| · |1/2v ) via multiplication by µ1(x). The subspace

I ′(µ2| · |1/2v , µ2| · |−1/2
v ) is denoted by St(µ2) = St(µ2| · |1/2v , µ2| · |−1/2

v ).

It is isomorphic to I(µ2| · |−1/2
v , µ2| · |1/2v )/I ′(µ2| · |−1/2

v , µ2| · |1/2v ). It consists of

φ ∈ I(µ2| · |1/2v , µ2| · |−1/2
v ) with

∫

GL(2,Ov)

µ2(det x)
−1φ(x)dx = 0.

If I(µ1, µ2) ≃ I(µ′
1, µ

′
2) then {µ1, µ2} = {µ′

1, µ
′
2}, the representations I(µ1, µ2)

(µ1/µ2 6= | · |v or | · |−1
v ) and St(µ′

2) are infinite dimensional and inequivalent,

and St(µ1) ≃ St(µ2) implies µ1 = µ2.

We proceed to describe the operator intertwining I(µ1, µ2) and I(µ2, µ1).

Proposition 4.2. If |µ1(πππv)/µ2(πππv)| < 1 the integral

(Mφ)(x) =

∫

Fv

φ(
(

0 −1
1 0

) (

1 y
0 1

)

x)dy

converges for each φ ∈ I(µ1, µ2) and x ∈ GL(2, Fv), and Mφ ∈ I(µ2, µ1).

Proof. As
(

0 −1
1 0

) (

1 y
0 1

)

=
(

y−1 −1
0 y

)(

1 0
y−1 1

)

, the integrand is

µ2(y)µ1(y)
−1|y|−1

v φ
((

1 0
y−1 1

)

x
)

,

which is 0 if |y|v is small, and µ2(y)µ1(y)
−1|y|−1

v φ(x) if |y|v is big enough. For
sufficiently large n then the part of the integral over |y|v ≥ qnv is bounded by
φ(x) times

∫

|y|v≥qnv

|µ2(y)/µ1(y)| · |y|−1
v dy = |O×

v |
∑

k≥n

|µ1(πππv)/µ2(πππv)|k <∞.
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It is clear that (Mφ)(( 1 c
0 1 )x) = (Mφ)(x) (c ∈ Fv) and (Mφ)(( a 0

0 b )x) equals

∫

Fv

φ(( b 0
0 a )

(

0 −1
1 0

) (

1 yb/a
0 1

)

x)dy = µ1(b)µ2(a)

∣

∣

∣

∣

b

a

∣

∣

∣

∣

1/2

v

∣

∣

∣

a

b

∣

∣

∣

v
(Mφ)(x).

We obtained, if |µ1(πππv)/µ2(πππv)| < 1, a GL(2, Fv)-equivariant map

M =M(µ1, µ2) : I(µ1, µ2)→ I(µ2, µ1).

Let νt be the unramified character of F×
v with νt(πππv) = t. Put M(µ1, µ2, t) =

M(µ1νt, µ2νt−1). It converges for any µ1, µ2, provided t ∈ C is small enough
in absolute value. To define M(µ1, µ2) as the value at t = 1 of the analytic
continuation ofM(µ1, µ2, t), we need these operators to be defined on the same
space, which we will take to be

I0(µ1, µ2) = {φ ∈ C∞(GL(2, Ov));φ(
(

a1 b
0 a2

)

x) = µ1(a1)µ2(a2)φ(x),

a1, a2 ∈ O×
v , b ∈ Ov, x ∈ GL(2, Ov)}.

By the Iwasawa decomposition G = BK, the restriction map I(µ1νt, µ2νt−1)
→ I0(µ1, µ2) is bijective for any t. Identifying these spaces, the operator
M(µ1, µ2, t) becomes a map I0(µ1, µ2)→ I0(µ2, µ1).
Write L(µ, t) for (1 − µ(πππv)t)−1 if µ is unramified, and L(µ, t) = 1 if µ is a

ramified character of F×
v .

Proposition 4.3. The operator valued function M(µ1, µ2, t) is rational in t ∈
C×. In fact the function t 7→ L(µ1/µ2, t

2)−1(M(µ1, µ2, t)φ)(x) is a polynomial

in t for all φ ∈ I0(µ1, µ2), x ∈ GL(2, Ov). If µ1, µ2 are unramified and the

restrictions of φ ∈ I(µ1νt, µ2νt−1) and ψ ∈ I(µ2νt−1 , µ1νt) to GL(2, Ov) are 1,

then M(µ1, µ2, t)φ = L(µ1/µ2,t
2)

L(µ1/µ2,q
−1
v t2)

ψ.

Proof. Put φt = M(µ1, µ2, t)φ and a1 =
∫

|y|v≤1 φ(
(

0 −1
1 y

)

x)dy where x ∈
GL(2, Ov). Then

φt(x) = a1 +

∫

|y|v>1

µ2(y)µ1(y)
−1|y|−1

v νt(y)
−2φ

((

1 0
y−1 1

)

x
)

dy.

We shall show that this is the Taylor series of a rational function.

If n is large enough, φ
((

1 0
y−1 1

)

x
)

= φ(x) for |y|v ≥ qnv . Then φt(x) =

a1 + a2(t) + a3(t) with

a2(t) =

∫

1<|y|v<qnv

µ2(y)µ1(y)
−1|y|−1

v νt(y)
−2φ

((

1 0
y−1 1

)

x
)

dy,

a3(t) = φ(x)

∫

|y|v≥qnv

µ2(y)µ1(y)
−1|y|vνt(y)−2dy.
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Clearly a2(t) is a polynomial in t (since νt(πππ
−1
v )−1 = t) and a3(t) =

ct2nL(µ1/µ2, t
2).

If µ1, µ2 are unramified and x ∈ GL(2, Ov), a1 = 1 and the expression for φt(x)
is

φt(x) = 1 +

∫

|y|v>1

µ2(y)µ1(y)
−1|y|−1

v νt(y)
−2dy

= 1− (1− q−1
v )

∑

k≥1

(µ1(πππv)/µ2(πππv))
kt2k

= 1 +
(1− q−1

v )(µ1(πππv)/µ2(πππv))t
2

1− (µ1(πππv)/µ2(πππv))t2
=

L(µ1/µ2, t
2)

L(µ1/µ2, q
−1
v t2)

.

The operator M(µ1, µ2, t) : I(µ1νt, µ2νt−1) → I(µ2νt−1 , µ1νt) intertwines the
GL(2, Fv)-modules for every t where it is defined. It can be regarded as
a rational function of t (in fact, of t2) with values in the set of operators
I0(µ1, µ2)→ I0(µ2, µ1). Indeed,

M(µ1, µ2, t) =M(µ1νt, µ2νt−1) =M(µ1νt2 , µ2).

Define

R(µ1, µ2, t) =
L(µ1/µ2, q

−1
v t2)

L(µ1/µ2, t2)
M(µ1, µ2, t).

Corollary 4.4. Suppose µ1 and µ2 are unramified and ϕ ∈ I(µ1νt, µ2νt−1),
ψ ∈ I(µ2νt−1 , µ1νt) are the functions whose restrictions to GL(2, Ov) are one,

then R(µ1, µ2, t)ϕ = ψ. �

Given characters µ1, µ2 of A×, write I(µ1, µ2) for the space of right locally

constant functions φ on GL(2,A) which satisfy

φ
((

a1 b
0 a2

)

x
)

= µ1(a1)µ2(a2)|a1/a2|1/2φ(x). Put ν(a) = qdeg(a).

Then I(µ1, µ2) is the restricted tensor product of the spaces I(µ1v, µ2v) where
µiv is the component of µi at v (the restriction of µi to F×

v →֒ A×); it is
spanned by ⊗vφv with φv ∈ I(µ1v, µ2v) for all v and φv|GL(2, Ov) = 1 for
almost all v, where µiv|O×

v = 1, i.e. µiv are unramified. Define the character

νt of A× by νt(a) = tdeg(a). Then the restriction of νt to F×
v is νtv , the

unramified character of F×
v with νtv (πππv) = tv(= tdeg(v)). As in the local case,

we identify the spaces I(µ1νt, µ2νt−1) with I0(µ1, µ2) for all t. The operator
R(µ1, µ2, t) from I(µ1νt, µ2νt−1) to I(µ2νt−1 , µ1νt) defined by R(µ1, µ2, t) =
⊗vR(µ1v, µ2v, tv) is rational in t. On any element in I(µ1νt, µ2νt−1) at most
finitely many components R(µ1v, µ2v, tv) do not act as the identity. Also write

m(µ, t) for L(µ, t)/L(µ, t/q).
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4.2 Eisenstein series

Write Aα = C∞(αZ ·GL(2, F )\GL(2,A)),

Ac,α = C∞
c (αZ ·GL(2, F )\GL(2,A)), Y = A(F )N(A)\GL(2,A)

and Yα = Y/αZ. Normalize the Haar measure on N(A) ≃ A by |N(A)/N(F )| =
|A/F | = 1. The Haar measure on N(A) is invariant with respect to conjugation
by the elements of A(F ) by the product formula. So it extends to a two-sided
invariant measure on the space αZ · A(F )N(A). This, and the two-sided Haar
measure on GL(2,A) induce an invariant measure on Yα.
Let ϕ and ψ be locally constant functions on Yα, at least one of which is com-
pactly supported. Put (ϕ, ψ) =

∫

Yα
ϕ(x)ψ(x)dx. On αZ ·GL(2, F )\GL(2,A) a

scalar product is similarly defined. Define the map E∗ : Aα → C∞(Yα) by

φ 7→ φN , φN (x) =

∫

N(F )\N(A)

φ(nx)dn, x ∈ GL(2,A).

Note that N(F )\N(A) is compact, so the integral converges. Note that kerE∗

is the space A0,α of cusp forms invariant under α. For any f ∈ C∞
c (Yα) define

a function Ef on αZ ·GL(2, F )\GL(2,A) by

(Ef)(x) =
∑

γ∈A(F )N(F )\GL(2,F )

f(γx), x ∈ GL(2,A).

Proposition 4.5. The sum defining (Ef)(x) converges. For f ∈ C∞
c (Yα) and

φ ∈ Aα we have (Ef, φ) = (f, E∗φ).

Proof. Consider the diagram

Yα
r← αZ ·A(F )N(F )\GL(2,A)

s→ αZ ·GL(2, F )\GL(2,A).

Since N(F )\N(A) is compact, the map r is proper. Hence the natural embed-
ding r∗ maps C∞

c (Yα) to C
∞
c (αZ · A(F )N(F )\GL(2,A)). Given

ψ ∈ C∞
c (αZA(F )N(F )\GL(2,A)),

define a function s∗ψ on αZ GL(2, F )\GL(2,A) by

(s∗ψ)(x) =
∑

γ∈A(F )N(F )\GL(2,F )

ψ(γx), x ∈ GL(2,A).

The sum is finite since ψ is compactly supported, and

s∗ψ ∈ C∞
c (αZ GL(2, F )\GL(2,A)).

The sum which defines (Ef)(x) converges since E = s∗r
∗.

Now define E∗ = r∗s
∗, where s∗ is the natural embedding, and

r∗ : C∞(αZA(F )N(F )\GL(2,A))→ C∞(Yα)

is defined by (r∗h)(x) =
∫

N(F )\N(A) h(nx)dn, x ∈ GL(2,A). Since (r∗, r∗) and

(s∗, s
∗) are adjoint pairs, so is (E = s∗r

∗, E∗ = r∗s
∗).
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The image AE,α of the Eisenstein map E = s∗r
∗ : C∞

c (Yα)→ Ac,α is called the
Eisenstein part of Ac,α. The maps E and E∗ intertwine the GL(2,A)-action;
AE,α is an invariant subspace of Ac,α.

Proposition 4.6. The space Ac,α is an orthogonal direct sum of the space A0,α

of cusp forms and of AE,α.

Proof. Cusp forms are compactly supported. Since A0,α = kerE∗ and AE,α =
imE, we have A0,α ⊥ AE,α. Given a compact open subgroup U in GL(2,A),
put AUα for the space of U -invariant functions in Aα, and

AUc,α = Ac,α ∩ AUα , AU0,α = A0,α ∩ AUα , AUE,α = AE,α ∩ AUα .

It remains to show that AU0,α+A
U
E,α = AUc,α. If not there exists a nonzero linear

form ℓ : AUc,α → C which is zero on AU0,α+A
U
E,α. There exists f ∈ AUα such that

ℓ(φ) = (φ, f) for every φ ∈ AUc,α. For any U -invariant function ψ ∈ C∞
c (Yα) we

have (ψ,E∗f) = (Eψ, f) = ℓ(Eψ) = 0. Hence E∗f = 0, thus f ∈ AU0,α. This

however is impossible since f is orthogonal to the space AU0,α of U -invariant
cusp forms.

Given φ ∈ C∞
c (Yα) and x ∈ GL(2,A), put (Mφ)(x) =

∫

N(A) φ(
(

0 −1
1 0

)

nx)dn.

The integral converges, by

Proposition 4.7. The map N(A) → Yα, n 7→ αZA(F )N(A)
(

0 −1
1 0

)

nx, is

proper.

Proof. It suffices to consider the case of x = 1. The function

ht+ : Yα → Z, ( a c0 b ) k 7→ deg a− deg b,

is continuous. Thus it suffices to show that the map ϕ(a) = ht+(
(

0 −1
1 0

)

( 1 a0 1 )),

ϕ : A→ Z, is proper. But
(

0 −1
1 0

) (

1 av
0 1

)

is in GL(2, Ov) if |av|v ≤ 1; otherwise

it is =
(

a−1
v −1
0 av

)(

1 0
a−1
v 1

)

. If a = (av), then ϕ(a) = −2
∑

v max(0, logq |av|v),
as logq |av|v = − valv(av) deg(v). Hence ϕ is proper.

By definition, x 7→ (Mφ)(x) is invariant under left translation by N(A), and
also by αZ ·A(F ). Indeed,

(Mφ)(( a 0
0 b ) x) =

∫

A

φ(
(

0 −1
1 0

)

n ( a 0
0 b )x)dy =

∣

∣

∣

a

b

∣

∣

∣

∫

N(Z)

φ(( b 0
0 a )

(

0 −1
1 0

)

nx)dn

and |a/b| = qdeg(a/b). Thus M maps C∞
c (Yα) to C

∞(Yα).

Proposition 4.8. Denote by I the natural embedding of C∞
c (Yα) in C

∞(Yα).
Then

E∗E = I +M.
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Proof. By the Bruhat decomposition, an element of GL(2, F ) which is not in
A(F )N(F ) has a unique decomposition n1a

(

0 −1
1 0

)

n2 with ni ∈ N(F ), a ∈
A(F ). Thus, for any φ ∈ C∞

c (Yα), x ∈ GL(2,A), we have

(Eφ)(x) =
∑

γ∈A(F )N(F )\GL(2,F )

φ(γx) = φ(x) +
∑

ν∈N(F )

φ(
(

0 −1
1 0

)

νx).

Hence

(E∗Eφ)(x) = |N(A)/N(F )|φ(x) +
∫

N(F )\N(A)

∑

ν∈N(F )

φ(
(

0 −1
1 0

)

νnx)dn

= φ(x) +

∫

N(A)

φ(
(

0 −1
1 0

)

nx)dn = φ(x) + (Mφ)(x).

Proposition 4.9. Let µ1, µ2 be characters of A×/F×. If t is sufficiently small,

for all φ ∈ I(µ1νt, µ2νt−1) and x ∈ GL(2,A), the integral (M(µ1, µ2, t)φ)(x) =
∫

N(A) φ(
(

0 −1
1 0

)

nx)dn converges and defines a function in I(µ2νt−1 , µ1νt).

Moreover, M(µ1, µ2, t) = q1−gm(µ1/µ2, t
2)R(µ1, µ2, t).

Proof. Recall that |a| = qdeg(a) and that I(µ1, µ2) consists of the φ in
C∞(GL(2,A)) with

φ(
(

a1 0
0 a2

)

x) = |a1/a2|1/2µ1(a1)µ2(a2)φ(x),

while νt(a) = tdeg a. We put tv = tdeg(v). We may assume that φ(x) =
∏

v φv(xv) with φv ∈ I(µ1vνtv , µ2vνt−1
v
). For almost all v, the restriction

of φv to GL(2, Ov) is 1. We may replace φv, µi, t by their complex ab-
solute values to assume t > 0 and φv, µi take real nonnegative values.
Then (M(µ1, µ2, t)φ)(x) = c

∏

v τv, with τv =
∫

N(Fv)
φv(

(

0 −1
1 0

)

nxv)dn =
∫

Fv
φv(

(

0 −1
1 z

)

xv)dz. The measure dnv onN(Fv) is normalized by |N(Ov)| = 1,

and c = |N(A)/N(F )| in the measure ⊗vdnv on N(A).
We saw that for small enough t the integral which defines τv converges for all v.
For almost all v we have τv = L(µ1v/µ2v, t

2
v)/L(µ1v/µ2v, q

−1
v t2v), so the product

∏

v τv converges for small t. NowM(µ1, µ2, t) = c
∏

vM(µ1v, µ2v, tv). Each fac-

tor here is
L(µ1v/µ2v ,t

2
v)

L(µ1v/µ2v ,q
−1
v t2v)

R(µ1v, µ2v, tv). Put R(µ1, µ2, t) = ⊗vR(µ1v, µ2v, tv),

and m(µ, t) = L(µ,t)
L(q−1t,µ) , where L(µ, t) =

∏

v L(µv, tv). Note that c is

|O| = q1−g, using 0→ Fq → O → A/F → H1(X,OX)→ 0.

It follows (since L(µ, t) is a rational function of t) that after identifying the
spaces I(µ1νt, µ2νt−1) for all t, the operator

M(µ1, µ2, t) : I(µ1νt, µ2νt−1)→ I(µ2νt−1 , µ1νt)

(defined for small t) depends on t rationally. Hence M(µ1, µ2, t) is defined for
almost all t, and it commutes with the action of GL(2,A).
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4.3 L-functions

Let us review the theory of L-functions for GL(2). Let E be an algebraically
closed field of characteristic zero. The valuation valv(a) of a ∈ F×

v is the largest
integer n with a ∈ πππnvOv. For any character ψ : Fv → E×, ψ 6= 1, let r(ψ)
be the largest n such that ψ(πππ−n

v Ov) = 1. Normalize the Haar measure on
Fv by |Ov| = 1. The conductor of a character χ : F×

v → E× is n = 0 if
χ(O×

v ) = 1, i.e., χ is unramified; otherwise it is the smallest n ≥ 1 such that
χ(1 + πππnvOv) = 1. Given χ, put L(t, χ) = (1 − χ(πππv)t)−1 if χ is unramified,
L(t, χ) = 1 is χ is ramified. Given ψ 6= 1, put

Γ(χ, ψ, t) =

∫

F×

v

χ(x)−1ψ(x)t− valv(x)dx, ψ : Fv → E×.

This Γ(χ, ψ, t) is a formal power series in t which contains positive and negative
powers of t. Tate’s thesis (see [Lg94], VII, section 3-4) establishes

Proposition 4.10. The formal series Γ(χ, ψ, t) has finitely many positive pow-

ers of t. It is a rational function of t, namely a Laurent series of a ratio-

nal function of t at t = ∞. Put ε(χ, ψ, t) = L(χ,t)Γ(χ,ψ,t)

L(χ−1,q−1
v t−1)

. It has the form

c(χ, ψ)tn(χ,ψ). If r(ψ) = 0 then n(χ, ψ) is the conductor of χ. If in addi-

tion χ is unramified then ε(χ, ψ, t) is 1. If a ∈ F×
v , ψa(x) = ψ(ax), then

ε(χ, ψa, t) = χ(a)(qvt)
valv(a)ε(χ, ψ, t).

Note that L and ε are usually considered, in the case where E = C, as functions
of s, where t = q−sv , rather than of t. The Haar measure on Fv is usually

normalized by |Ov| = q
−r(ψ)/2
v , as this measure is self-dual with respect to the

pairing Fv×Fv → E×, (x, y) 7→ ψ(xy). This choice of measure is not convenient
if E 6= C since E has no distinguished square root of q.
Given a character χ of A×, denote its restriction to F×

v by χv. The restriction
to Fv of a character ψ of A is denoted ψv. For a closed point v of X , we write
deg(v) for the dimension of the residue field at v over Fq, and qv = qdeg(v).
Given a character χ : A×/F× → E×, put L(χ, t) =

∏

v L(χv, tv), where tv =
tdeg(v); the product converges in E[[t]]. Let ψ : A/F → E× be a character 6= 1.
Then ε(χ, t) = q1−g

∏

v ε(χv, ψv, tv) converges as almost all factors are 1, and
ε(χ, t) is independent of ψ by Proposition 4.10.

Proposition 4.11. For any character χ : A×/F× → E× the formal series

L(χ, t) is rational in t, and L(χ, t) = ε(χ, t)L(χ−1, q−1t−1). If the restriction

of χ to the group of x ∈ A×/F× with deg(x) = 0 is nontrivial, then L(χ, t)
is a polynomial. If the restriction is trivial, χ is given by χ(x) = udeg(x), and
then L(χ, t) has precisely two poles: t = u−1 and t = q−1u−1, both poles are

simple. If χ : A×/F× → C× is a unitary character (|χ(x)| = 1 for all x) then

the zeroes of L(χ, t) lie in the doughnut {t ∈ C; q−1 < |t| < 1}.

The proof of this is also in [Lg94], Chapter VII, sections 7-8. The following is
due to [W45].
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Theorem 4.12. (A. Weil). For any unitary character χ : A×/F× → C×, all

zeroes of L(χ, t) lie on the circle |t| = q−1/2.

Given a character ψ : A/F → E×, ψ 6= 1, let W (ψ) be the space of locally
constant functions φ : GL(2, Fv) → E with φ(( 1 z0 1 ) x) = ψ(z)φ(x) for all
z ∈ Fv, x ∈ GL(2, Fv). The group GL(2, Fv) acts onW (ψ) by right translation.
Fix a Haar measure d×x on F×

v . For any φ ∈W (ψ) put

Λφ(t) =

∫

φ(( a 0
0 1 ))(qvt)

valv(a)d×a, Λ̃φ(t) =

∫

φ(( 0 1
a 0 ))(qvt)

valv(a)d×a.

Both Λφ(t) and Λ̃π(t) are formal power series in t, containing positive and
negative powers of t.
Let π be an irreducible admissible representation of GL(2, Fv) over E. Then
π(( a 0

0 a )) is the operator of multiplication by a scalar η(a) ∈ E×. The character
η : F×

v → E× is called the central character of π.

Proposition 4.13. Let π be an irreducible admissible infinite dimensional rep-

resentation over E of GL(2, Fv). Let η be the central character of π. (1) There
exists a unique GL(2, Fv)-invariant subspace W (π, ψ) of W (ψ) equivalent to

π. (2) If φ ∈ W (π, ψ) then Λφ(t) is the Laurent series at t = 0 of a rational

function, and Λ̃φ(t) is the Laurent series at t = ∞ of a rational function. (3)
There exists a nonzero polynomial P ∈ E[t] such that for any φ ∈ W (π, ψ) we
have P (t)Λφ(t) ∈ E[t, t−1]. There exists φ ∈ W (π, ψ) with Λφ(t) 6= 0. (4) The

quotient Λ̃φ(t)/Λφ(t) of rational functions in t does not depend on the choice of

φ in W (π, ψ) with Λφ(t) 6= 0. (5) The lowest degree polynomial P ∈ E[t] which

satisfies (3) and P (0) = 1 is independent of ψ. (6) Put Γ(π, ψ, t) = Λ̃φ(t)/Λφ(t)

and ε(π, ψ, t) = Γ(π,ψ,t)L(π,t)

L(π⊗η−1,q−2
v t−1)

where L(π, t) = P (t)−1 with P of (5). Then

ε(π, ψ, t) has the form c(π, ψ)tn(π,ψ), c(π, ψ) in E× and n(π, ψ) in Z. (7) If

ψa(x) is ψ(ax) for a ∈ F×
v , then ε(π, ψa, t) = η(a)(qvt)

2 valv(a)ε(π, ψ, t).

This is [JL70], Theorem 2.18. Our L and ε relate to those LJL, εJL of Jacquet-
Langlands by LJL(π, s) = L(π, tv), tv = q−sv , εJL(π, ψ, s) = ε(π, ψ, tv). Note
that the proof of [JL70], which claims that Λφ(t) is a Laurent series of a mero-
morphic function in C − {0}, shows that Λφ(t) is rational. In general, the
meromorpic functions of s over p-adic and global function fields are rational
functions of qs. Every smooth finite dimensional irreducible representation of
GL(2, Fv) is one dimensional, of the form x 7→ χ(det x), where χ : F×

v → E×

is a character ([JL70], Proposition 2.7).

Proposition 4.14. Let π, π′ be irreducible admissible infinite dimensional

representations of GL(2, Fv) with equal central characters. If there is a char-

acter ψ : Fv → E× such that for every character ω : F×
v → E× we have

Γ(πω, ψ, t) = Γ(π′ω, ψ, t), then π ≃ π′.

For a proof see [JL70], Corollary 2.19.
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The conductor of an irreducible admissible infinite dimensional representation
π of GL(2, Fv) is the integer n(π, ψ), with ψ normalized by r(ψ) = 0. It is
well defined, as from (7) above, the integer n(π, ψ) of (6) is not changed if ψ is
replaced by ψa : x 7→ ψ(ax).

Proposition 4.15. The conductor of π is the least integer n such that the

representation space of π contains a nonzero vector invariant under the group

Hn = {
(

a b
c d

)

∈ GL(2, Ov); c ∈ πππnvOv, d ∈ 1 + πππnvOv}. For this n, dimE πππ
Hn =

1.

For a proof see Casselman, Math. Ann. 201 (1973), 301-314.

Proposition 4.16. Let π be an irreducible admissible infinite dimensional rep-

resentation, with central character η, of GL(2, Fv). Let ψ : Fv → E× be a non-

trivial character. Then there exists an integer mπ such that if χ : F×
v → E× is

any character with conductor > mπ, then L(πχ, t) = 1 and

ε(πχ, ψ, t) = ε(χ, ψ, t)ε(χη, ψ, qvt)q
−r(ψ)
v .

For a proof see [JL70], Proposition 3.8. See [JL70], Proposition 3.5, 3.6, for a
proof of:

Proposition 4.17. Let µ1, µ2 be characters of F×
v , and ψ 6= 1 a character of

Fv. If µ1/µ2 6= | · |±1
v then L(I(µ1, µ2), t) = L(µ1, t)L(µ2, t) and

ε(I(µ1, µ2), ψ, t) = ε(µ1, ψ, t)ε(µ2, ψ, t)q
−r(ψ)
v .

If µ2/µ1 = | · |v, then

L(St(µ1| · |−1/2
v , µ1| · |1/2v ), t) = L(µ1| · |1/2v , t),

ε(St(µ1| · |−1/2
v , µ1| · |1/2v ), ψ, t) =

L(µ−1
1 , t−1)

L(µ1, t)
ε(µ1, ψ, t)ε(µ1| · |v, ψ, t)q−r(ψ)v .

If π is a cuspidal representation of GL(2, Fv) then L(π, t) is 1.

Recall that an irreducible admissible infinite dimensional representation π of
GL(2, Fv) on a vector space V is called unramified if its space V K of K =
GL(2, Ov)-fixed vectors is nonzero. In this case V K is one dimensional, and
π = I(µ1, µ2) with unramified µ1, µ2 and µ1/µ2 6= | · |±1.

Corollary 4.18. Let π be an unramified irreducible admissible infinite di-

mensional representation of GL(2, Fv) and ψ 6= 1 with r(ψ) = 0. Then

ε(π, ψ, t) = 1.

Proof. Here π = I(µ1, µ2) with unramified µ1, µ2, so the claim follows from the
last proposition and Tate’s Thesis.
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Let π be an admissible irreducible representation of GL(2,A) whose local com-
ponents are all infinite dimensional. Put L(π, t) =

∏

v L(πv, tv), tv = tdeg(v);
the infinite product converges in E[[t]]. For any character ψ : A/F → E×, ψ 6=
1, put ε(π, ψ, t) =

∏

v ε(πv, ψv, tv); almost all factors here are 1. From (7)
it follows that if the central character of π is trivial on F×, then ε(π, ψ, t) is
independent of the choice of ψ : A/F → E×. We denote it in this case by
ε(π, t).
Theorems 11.1, 11.3 of [JL70] assert:

Theorem 4.19. Let π be an irreducible admissible representation of GL(2,A)
over E. Denote by η : A× → E× its central character. Then π is cuspidal iff

(1) η is trivial on F×; (2) all local components of π are infinite dimensional; (3)
for any character ω : A×/F× → E×, the formal series L(πω, t) is a polynomial

in t, and (4) L(πω, t) = ε(πω, t)L(πη−1ω−1, q−2t−1).

Note that (4) makes sense due to (3). In [JL70], (3) is formulated as stating
that the product

∏

v L(πvωv, tv) converges absolutely for sufficiently small t,
and its value has an analytic continuation to a holomorphic function in C−{0}.
But the argument of [JL70] can be modified to lead to (3) in our case of E which
is not C, over a function field F . Note that (4) is not

∏

v Γ(πvωv, ψv, tv) = 1;
indeed the product here does not converge.

Proposition 4.20. If π, π′ are cuspidal representations of GL(2,A) and πv ≃
π′
v for almost all v, then π ≃ π′.

Proof. Let S be a finite set of closed points of X with πv ≃ π′
v at v 6∈ S.

Let η, η′ be the central characters of π, π′, and ηv, η
′
v their components at

v (restrictions to F×
v ). By our assumption, η′v = ηv for all v 6∈ S. But the

groups F×
v , v 6∈ S, generate a dense subgroup of A×/F×. Hence η′ = η. By

the Theorem 4.19, of [JL70], above, fixing a character ψ : A/F → E×, ψ 6= 1,
for any character ω : A×/F× → E× one has

∏

v

L(πvωv, tv) =
∏

v

ε(πvωv, ψv, tv)L(πvη
−1
v ω−1

v , q−2
v t−1

v ),

∏

v

L(π′
vωv, tv) =

∏

v

ε(π′
vωv, ψv, tv)L(π

′
vη

′
v
−1ω−1

v , q−2
v t−1

v ).

Since πv ≃ π′
v at all v 6∈ S, we conclude

∏

v∈S

Γ(πvωv, ψv, tv) =
∏

v∈S

ε(πvωv, ψv, tv)L(πvη
−1
v ω−1

v , q−2
v t−1

v )

L(πvωv, tv)

=
∏

v∈S

ε(π′
vωv, ψv, tv)L(π

′
vη

′
v
−1ω−1

v , q−2
v t−1

v )

L(π′
vωv, tv)

=
∏

v∈S

Γ(π′
vωv, ψv, tv).

Since η = η′, it follows from Proposition 4.16 that for each v ∈ S there exists
mv > 0 such that if χ : F×

v → E× is any character whose conductor is ≥ mv,
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then Γ(πvχ, ψv, t) = Γ(π′
vχ, ψv, t). Fix v ∈ S and a character χ of F×

v . By
Proposition 4.14, it suffices to show Γ(πvχ, ψv, t) = Γ(π′

vχ, ψv, t). For this, it
suffices to choose a character ω : A×/F× → E× in the last displayed equation
with ωv = χ and such that for each u ∈ S − {v}, the conductor of ωu is
bigger than mu. But the group H = F×

v

∏

u∈S−{v}O
×
u maps isomorphically

and homeomorphically onto its image in A×/F×. Hence any character of H
extends to a character of A×/F×.

Proposition 4.21. Let η be a character of A×/F×, S a finite set of closed

points of X,ψ 6= 1 a character of A/F with r(ψu) = 0 for all u in S. Suppose

that for any closed point v ∈ |X | − S, πv is an irreducible admissible infinite

dimensional representation of GL(2, Fv) with central character ηv such that al-

most all πv are unramified, there is no pair µ1, µ2 of characters of A×/F× with

πv = π(µ1v, µ2v) for almost all v ∈ |X |−S, and for any character ω of A×/F×

which is unramified at all points of S, the formal series
∏

v 6∈S L(πvωv, tv) and
∏

v 6∈S L(πvη
−1
v ω−1

v , tv) are polynomials, and there exists a number c ∈ E× and

integers nu > 0 (u ∈ S) such that

∏

v 6∈S

L(πvωv, tv) = c
∏

u∈S

(ω(πππu)tu)
nu

∏

v 6∈S

ε(πvωv, ψv, tv)L(πvη
−1
v ω−1

v , q−2
v t−1

v ).

Then there exists a cuspidal representation π of GL(2,A) with central character

η such that for every v ∈ |X | − S the local component of π at v is πv.

A proof is in [JL70], Theorem 11, Corollary 11.6, proof of Theorem 12.2.
The representation π is unique by Proposition 4.20.

4.4 Intertwining again

We can now return to the study of the intertwining operators.

Proposition 4.22. Let µ1, µ2 be characters of F×
v . Let ψ 6= 1 be a character

of Fv. Then

R(µ1, µ2, t)R(µ2, µ1, t
−1) = ε

(

µ1

µ2
, ψ, q−1

v t2
)

ε

(

µ2

µ1
, ψ, q−1

v t−2

)

.

Proof. By the transformation formula for the ε-factors, the right hand side
does not depend on ψ. We then choose ψ with kerψ ⊃ Ov and kerψ 6⊃ πππ−1

v Ov.
We can rewrite the asserted equality as

M(µ1, µ2, t)M(µ2, µ1, t
−1) = Γ

(

µ2

µ1
, ψ, q−1

v t2
)

Γ

(

µ2

µ1
, ψ, q−1

v t−2

)

.

The restriction map I(µ1, µ2)→ I(µ1/µ2), where

I(µ) = {f ∈ C∞(SL(2, Fv)); f
((

a b
0 1/a

)

x
)

= µ(a)|a|vf(x)},
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is an isomorphism (µ : F×
v → E× is a character). The group SL(2, Fv) acts

transitively on F 2
v − {(0, 0)} on the right. The stabilizer of the vector (0, 1) is

N(Fv). Then N(Fv)\ SL(2, Fv) can be identified with F 2
v −{(0, 0)} by

(

a b
c d

)

7→
(c, d) ∈ F 2

v − {(0, 0)}. Using this we identify I(µ) with

V (µ) = {f ∈ C∞(F 2
v − {(0, 0)});

f(ax) = µ(a)−1|a|−1
v f(x), a ∈ F×

v , x ∈ F 2
v − {(0, 0)}},

so I(µ1, µ2) with V (µ1/µ2). The operator M(µ1, µ2, t) corresponds to the
operator M(µ1/µ2, t

2) where

M(µ, s) : V (µνs)→ V (µ−1νs−1), (M(µ, s)f)(x) =

∫

{y;x∧y=1}

f(y)dy.

Here ∧ denotes the symplectic form (a, b)∧(c, d) = ad−bc on F 2
v . The measure

on the line ℓx = {y ∈ F 2
v ;x ∧ y = 1} is transferred from the Haar measure on

Fv via the map Fv → ℓx given by a 7→ y0 + ax where y0 is a fixed point on ℓx.
So we need to show:

M(µ, s)M(µ−1, s−1) = Γ(µ, ψ, q−1
v s)Γ(µ−1, ψ, q−1

v s−1).

For sufficiently small s ∈ C× define operators As : C∞
c (F 2

v ) → V (µνs) and
Bs : C

∞
c (F 2

v )→ V (µ−1νs) by

(Asf)(x) =

∫

Fv

f(ax)µ(a)νs(a)da, (Bsf)(x) =

∫

Fv

f(ax)µ(a)−1νs(a)da.

Restriction defines an isomorphism V (µνs)→ V0(µ), where

V0(µ) = {f ∈ C∞(O2
v − {(0, 0)});

f(ax) = µ(a)−1f(x), x ∈ O2
v − {(0, 0)}, a ∈ O×

v },

so we can identify the spaces V (µνs) as s varies.
The operators As and Bs, defined above for small s, depend rationally on s.
Hence they can be extended to all s.
Consider the Fourier transform

F : C∞
c (F 2

v )→ C∞
c (F 2

v ), (Ff)(y) =

∫

F 2
v

f(x)ψ(x ∧ y)dx.

Lemma 4.23. We have M(µ, s)As = Γ(µ−1, ψ, q−1
v s−1)Bs−1F ,

M(µ−1, s−1)Bs−1 = Γ(µ, ψ, q−1
v s)AsF.

Proof. Given f ∈ C∞
c (F 2

v ), x ∈ F 2
v − {(0, 0)}, we first show

Γ(µ−1, ψ, q−1
v s−1)(Bs−1Ff)(x) = (M(µ, s)Asf)(x).
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The operators F , As, Bs commute with the action of SL(2, Fv). This action is
transitive on F 2

v − {(0, 0)}, so we may assume x = (0, 1). We compute

(Bs−1Ff)((0, 1)) =

∫

Fv

(Ff)((0, a))µ(a)−1νs−1(a)da,

(Ff)((0, a)) =

∫

F 2
v

f(y, z)ψ(ya)dydz = ϕ̂(−a),

ϕ̂(a) =

∫

ϕ(y)ψ(−ya)dy, ϕ(y) =

∫

f(y, z)dz.

Tate’s functional equation (see [L], VII, section 3-4) is

Γ(µ−1, ψ, q−1
v s−1)

∫

ϕ̂(a)µ−1(a)νs−1(a)da =

∫

ϕ(y)µ(y)νs(y)
dy

|y| .

(Formally this can be deduced from the definition of the Γ-function and the
inversion formula ϕ(y) =

∫

ϕ̂(a)ψ(ay)da. However the left side converges for
large |s|, while the right for small |s|, so one has to show both sides are rational
in s).
We conclude that the left side of the equation to be shown is

∫

ϕ(y)µ(−y)νs(y)|y|−1dy =

∫ ∫

f(y, z)µ(−y)νs(y)|y|−1dydz

while the right side is (recall: x = (0, 1), so (0, 1) ∧ (y, z) = −y)
∫

(Asf)(−1, z)dz =
∫ ∫

f(−y, yz)µ(y)νs(y)dydz.

The proof of the second identity of the lemma is similar. �

The inverse Fourier transform coincides with F since the form (x, y) 7→ x ∧ y
in the definition of F is skew-symmetric. Hence F 2 = 1, and it follows from
the Lemma that

M(µ, s)M(µ−1, s−1)Bs−1 = Γ(µ, ψ, q−1
v s)Γ(µ−1, ψ, q−1

v s−1)Bs−1 .

However, the operator Bs−1 is onto for those s where it is defined (even its
restriction to C∞

c (F 2
v −{(0, 0)}) is onto), as V (µνs) is irreducible, so the propo-

sition follows.

Proposition 4.24. For any characters µ1, µ2 of A×/F× we have

M(µ1, µ2, t)M(µ2, µ1, t
−1) = 1.

Proof. From Proposition 4.21, M(µ1, µ2, t)M(µ2, µ2, t
−1) is equal to

q2−2gm(µ1/µ2, t
2)m(µ2/µ1, t

−2)R(µ1, µ2, t)R(µ2, µ1, t
−1),
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while Proposition 4.22 implies, for any character ψ 6= 1 of A/F , that

R(µ1, µ2, t)R(µ2, µ1, t
−1)

is
∏

v

[ε(µ1v/µ2v, ψv, q
−1
v t2v)ε(µ2v/µ1v, ψv, q

−1
v t−2

v )]

= q2g−2ε(µ1/µ2, q
−1t2)ε(µ2/µ1, q

−1t−2).

As ε(χ, t) = q1−g
∏

v ε(χv, ψv, tv) satisfies the functional equation L(χ, t) =
ε(χ, t)L(χ−1, q−1t−1), we have that

ε(µ1/µ2, q
−1t2)ε(µ2/µ1, q

−1t−2)m(µ1/µ2, t
2)m(µ2/µ1, t

−2),

which is equal to

ε(µ1/µ2, q
−1t2)L(µ2/µ1, t

2)

L(µ1/µ2, q−1t2)
· ε(µ1/µ2, q

−1t−2)L(µ1/µ2, t
2)

L(µ2/µ1, q−1t−2)

is equal to 1.

4.5 M2 = 1 via Mellin transform

We shall next study the relationship between M : C∞
c (Yα) → C∞(Yα) and

M(µ1, µ2, t) : I(µ1ν
t, µ2ν

−t) → I(µ2ν
−t, µ1ν

t), and conclude that M2 = 1.
Both are defined by the same integral formula. Here µ1, µ2 are characters of
A×/F× · αZ. Put

η(( a 0
0 b )) = µ1(a)µ2(b)|a/b|1/2νt(a/b), η : A(A)/A(F ) · αZ → E×.

It is a character. Recall that Yα = αZN(A)A(F )\GL(2,A) and (Mf)(x) =
∫

N(A)
f(
(

0 −1
1 0

)

nx)dn. Suppose that f ∈ C∞
c (Yα), and t ∈ E×. Define a

function T (f, µ1, µ2, t) : GL(2,A)→ C by

(T (f, µ1, µ2, t))(x) =

∫

αZA(F )\A(A)

f(a−1x)η(a)d×a.

Then T (f, µ1, µ2, t) ∈ I(µ1νt, µ2ν−t) is called the Mellin transform of f . The
notation T can be used also when f ∈ C∞(Yα) is not compactly supported,
whenever the integral converges.

Proposition 4.25. For ϕ ∈ C∞
c (Yα), characters µ1, µ2 : A×/F× · αZ →

E× and large enough t ∈ C×, the integral defining T converges, and

T (Mϕ,µ1, µ2, t) =M(µ2, µ1, t
−1)T (ϕ, µ2, µ1, t

−1).

Proof. By definition,

(T (f, µ1, µ2, t))(x) =

∫∫

f(( a 0
0 b )

−1
x)µ1(a)µ2(b)|a/b|1/2νt(a/b)d×ad×b.
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Put f = Mϕ, so f(( a 0
0 b )

−1
x) = |b/a|

∫

N(A)
ϕ(( b 0

0 a )
−1 ( 0 −1

1 0

)

nx)dn. Hence

(T (f, µ1, µ2, t))(x) equals

∫ ∫ ∫

ϕ(( b 0
0 a )

−1 ( 0 −1
1 0

)

nx)µ1(a)µ2(b)|b/a|1/2νt(a/b)d×ad×bdn

=

∫

N(A)

(T (ϕ, µ2, µ1, t
−1))(

(

0 −1
1 0

)

nx)dn

= (M(µ2, µ1, t
−1)T (ϕ, µ2, µ1, t

−1))(x).

If t is large enough, the integral which defines M(µ2, µ1, t
−1) converges, and so

is the integral which defines T (f, µ1, µ2, t), which justifies the computation.

Proposition 4.26. If ϕ ∈ C∞
c (Yα) then Mϕ ∈ C∞(Yα). If Mϕ ∈ C∞

c (Yα)
then M2ϕ = ϕ.

Proof. Put f = Mϕ and h = Mf = M2ϕ (h is defined if f ∈ C∞
c (Yα)). By

Proposition 4.25,

T (h, µ1, µ2, t) =M(µ2, µ1, t
−1)T (f, µ2, µ1, t

−1),

T (f, µ2, µ1, t
−1) =M(µ1, µ2, t)T (ϕ, µ1, µ2, t).

The first equation holds only for large enough t, and the second only for small
enough t. However, both sides of the second equality depend rationally on t (for
the left side, this is true since f =Mϕ is compactly supported), hence it holds
for all t in C×. Hence for large enough t, by Proposition 4.24 T (h, µ1, µ2, t) =
T (ϕ, µ1, µ2, t) for all µ1, µ2. This implies h = ϕ.

4.6 Poles, zeroes and values of R and M

Recall that νt(x) = tdeg(x) is a character of A×/F× with νt(πππv) = tv (= tdeg(v)),
and locally we write νt for the unramified character of F×

v with νt(πππv) = t.
Let µ1, µ2 be characters of F×

v . Recall:

R(µ1, µ2, t) =
L(µ1/µ2, q

−1
v t2)

L(µ1/µ2, t2)
M(µ1, µ2, t).

Proposition 4.27. (1) The function R(µ1, µ2, t) is regular at t = 0.
It has a pole at τ ∈ C× iff µ2ντ−1/µ1ντ = ν (with ν(πππv) = q−1

v ). This pole has

order 1.
The function R(µ1, µ2, t)

−1 has a pole at τ ∈ C× iff µ1ντ/µ2ντ−1 = ν. This

pole has order 1.
(2) Suppose R(µ1, µ2, t)

−1 has a pole at τ ∈ C×. Then the function

R(µ1, µ2, t) is regular at t = τ . Put L = limt→τ (t − τ)R(µ1, µ2, t)
−1 and

Q = R(µ1, µ2, τ). The operators Q : I(µ1ντ , µ2ντ−1) → I(µ2ντ−1 , µ1ντ ) and

L : I(µ2ντ−1, µ1ντ ) → I(µ1ντ , µ2ντ−1) intertwine the GL(2, Fv)-action. The

representations of GL(2, Fv) in the spaces kerQ, cokerQ, imL are isomorphic
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to the square integrable St(µ1ντ , µ2ντ−1). The representations of GL(2, Fv)
in the spaces kerL, cokerL, imQ are isomorphic to the one dimensional

x 7→ µ2(x)(νντ−1 )(x) = µ1(x)ντ (x).
(3) The statement (2) remains true with R(µ1, µ2, t) replaced by R(µ1, µ2, t)

−1.

Proof. From the first part of the proof of Proposition 4.3 it follows that

M(µ1, µ2, t)/L(µ1/µ2, t
2) = R(µ1, µ2, t)/L(µ1/µ2, q

−1
v t2)

is regular. So R(µ1, µ2, t) could have a pole at t ∈ C× only if L(µ1/µ2, q
−1
v t2)

is ∞, that is µ2ντ−1/µ1ντ = ν (recall: ν(x) = |x|), and the order of the pole is
at most 1.
A similar statement holds for R(µ1, µ2, t)

−1 = c(µ1, µ2)t
n(µ1,µ2)R(µ2, µ1, t

−1).
(The last equality follows from Proposition 4.22. In fact n(µ1, µ2) = 0,
but we do not need this.) Namely R(µ1, µ2, t)

−1 has a pole at τ ∈ C× iff
µ1ντ/µ2ντ−1 = ν. This pole has order 1.
Suppose µ1ντ/µ2ντ−1 = ν. Then µ2ντ−1/µ1ντ 6= ν so that R(µ1, µ2, t)

−1 is
regular at t = τ . With L, Q defined as in the proposition, it is clear they
commute with the GL(2, Fv)-action. If L = 0 then Q = R(µ1, µ2, τ) has no
pole, in fact it is an isomorphism. If Q = 0 then L would be an isomorphism,
as the operator limt→τ R(µ1, µ2, t)/(t− τ) would be the inverse of L. However,
the representations of GL(2, Fv) in I(µ1ντ , µ2ντ−1) and I(µ2ντ−1 , µ1ντ ) are
not equivalent, hence L 6= 0, Q 6= 0. As L 6= 0, the function R(µ1, µ2, t)

−1

does have a pole at t = τ . From the description of the invariant subspaces
of I(µ1ντ , µ2ντ−1) and I(µ2ντ−1 , µ1ντ ) the claims in the proposition on the
description of the action of GL(2, Fv) follow. The regularity of R(µ1, µ2, t) at
t = 0 follows from that of L(µ1/µ2, q

−1
v t2)−1R(µ1, µ2, t).

In conclusion, the representation of GL(2, Fv) in I(µ1νt, µ2νt−1) is reducible
iff R(µ1, µ2, t) or R(µ1, µ2, t)

−1 has a pole at t = τ . These last operators are
regular at t ∈ C× if µ1/µ2 is ramified. If µ1/µ2 is unramified and (µ1/µ2)(πππv) =
a, then the poles of R(µ1, µ2, t) are at ±

√

qv/a, and those of R(µ1, µ2, t)
−1 are

at ±
√

a/qv.

Corollary 4.28. Let µ1, µ2 be characters of A×/F× · αZ. If R(µ1, µ2, t) has
a pole at t = τ ∈ C×, then |τ | = √q. If R(µ1, µ2, t)

−1 has a pole at t = τ ∈ C×

then |τ | = q−1/2.

Indeed, a character of A×/F× which takes the value 1 at α is unitary, thus
|a| = 1.

Proposition 4.29. Let µ1, µ2 be characters of A×/F× · αZ and τ ∈ C×,

|τ | ≤ 1. If M(µ1, µ2, t) has a pole at t = τ then µ1 = µ2 and τ = ±q−1/2.

If µ1 = µ2 is denoted µ and τ = ±q−1/2 then M(µ, µ, t) has an order 1 pole

at τ . The image of the operator C = limt→τ (t − τ)M(µ, µ, t) in this case is

one dimensional and is spanned by the function f(x) = µ(det x)ντ (detx) in

I(µντ−1 , µντ ). Further, M(µ1, µ2, t) is regular at t = 0.
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Proof. Recall thatM(µ1, µ2, t) = q1−gm(µ1/µ2, t
2)R(µ1, µ2, t) wherem(µ, t) =

L(µ, t)/L(µ, t/q). Let τ ∈ C×, |τ | ≤ 1. By Corollary 4.28, the function
R(µ1, µ2, t) is regular at τ . By Proposition 4.11, the function m(µ1/µ2, t

2)
is not regular at τ only if µ1 = µ2 and τ = ±q−1/2. In these cases it has a
simple pole. HenceM(µ1, µ2, t) is regular at t = τ (0 < |τ | ≤ 1) unless µ1 = µ2

and τ = ±q−1/2 where the order of the pole is at most 1. When µ1 = µ2 = µ
and τ = ±q−1/2, the operator C = limt→τ (t− τ)M(µ, µ, t) is a scalar multiple
of R(µ, µ, t) = ⊗vR(µv, µv, τv), τv = τdeg(v).
From (1) in Proposition 4.27, the function R(µv, µv, τv)

−1 has a pole at t = τ
(tv = τv). Its statement (2) implies that the image ofR(µv, µv, τv) is one dimen-
sional and GL(2, Fv) acts on it via the character x 7→ µv(detx)ντ (detx)

deg v.
This implies the proposition, except the final claim, which follows from the
regularily of R(µ1, µ2, t) at t = 0, and that of m(µ1/µ2, t

2) at t = 0.

Let µ1, µ2 be characters of A×/F×. The operator M(µ1, µ2, t) maps
I(µ1νt, µ2νt−1) into the space I(µ2νt−1 , µ1νt), which in general is different from
I(µ1νt, µ2νt−1). However, when µ1 = µ2 = µ and t = ±1, then M(µ1, µ2, t)
maps I(µ1νt, µ2νt−1) to itself; M(µ, µ, t) is regular at t = ±1. The representa-
tion of GL(2,A) in I(µντ , µντ−1), τ = ±1, is irreducible, and hence M(µ, µ, τ)
is a scalar operator. Moreover, from Proposition 4.26, M(µ, µ, τ)2 = 1 at
τ = ±1.
Proposition 4.30. If µ is a character of A×/F× and τ = ±1, then

M(µ, µ, τ) = −1.
Proof. In view of the relation between M and R, it suffices to verify that

lim
t→1

L(1, t)

L(1, t/q)
= −qg−1 and R(µ, µ, τ) = 1.

In fact, for any character ω of F×
v , R(ω, ω, τ) is 1 at τ = ±1. Indeed, sup-

pose first ω is unramified. Then there exists a function f in I(ωντ , ωντ ) whose
restriction to GL(2, Ov) is 1. By the normalization of the intertwining op-
erator (Proposition 4.3(2)), R(ω, ω, τ)f = f . However, the representation of
GL(2, Fv) on I(ωντ , ωντ ) is irreducible, so R(ω, ω, τ) = 1 if ω is unramified.
The general case reduces to the case where ω is unramified, or even ω = 1, by
the commutativity of the diagram

I(ωντ ,ωντ )
R(ω,ω,τ)

−→ I(ωντ ,ωντ )
↑ ↑

I(ντ ,ντ )⊗ω
R(1,1,τ)
−→ I(ντ ,ντ )⊗ω

To compute the limit of the ratio of L-functions, we use the functional equation
L(1, t/q) = ε(1, t/q)L(1, t−1). Then

lim
t→1

L(1, t)/L(1, t/q) = ε(1, 1/q)−1 lim
t→1

L(1, t)/L(1, t−1).

By the definition of the global ε-function and its properties (Proposition 6.1,
6.3), ε(1, 1/q) = q1−g. Since L(1, t) has a pole of order one at t = 1, by
L’Hôpital rule limt→1 L(1, t)/L(1, t

−1) is −1.
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4.7 Global Eisenstein approach

These proofs of M2 = 1 and rationality of M(µ1, µ2, t) are based on local
computations (normalization of the intertwining operators by L-functions and
ε-factors), and the functional equation of the L-function. The following alter-
native proof of these results is based on properties of the Eisenstein map.

The alternative approach of this subsection, the following subsection 4.8, and
the computation of traces in subsection 5.2 are motivated by Tate [T68]. They
are the newest part of this paper, which – as noted in the introduction – cries
out for generalization from our context of GL(2), and for further study.

We shall use the maps ht+ : Yα → Z and ht : αZ GL(2, F )\GL(2,A) → Z.
Both maps are proper. However, ht+ is onto while the image of ht con-
tains the positive integers but only finitely many negatives. So in some sense
Yα is less compact than αZ GL(2, F )\GL(2,A), so the map E : C∞

c (Yα) →
C∞
c (αZ GL(2, F )\GL(2,A)) should have a big kernel. For ϕ in kerE we have

(1 +M)ϕ = E∗Eϕ = 0. Hence M2ϕ = ϕ. Unlike M , the operator M2 com-
mutes with the action of A(A) on C∞

c (Yα) by left translation. Hence M2ϕ = ϕ
not only for ϕ ∈ kerE but also for ϕ in the span of A(A)-translates of ϕ in
kerE. The number of such linear combinations is already sufficiently large to
imply M2 = 1. We now turn to rigorous proofs.

Proposition 4.31. Let M : C[z, z−1]n → C((z))n be a C-linear map with

M(zu) = z−1M(u) for all u ∈ C[z, z−1]n. Let I denote the natural embedding

C[z, z−1]n →֒ C((z))n. Put B = I + M . Suppose there is some k ∈ Z for

which the vector space (ImB)/B(zkC[z−1]n) is finite dimensional. Then there

is some

P (z) ∈ GL(n,C(z)) ⊂ GL(n,C((z)))

with P (z−1) = P (z)−1 and (Mu)(z) = P (z)u(z−1) for all u(z) ∈ C[z, z−1]n.

Proof. Denote by ei the column in Cn with nonzero entry only at the ith
row, where it is 1. From M(

∑

i(
∑

j cijz
j)ei) =

∑

i(
∑

j cijz
−j)Mei, we see

that (Mu)(z) = P (z)u(z−1) where P (z) is the n × n matrix with columns
Me1, . . . ,Men whose entries are in C((z)). If u is in the kernel of B = I +M ,
then P (z)u(z−1) = −u(z). Since ImB = ∪m≥1B(zmC[z−1]n) and there is
some k ≥ 0 such that B(zkC[z−1]n) has finite codimension in ImB, there is
some ℓ with B(zℓC[z−1]n) = ImB. Then kerB + zℓC[z−1]n = C[z, z−1]n. For
each i (1 ≤ i ≤ n), zℓ+1ei ∈ kerB + zℓC[z−1]n. Hence there is a matrix W ∈
M(n,C[z, z−1]) whose columnes are in kerB andW−zℓ+1 Id ∈ zℓM(n,C[z−1]),
where Id is the identity matrix. But then W ∈ GL(n,C(z)), and since the
columns of W are in kerB, we have P (z)W (z−1) = −W (z). Then P (z) =
−W (z)W (z−1)−1, and P (z−1) = −W (z−1)W (z)−1 = P (z)−1.

Corollary 4.32. A C-linear map M : C[z, z−1] → C[z, z−1] which satisfies

the conditions of Proposition 4.31 has M2 = Id.
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Recall that Yα = αZA(F )N(A)\GL(2,A). Write C∞
+ (Yα) for the space of the

E-valued functions f on Yα with (1) f(x) = 0 if ht+(x) is large enough, and (2)
f is invariant under right translation by some open subgroup U of GL(2,A).

Note that C∞
c (Yα) ⊂ C∞

+ (Yα) ⊂ C∞(Yα).

Proposition 4.33. The image of C∞
c (Yα) under M lies in C∞

+ (Yα).

Proof. For f ∈ C∞
c (Yα) there exists an integerm such that f(x) = 0 if ht+(x) <

−m. We shall show that for such f , (Mf)(x) =
∫

N(A) f
((

0 −1
1 0

)

nx
)

dx is zero

if ht+(x) > m. It suffices to show then that for x ∈ GL(2,A) with ht+(x) > m,
and any n ∈ N(A), we have ht+

((

0 −1
1 0

)

nx
)

< −m. But by Lemma 2.7 we
have

ht+(x) + ht+
((

0 −1
1 0

)

nx
)

= ht+(nx) + ht+
((

0 −1
1 0

)

nx
)

≤ 0.

Proposition 4.34. Let U be an open subgroup of GL(2, O). For every integer

m ≥ 1 define

WU
m = {ϕ ∈ C∞

c (Yα)
U ; ϕ(x) = 0 if ht+(x) < m},

Y Um = {ϕ ∈ C∞
c (αZ ·GL(2, F )\GL(2,A))U ; ϕ(x) = 0 if ht+(x) < m}.

Then E(WU
m) = Y Um for large enough m.

Proof. Put

ZUm = {ϕ ∈ C∞
c (αZ ·A(F )N(F )\GL(2,A))U ; ϕ(x) = 0 if ht+(x) < m}.

Recall that

E = s∗r
∗, s∗(x) =

∑

γ

ψ(γx), γ ∈ A(F )N(F )\GL(2, F ).

It is clear that s∗(Z
U
m) = Y Um . It suffices to show that r∗(WU

m) = ZUm for
sufficiently large m. In fact, we showed, as the first claim in the proof of
Proposition 2.13, that for an open subgroup U of GL(2,A), that there is an
integer m with the property that if z ∈ A, x ∈ GL(2,A), ht+(x) ≥ m, then
there is u ∈ U , β ∈ F , with ( 1 z0 1 )x =

(

1 β
0 1

)

xu. In other words, if x ∈ GL(2,A)

and ht+(x) is large enough, then N(A)x ⊂ N(F )xU .

We shall now give a different proof of Proposition 4.26.

Proposition 4.35. If ϕ ∈ C∞
c (Yα) and Mϕ ∈ C∞

c (Yα) then M
2ϕ = ϕ.
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Proof. Let us introduce a structure of C[z, z−1]-module on C∞(Yα) by

(zf)(x) =
1√
q
f (( α 0

0 1 )x) , f ∈ C∞(Yα), x ∈ GL(2,A).

From

(Mφ) (( a 0
0 b )x) =

∣

∣

∣

a

b

∣

∣

∣

∫

N(A)

φ
(

( b 0
0 a )

(

0 −1
1 0

)

nx
)

dn

it follows that M(zf) = z−1M(f); recall that |α| = q, and f is invariant under
α. This is the reason for introducing the factor

√
q. Let U be an open subgroup

of GL(2, O). Put

WU
c = C∞

c (Yα)
U , WU

+ = C∞
+ (Yα)

U .

Both are C[z, z−1]-submodules in C∞(Yα). Denote by WU
0 the set of functions

f ∈ C∞(Yα)
U such that f(x) = 0 if ht+(x) 6= 0. Then the natural map

WU
0 ⊗C C[z, z−1] → WU

c is an isomorphism. In the same way we have a
canonical isomorphism WU

0 ⊗C C((z))→WU
+ . The operator

M :Wc = C∞
c (Yα)→W+ = C∞

+ (Yα)

maps WU
c into WU

+ . Hence it defines a map

M :WU
0 ⊗C C[z, z−1]→WU

0 ⊗C C((z))

satisfying the first condition of Proposition 4.31.
It remains to check the second condition of that Proposition. The space WU

m

can be identified with WU
0 ⊗C z

−mC[z−1], and then the operator B = I +
M is just E∗E. Thus it suffices to show that for some m ∈ Z, the space
E∗E(WU

c )/E∗E(WU
m) is finite dimensional. Since E(WU

m) = Y Um for large m,
and {x ∈ GL(2, F )\GL(2,A); ht(x) ≤ m} is compact mod Z(A), it follows
that the subspace

E(WU
m) ⊂ C∞

c (αZ GL(2, F )\GL(2,A))U

has finite codimension. Thus M satisfies both conditions of Proposition 4.31,
and our claim follows from Corollary 4.32.

To use Proposition 4.31 to give another proof of the rationality ofM(µ1, µ2, t),
we take a different view of the Mellin transform and the relationship between
the operators M and M(µ1, µ2, t). Let Ic(µ1νz−1 , µ2νz) be the space of locally
constant functions f : GL(2,A)→ C[z, z−1] with

f (( a c0 b )x) = µ1(a)µ2(b)νz(b/a)|a/b|1/2f(x).

Let I+(µ1νz−1 , µ2νz) be

Ic(µ1νz−1 , µ2νz)⊗C[z,z−1] C((z)).
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The group αZ ⊂ GL(2,A) acts trivially on these Ic and I+. We put

Ic = ⊕Ic(µ1νz−1 , µ2νz), I+ = ⊕I+(µ1νz−1 , µ2νz),

where the sums range over all characters µ1, µ2 of A×/F× · αZ.

Proposition 4.36. There exists an isomorphism of C((z))-modules I+
∼→

C∞
+ (Yα) which is GL(2,A)-equivariant and maps Ic to C∞

c (Yα).

Proof. Define a map F : I+ → C∞
+ (Yα) by mapping

ϕ = {ϕµ1,µ2} ∈ I+, ϕµ1,µ2 ∈ Ic(µ1νz−1 , µ2νz),

to

(Fϕ)(x) = constant term of the formal series
∑

µ1,µ2

ϕµ1,µ2(x) ∈ C((z)),

for any x ∈ GL(2,A). The map F is well defined, commutes with the actions
of C((z)) and GL(2,A). The inverse of F exists, as follows. If ψ ∈ C∞

+ (Yα)
then F−1(ψ) = {ϕµ1,µ2} with ϕµ1,µ2 ∈ I+(µ1νz−1 , µ2νz) given by

ϕµ1,µ2(x) =

∫

A(A)/αZ·A(F )

ψ(h−1x)η(h)dh,

where

η : A(A)→ C((z))×, η(diag(a, b)) = µ1(a)µ2(b)νz(a/b).

The last integral converges in the field C((z)). A base of the topology is given
by znC[[z]], n > 0. The map F maps Ic to C

∞
c (Yα).

Put I0 = ⊕µ1,µ2I0(µ1, µ2), with

I0(µ1, µ2) = {f ∈ C∞(GL(2, O)); f (( a c0 b )x) = µ1(a)µ2(b)f(x)}.

Denote by M(z) the map I0 → I0 which takes I0(µ1, µ2) to I0(µ2, µ1) via
M(µ1, µ2, z). We use the isomorphism F to identify the spaces I+ and C∞

+ (Yα),
as well as Ic and C

∞
c (Yα). The natural isomorphism

Ic(µ1νz−1 , µ2νz)
∼→ I0(µ1, µ2)⊗C C[z, z−1]

and

I+(µ1νz−1 , µ2νz)
∼→ I0(µ1, µ2)⊗C C((z))

permit us to identify Ic and I0 ⊗C C[z, z−1] as well as I+ and I0 ⊗C C((z)).
Thus the map M : C∞

c (Yα)→ C∞
+ (Yα) induces an operator

M0 : I0 ⊗C C[z, z−1]→ I0 ⊗C C((z)).
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Proposition 4.37. Regard the elements of I0 ⊗C C[z, z−1] as functions of z
with values in I0 and the elements of I0 ⊗C C((z)) as formal series in z with

coefficients in I0. Then for any u ∈ I0 ⊗C C[z, z−1] one has (M0u)(z) =
M(z)u(z−1), M(z) is viewed as a formal series in z.

Proof. Write ι for the automorphism of C[z, z−1] which maps z to z−1. Given
a function f : GL(2,A) → C((z)), denote by f0 the function GL(2,A) → C

such that f0(x) is the constant term of f(x).
Define an operator

M ′′ : I0 ⊗C C[z, z−1]→ I0 ⊗C C((z)) by (M ′′u)(z) =M(z)u(z−1).

We claim that M0 = M ′′. Consider M ′′ as a map Ic → I+. We have to
show that for every f ∈ Ic, we have FM ′′f = MFf , for the isomorphism
F : I+

∼→ C∞
+ (Yα). As Ic is the sum over µ1, µ2 of Ic(µ1νz−1 , µ2νz), it suffices

to consider f in one of these summands.
For x ∈ GL(2,A), we have (M ′′f)(x) =

∫

N(A)
ιf

((

0 −1
1 0

)

nx
)

dn. Then

(FM ′′f)(x) = (M ′′f)0(x) =

∫

N(A)

f0
((

0 −1
1 0

)

nx
)

dn

(MFf)(x) =

∫

N(A)

Ff
((

0 −1
1 0

)

nx
)

dn =

∫

N(A)

f0
((

0 −1
1 0

)

nx
)

dn

are equal, as required.

4.8 A second proof of the rationality of M(µ1, µ2, t) and of the
functional equation M(µ1, µ2, t)M(µ2, µ1, t

−1) = 1

Let U , WU , A be as in the proof of Proposition 4.35. Then WU =
⊕µ1,µ2W

U
µ1,µ2

, where WU
µ1,µ2

is the space of functions f ∈WU with

f (( a 0
0 b )x) = µ1(a)

−1µ2(b)
−1f(x)

whenever deg(a) = deg(b) = 0. The natural maps I0(µ2, µ1)
U ∼→WU

µ1,µ2
permit

one to identify WU and the space IU0 . The map

M :WU ⊗C C[z, z−1]→WU ⊗C C((z))

is induced by the operator

M0 : I0 ⊗C C[z, z−1]→ I0 ⊗C C((z)).

The proof of Proposition 4.35 implies that the operator M satisfies the con-
ditions of Proposition 4.31. Then M is given by a formula of the form
(Mu)(z) = P (z)u(z−1), where P (z) is an automorphism of V which depends
on z rationally, and P (z−1) = P (z)−1. From Proposition 4.37 it follows that
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P (z) is just the restriction ofM(z) to IU0 ⊗CC[z, z
−1]. The group U may be ar-

bitrarily small. Hence M(z) is a rational function of z, and M(z)M(z−1) = 1.
Hence for any characters µ1, µ2, of αZ · F×\A×, the operator M(µ1, µ2, z)
depends rationally on z, and

M(µ1, µ2, z)M(µ1, µ2, z
−1) = 1.

The same is true for any characters µ1, µ2 of A×/F×, which are not necessarily
trivial at α. To see this, it suffices to use the identities M(µ1νt, µ2νt, z) =
M(µ1, µ2, z) and M(µ1νt, µ2νt−1 , z) =M(µ1, µ2, tz). �

5 Proof of the trace formula

5.1 The geometric part

Our aim is to compute the trace tr r0(f), where f ∈ C∞
c (GL(2,A)) and r0 is

the representation of GL(2,A) by right translation on the space A0,α of cusp
forms invariant under α. Recall that the space Ac,α of α-invariant automorphic
forms is equal to the direct sum of A0,α and AE,α = Im(E : C∞

c (Yα)→ Ac,α).
The corresponding representations of GL(2,A) are denoted by r and rE . Had
r been admissible, we would have had tr r0(f) = tr r(f) − tr rE(f), and the
computation of tr r0(f) would have reduced to that of tr r(f) and tr rE(f).
But r and rE are not admissible, so tr r(f) and tr rE(f) make no sense.
Suppose f is right invariant under the open subgroup U of GL(2, O). Denote
by AU0 , A

U
c , A

U
E the spaces of U -invariant vectors in A0,α, Ac,α, AE,α. Since

Im r0(f) ⊂ AU0 , we have tr r0(f) = tr rU0 (f), where r
U
0 (f) is the restriction of

r0(f) to A
U
0 .

Denote by χm the characteristic function of the set

{x ∈ αZ ·GL(2, F )\GL(2,A); ht(x) < m}, m > 0.

Denote by θm the operator of multiplication by χm on Ac,α.

Proposition 5.1. (1) For any m > 0, dim θm(AUc ) <∞.

(2) If m >> 1 then (a) θm acts as the identity on AU0 , and (b) θm(AUE) ⊂ AUE.

Proof. (1) The support of χm is compact mod Z(A), the quotient by the open U
is then finite. (2a) AU0 is finite dimensional, consisting of compactly supported
forms. (2b) By (2a), (1− θm)AUE = (1− θm)AUc . This lies in AUE as U -invariant
cusp forms are uniformly compactly supported. Hence θm(AUE) ⊂ AUE .

Denote by rU (f) and rUE(f) the restrictions of r(f) to A
U
c and AUE . For m such

that θm(AUE) ⊂ AUE , denote the restriction of θm to AUE again by θm. Then for
m >> 1,

tr r0(f) = tr rU0 (f) = tr(θmr
U (f))− tr(θmr

U
E (f)) = tr(θmr(f))− tr(θmr

U
E(f)).

We then proceed to compute tr(θmr(f)) and tr(θmr
U
E(f)).
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Proposition 5.2. There exist cf ∈ E and αm ∈ E with limn→∞ αm = 0, and

tr(θmr(f)) =
∑

1≤i≤4

Si(f) + cf (m−
1

2
) + αm.

Proof. The map θmr(f) : Ac,α → Ac,α is an integral operator with kernel
χm(y)Kf (x, y), where Kf (x, y) =

∑

γ∈αZ·GL(2,F ) f(x
−1γy). Then

tr(θmr(f)) =

∫

αZ·GL(2,F )\GL(2,A)

χm(x)Kf (x, x)dx.

Lemma 5.3. There exists mf > 0 such that if x ∈ GL(2,A), γ ∈ αZ GL(2, F ),
ht+(x) > mf , f(x

−1γx) 6= 0, then γ ∈ αZA(F )N(F ).

Proof. We have γx = xy, y in supp(f). Since ht+(x) + ht+(δx) ≤ 0 for δ ∈
GL(2, F )−B(F ), we have that ht+(x) > 0. If in addition we had ht+(xy) > 0,
we would conclude that γ ∈ αZB(F ). The number mf = −min{ht+(z); z ∈
GL(2, O) · supp(f)} then has the property that ht+(x) > mf , y ∈ supp(f),
implies ht+(xy) = ht+(x) + ht+(ky) > 0, where x = bk and ky = b′k′ so that
xy = bb′k (b, b′ ∈ B(A); k, k′ ∈ GL(2,A)).

Denote by ξm the characteristic function of the set {x ∈ GL(2,A); ht+(x) ≥
m}, by A′(F ) the set of nonscalar diagonal matrices, and by Ell the set of
elliptic matrices in GL(2, F ), namely those whose eigenvalues are not in F .
Put w = ( 0 1

1 0 ).

Lemma 5.4. If m is big enough, then χm(y)Kf (x, x) is the sum of

T1,m(x) = χm(x)
∑

γ∈αZ·F×

f(γ), T2,m(x) =
∑

γ∈αZ·Ell

f(x−1γx),

T3,m(x) =
1

2

∑

γ∈αZ·A′(F )

∑

δ∈A(F )\GL(2,F )

f(x−1δ−1γδx) · (1− ξm(δx)− ξm(wδx)),

T4,m(x) =
∑

a∈αZ·F×

∑

δ∈F×N(F )\GL(2,F )

f(x−1δ−1 ( a a0 a ) δx) · (1 − ξm(δx)).

Proof. T1,m(x) is the contribution of the elements γ ∈ αZ·F× in χm(x)Kf (x, x).
We claim that the contribution of the elements γ ∈ αZ · Ell in χm(x)Kf (x, x)
is T2,m(x). To show this, we need to see that if x ∈ GL(2,A), γ ∈ αZ · Ell
and Φ(x−1γx) 6= 0, then ht+(x) < m. Indeed, if ht(x) ≥ m then there is
some δ ∈ GL(2, F ) with ht+(δx) ≥ m. Lemma 5.3 then implies that δγδ−1 ∈
αZA(F )N(F ), contradicting γ ∈ αZ · Ell.
Denote by T ′

3,m(x) the contribution into χm(x)Kf (x, x) of the elements γ of

the form αjγ, j ∈ Z, γ ∈ GL(2, F ) with distinct eigenvalues in F . By T ′
4,m(x)
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we denote the contribution of the elements αjγ, j ∈ Z, γ ∈ GL(2, F ), γ /∈ F×

but the eigenvalues of γ are equal. We have

T ′
3,m(x) =

1

2
χm(x)

∑

γ∈αZ·A′(F )

∑

δ∈A(F )\GL(2,F )

f(x−1δ−1γδx).

The factor 1
2 appears since diag(b, a) is conjugate to diag(a, b). To show that

T ′
3,m(x) = T3,m(x) it suffices to show that when f(x−1δ−1γδx) 6= 0,

χm(x) = 1− ξm(δx)− ξm(wδx),

namely if ht(x) ≥ m then either ht+(δx) ≥ m or ht+(wδx) ≥ m. So if
ht(x) ≥ m, then there is some η ∈ GL(2, F ) with ht+(ηx) ≥ m. By Lemma
5.3, ηδ−1γδη−1 ∈ αZA(F )N(F ), but this implies that ηδ−1 ∈ A(F )N(F )
or ηδ−1w ∈ A(F )N(F ). Correspondingly, ht+(δx) = ht+(ηx) ≥ m or
ht+(wδx) = ht+(ηx) ≥ m, but both inequalities cannot hold simultaneously if
m > 0.
Now

T ′
4,m(x) = χm(x)

∑

a∈αZ·F×

∑

δ∈F×N(F )\GL(2,F )

f(x−1δ−1 ( a a0 a ) δx).

To show that this equals T4,m(x) we need to check that when

f(x−1δ−1 ( a a0 a ) δx) 6= 0

and ht(x) ≥ m, then ht+(δx) ≥ m. Suppose then that ht+(ηx) ≥ m for
η ∈ GL(2, F ). Then by Lemma 5.3 we have

ηδ−1 ( a a0 a ) δη
−1 ∈ αZA(F )N(F ).

Hence ηδ−1 ∈ A(F )N(F ), so that ht+(δx) = ht+(ηx) ≥ m.

We conclude that tr θmr(f) =
∑

1≤i≤4 ti,m with

ti,m =

∫

αZ·GL(2,F )\GL(2,A)

Ti,m(x)dx.

To prove the proposition it suffices to show that ti,m = Si(f)+ ci(2m−1)+βm
for all i (1 ≤ i ≤ 4), where ci does not depend on m and limβm = 0. It is clear
that t1,m → S1(f) as m → ∞. As T2,m(x) is independent of m, t2,m = S2(f).
Now

t3,m =
1

2

∑

γ∈αZ·A′(F )

∫

αZ(A(F )\GL(2,A)

f(x−1γx)(1− ξm(x)− ξm(wx))dx

=
1

2

∑

γ∈αZ·A′(F )

∫

A(A)\GL(2,A)

f(x−1γx)s(x)dx
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where

s(x) =

∫

αZA(F )\A(A)

[1− ξm(yx)− ξm(wyx)]dy

= vol{y ∈ αZA(F )\A(A); ht+(yx) < n, ht+(wyx) < n}.
Note that for y ∈ A(A), ht+(yx) = ht+(y)+ht+(x) and ht+(wyx) = ht+(wx)−
ht+(y). Hence

s(x) = |{y ∈ A(A)/αZ · A(F ); ht+(wx) −m < ht+(y) < m− ht+(x)}|.

This is the number of integers between ht+(wx) − m and m − ht+(x). So
s(x) = 2m− 1− ht+(x)− ht+(wx).

Lemma 5.5. We have ht+(x) + ht+(wx) = −2r(x), where if x = a
(

1 y
0 1

)

k,
a ∈ A(A), k ∈ GL(2, O) and y ∈ A, we put r(x) =

∑

vmax(0, logq |yv|v).

Proof. Note that y is determined up to a change y 7→ by + c, b ∈ O×, c ∈ O,
so r(x) is well defined. The asserted relation does not change if x is replaced
by axk, a ∈ A(A), k ∈ GL(2, O), so we may assume x =

(

1 y
0 1

)

∈ N(A).

Then ht+(x) = 0, and ( 0 1
1 0 )

(

1 y
0 1

)

=
(

− 1
y 1

0 y

)(

1 0
1
y 1

)

implies that ht+(wx) =

−2r(x).

Lemma 5.5 implies that

t3,m = S3(f) + (m− 1

2
)

∑

γ∈αZ·A′(F )

∫

A(A)\GL(2,A)

f(x−1γx)dx.

Next

t4,m =
∑

a∈αZ·F×

∫

αZF×N(F )\GL(2,A)

f
(

x−1 ( a a0 a )x
)

(1− ξm(x))dx

=
∑

a∈αZ·F×

∫

{x∈αZF×N(F )\GL(2,A); ht+(x)<m}

f
(

x−1 ( a a0 a )x
)

dx.

Recall that θa,f(t) =
∫

αZF×N(F )\GL(2,A)
f
(

x−1 ( a a0 a ) x
)

tht
+(x)dx is a Laurent

series at t = 0 of a rational function of t with ζF (q
−1t)−1θa,f (t) ∈ C[t, t−1].

Suppose θa,f(t) =
∑

k uk(a)t
k. Then t4,m =

∑

a∈αZ·F×

∑

k<m uk(a). Since

ζF (q
−1t) has a simple pole at t = 1, we have that θa,f (t) =

ρ(a)
1−t + θa,f(t), with

θa,f (t) without poles on 0 < |t| ≤ 1. Then

θ̃a,f (t) =
1

2
(θa,f (t) + θa,f (t

−1)) =
1

2
(θa,f (t) + θa,f (t

−1)) +
1

2
ρ(a),

θ̃a,f (1) = θa,f (1) +
1

2
ρ(a) =

1

2
ρ(a) +

∑

k

(uk(a)− ρ(a))
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= lim
m→∞

[
∑

k<m

uk(a)− (m− 1

2
)ρ(a)].

Then

t4,m =
∑

a∈αZ·F×

θ̃a,f(1) + (m− 1

2
)ρ(a) + βm, βm → 0 as m→∞,

and S4(f) =
∑

a∈αZ·F× θ̃a,f (1). Proposition 5.2 follows. �

Note that βm is 0 for sufficiently large m, as will be seen below.

5.2 The Eisenstein contribution

Next we turn to computing tr(θmr
U
E(f)) for large m. Put WU

c = C∞
c (Yα)

U ,
WU
M = (1 +M)WU

c .

Proposition 5.6. The operator E∗ maps AUE isomorphically onto WU
M .

Proof. As AUE = E(WU
c ) and E∗E = 1+M , it suffices to show that kerE∗E =

kerE. For ϕ ∈ kerE∗E we have (Eϕ,Eϕ) = (E∗Eϕ,ϕ) = 0, hence Eϕ =
0.

Definition 1. Denote byWU
m the space of f inWU

c with f(x) = 0 if ht+(x) <
m. Denote by ξm also the operator WU

m → WU
m of multiplication by the

characteristic function of the set {x ∈ Yα; ht+(x) ≥ m}. [If m > 0 then ξm is
a left inverse to the operator 1 +M :WU

m →WU
M . Indeed, if f is in WU

m , then
(Mf)(x) = 0 already when ht+(x) > −m since ht+(wnx)+ht+(nx) < 0 implies
ht+(wnx) < m and so f(wnx) = 0.] Hence πm = (1 +M)ξm : WU

M → WU
M

satisfies πmπm = πm, for m > 0. Put πm = 1− πm.

Proposition 5.7. For sufficiently large m, E∗ intertwines θm with πm, thus

πmE
∗ = E∗θm, namely the diagram

AU
E

E∗

→ WU
M

θm↓ ↓πm

AU
E

E∗

→ WU
M

is commutative.

Proof. Suppose f ∈ AUE and (1− θm)f = 0. Then f(x) = 0 for x with ht(x) ≥
m. As ξm(x) 6= 0 only on x with ht+(x) ≥ m, we have 0 = (1 +M)ξmE

∗f =
(1 − πm)E∗f , the last equality as 1 − πm = πm = (1 +M)ξm. For such f we
have E∗θmf = E∗f and πmE

∗f = E∗f .
If f ∈ AUE and θmf = 0, then by Proposition 4.34 there is ϕ ∈ WU

m with
f = Eϕ. Then

πmE
∗f = πmE

∗Eϕ = πm(1 +M)ϕ = πm(1 +M)ξmϕ = πmπ
mϕ = 0,

hence E∗θmf = πmE
∗f for such f .

Any f ∈ AUE can be written as f = f1 + f2, f1 = (1 − θm)f , f2 = θmf , thus
θmf1 = 0 and (1 − θm)f2 = 0.
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Definition 2. Recall that Yα = αZA(F )N(A)\GL(2,A). Denote by σc, σ+,
σM the representations of GL(2,A) in the spaces

Wc = C∞
c (Yα), W+ = C∞

+ (Yα), WM = (1 +M)C∞
c (Yα).

Consider σc(f), σ+(f), σM (f) as operators in the spaces WU
c , WU

+ , WU
M .

Corollary 5.8. We have tr(θm · rUE(f)) = tr(πm · σM (f)).

Proof. The operator E∗ yields an isomorphism of AUE = E(WU
c ) with WU

M

intertwining θm with πm.

In the proof of Proposition 4.35 we introduced a structure of C[z, z−1]-module
on WU

c and WU
+ , as well as isomorphisms WU

c ≃ WU
0 ⊗C C[z, z−1] and WU

+ ≃
WU

0 ⊗C C((z)), where WU
0 = {f ∈ WU

c ; f(x) = 0 if ht+(x) 6= 0}. Under these
isomorphisms, the operator M :WU

c →WU
+ corresponds to the operator

M :WU
0 ⊗C C[z, z−1]→ WU

0 ⊗C C((z)),

which satisfies the conditions of Proposition 4.31, hence has the form

(Mu)(z) = P (z)u(z−1) for u ∈WU
0 ⊗C C[z, z−1]

which is viewed as a function of z with values in WU
0 . Here P (z) is a rational

function in z with values in AutWU
0 , and P (z−1) = P (z)−1.

Now σc(f) is an endomorphism of WU
c as a C[z, z−1]-module. The correspond-

ing endomorphism of the module WU
0 ⊗C C[z, z−1] is determined by a function

B(z) in End(WU
0 ) ⊗C C[z, z−1]. The endomorphism of WU

0 ⊗C C((z)) corre-
sponding to the operator σ+(f) is determined by the same function B(z). The
relation

Mσc(f) = σ+(f)M becomes P (z)B(z−1)u(z−1) = B(z)P (z)u(z−1)

for any u ∈WU
0 ⊗C C[z, z−1], thus B(z−1) = P (z)−1B(z)P (z).

Definition 3. Under the isomorphism WU
+ ≃ WU

0 ⊗C C((z)), the subspace
WU
M = (1 +M)WU

c is mapped onto the subspace L consisting of all rational
functions of the form u(z) + P (z)u(z−1), with u ∈ WU

0 ⊗C C[z, z−1]. Put

Lm = L ∩ (WU
0 ⊗C z

−m+1C[[z]]).

Denote by Lm the set of rational functions of the form

u(z) + P (z)u(z−1) with u ∈ WU
0 ⊗C z

−mC[z−1].

For sufficiently large m we have L = Lm⊕Lm. Under the isomorphismWU
M

∼→
L, the operator πm : WU

M → WU
M corresponds to the idempotent operator

L → L with kernel Lm and image Lm. This projection will also be denoted
by πm. Thus tr(πmσM (f)) = tr(πmB), where B : L → L is the operator of
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multiplication by B(z). On the left, πm is an operator on WU
M , on the right,

on L.
Fix Q1, Q2 ∈ M(k,C[z, z−1]), k ≥ 1, such that detQi 6= 0. Suppose the func-
tion Q2(z)

−1Q1(z) is regular at z =∞, thus Q1(z) ∈ Q2(z)M(k,C[[z−1]]), and
the function Q1(z)

−1Q2(z) is regular at z = 0, thus Q2(z) ∈ Q1(z)M(k,C[[z]]).
Put R = C[z, z−1]k. For m ≥ 1, put

Rm = R ∩ z1−mQ1(z)C[[z]]
k ∩ zm−1Q2(z)C[[z

−1]]k.

Also put
Rm− = z−mQ1(z)C[z

−1]k Rm+ = zmQ2(z)C[z]
k.

Then dimRm is finite.

Proposition 5.9. We have R = Rm− ⊕Rm ⊕Rm+ ,

Rm ⊕Rm+ = R ∩ z1−mQ1(z)C[[z]]
k

and

Rm ⊕Rm− = R ∩ zm−1Q2(z)C[[z
−1]]k.

Proof. The natural map ϕ : Rm− → X− = C((z))k/z1−mQ1(z)C[[z]]
k is an

isomorphism (note that C((z))/z1−mC[[z]] ≃ z−mC[z−1] andQ1(z) is invertible
in GL(k,C((z))). The natural map

ψ : Rm+ → X+ = C((z−1))k/zm−1Q2(z)C[[z
−1]]k

is then too. The natural map f : R/Rm → X−⊕X+ is injective (by definition
of Rm as the intersection of R and the denominators of X−, X+) and the
composition of the natural map Rm+ ⊕Rm− → R/Rm with f is ϕ⊕ ψ.

Definition 4. (1) Denote by prm : R→ R the projection with kernel Rm+⊕Rm−
and image Rm. (2) If A(z) is a matrix in M(k,C[z, z−1]), denote by A[z] also
the corresponding automorphism of R = C[z, z−1]k. Denote by A0 the constant
term of A(z).

Proposition 5.10. The trace tr(prm ·A[z]) is equal to

(2m−1) trA0−resz=0 trA(z)Q
′
1(z)Q1(z)

−1dz−resz=∞ trA(z)Q′
2(z)Q2(z)

−1dz.

Proof. Define a projection prm+ : R→ R with image Rm+ and kernel Rm− +Rm,
and a projection prm− : R → R with image Rm− and kernel Rm+ + Rm. Analo-
gously to the decomposition R = Rm− ⊕Rm ⊕Rm+ , consider the decomposition

R = z−mC[z−1]k ⊕ (z1−mC[z]k ∩ zm−1C[z−1]k)⊕ zmC[z]k,

namely the case where Q1 = 1 = Q2. Denote the associated projections by pm− ,
pm, pm+ . Since the space z−mC[z−1]k/Rm− ∩ z−mC[z−1]k is finite dimensional,
the operator prm+ −pm+ has finite rank, and the operator prm− −pm− has finite
rank since zmC[z]k/Rm+ ∩ zmC[z]k is finite dimensional.
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Lemma 5.11. We have

tr(prm− ·A[z]− pm− · A[z]) =resz=0 trA(z)Q
′
1(z)Q1(z)

−1dz,

as well as

tr(prm+ ·A[z]− pm+ · A[z]) = resz=∞ trA(z)Q′
2(z)Q2(z)

−1dz.

Proof. Denote by Prm− : C((z))k → C((z))k the projection with image
z−mQ1(z)C[z

−1]k and kernel z1−mQ1(z)C[[z]]
k. Denote by Pm− : C((z))k →

C((z))k the projection with image z−mC[z−1]k and kernel z1−mC[[z]]k (thus
the case of Q1 = 1). Denote by A((z)) the endomorphism of C((z))k which is
defined by multiplication by A(z). Then Prm− = Q1((z)) · Pm− ·Q1((z))

−1. Now

Im(Prm− ·A((z))− Pm− ·A((z))) ⊂ C[z, z−1]k,

and the restriction of the operator

Prm− ·A((z))− Pm− ·A((z)) to C[z, z−1]k (⊂ C((z))k)

is equal to prm− ·A[z]− pm− · A[z]. Hence

tr(prm− ·A[z]− pm− · A[z]) = tr(Prm− · A((z))− Pm− · A((z)))

= tr(Q1((z)) · Pm− ·Q1((z))
−1 ·A((z))− Pm− ·A((z)))

= tr(Q1((z)) · Pm− · C((z))− Pm− ·Q1((z)) · C((z))), C(z) = Q1(z)
−1A(z).

As trA(z)Q′
1(z)Q1(z)

−1 = trC(z)Q′
1(z), to prove the first claim of the lemma

it suffices to show that

tr(Q1((z)) · Pm− · C((z))− Pm− ·Q1((z))C((z))) = resz=0 trC(z)Q
′
1(z)dz

for any Q1(z) ∈ M(k,C[z, z−1]), C(z) ∈ M(k,C((z))). By linearity, it suffices
to show this when the matrices Q1(z) and C(z) have a single nonzero entry.
Thus we may assume k = 1, and that Q1(z) = zb. Thus we need to verify that
for any formal power series c(z) =

∑

d cdz
d in C((z)), we have

tr[(((zb)) · Pm− − Pm− · ((zb)))c((z))] = bc−b,

where the operations here are in C((z)). The left side is equal to

tr[(((zb)) · Pm− · ((z−b))− Pm− ) · ((zb))c((z))] = tr[(Pm−b
− − Pm− ) · ((zb))c((z))]

= tr





c−b c−b+1 ... c−1
c−b−1 c−b ... c−2

...
... ...

...
c1−2b c2−2b ... c−b



 = bc−b.

The second claim of the lemma is similarly proven.
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As prm−pm = (1− prm− − prm+ )− (1 − pm− − pm+ ) = (pm− − prm− ) + (pm+ − prm+ ),
Lemma 5.11 implies that tr(prm ·A[z]− pm ·A[z])

= − resz=0 tr[A(z)Q
′
1(z)Q1(z)

−1dz]− resz=∞ tr[A(z)Q′
2(z)A2(z)

−1dz].

Since tr(pm · A[z]) = (2m− 1) trA0, the proposition follows. �

Proposition 5.12. Let ι : C[z, z−1]k → C[z, z−1]k be the involution (ιu)(z) =
u(z−1). For sufficiently large m we have 2 tr(ι ·prm ·A[z]) = trA(1)+trA(−1).
Proof. Write A(z) =

∑

k Akz
k, Ak ∈ M(k,C). Then tr(ι · pm · A[z]) =

∑

|i|<m trA2i. If m is big enough the right side here is equal to 1
2 (trA(1) +

trA(−1)). It remains to show that tr(ι · prm ·A[z]) = tr(ι · pm · A[z]) for large
enough m. As prm−pm = pm+ − prm+ +(pm− − prm− ), it suffices to show that for
large enough m

tr(ι · (pm+ − prm+ ) · A[z]) = 0 = tr(ι · (pm− − prm− ) ·A[z]).

Note that prm+ = [zm] pr0+[z
−m] and pm+ = [zm]p0+[z

−m], where as usual [zm]
here means the operator of multiplication by zm. The operators prm+ and pm+
were defined only for m > 0, but the definition extends to m = 0 so that the
two relations above hold. Now

tr(ι · (pm+ − prm+ ) · A[z]) = tr(ι · [zm](p0+ − pr0+)[z
−m] ·A[z])

= tr([z−m]ι · (p0+ − pr0+)[z
−m] ·A[z]) = tr(ι · (p0+ − pr0+)[z

−m] ·A[z][z−m])
= tr(ι · (p0+ − pr0+)[z

−2m] ·A[z]).
Recall that dimV is finite, where V = im[ι(p0+−pr0+)]. If m is big enough then

[z−2m] · A[z]V ⊂ z−1C[z−1]k ∩ z−1Q2(z)C[[z
−1]]k ⊂ ker p0+ ∩ ker pr0+ .

Hence tr(ι · (p0+− pr0+)[z
−2m] ·A[z]) is zero. Hence tr(ι(pm+ − prm+ )A[z]) is zero.

The proof of tr(ι(pm− − prm− )A[z]) = 0 for large m is analogous.

Definition 5. Fix P ∈ GL(k,C(z)) such that P (z) is regular at z = 0 and
P (z)−1 is regular at z =∞. Put S = C[z, z−1]k + P · C[z, z−1]k,

Sm = S ∩ z1−mC[[z]]k ∩ zm−1P ·C[[z]]k, Sm = z−mC[z−1]k + zmP ·C[z]k.

Fix B inM(k,C[z, z−1]) such that P−1BP lies inM(k,C[z, z−1]). Then BS ⊂
S. We denote by [B] or B[z] the operator S → S of multiplication by B(z).

Proposition 5.13. We have S = Sm ⊕ Sm. Denote by psm : S → S the

projection with image Sm and kernel Sm. Then

tr(psm ·[B]) = (2m− 1) trB0

− resz=∞ tr[B(z)P ′(z)P (z)−1]dz + tr([B]; S/C[z, z−1]k).

Here B0 is the constant term of B = B(z), and tr([B];S/C[z, z−1]k) denotes the
trace of the endomorphism of S/C[z, z−1]k induced by multiplication by B(z).
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Proof. The space S is a k-dimensional free C[z, z−1]-submodule of C(z)k. Hence
there exists a matrixD in GL(k,C(z)) such that S = D·C[z, z−1]k. Since S con-
tains C[z, z−1]k, D−1 lies in M(k,C[z, z−1]). Since S contains P ·C[z, z−1]k we
deduce that D−1P ∈M(k,C[z, z−1]). Put Q1 = D−1, Q2 = D−1P . The func-
tion Q1(z)

−1Q2(z) = P (z) is regular at z = 0. The function Q2(z)
−1Q1(z) is

regular at z =∞. Under the isomorphism S→̃C[z, z−1]k, u 7→ D−1u, the sub-
spaces Sm and Sm correspond to the subspaces Rm and Rm of Proposition 5.9.
The multiplication [B] : S → S corresponds to [A] : C[z, z−1]k → C[z, z−1]k,
A = D−1BD. Then Proposition 5.10 implies the first part of the proposition,
as well as the equality

tr(psm ·B[z]) = (2m− 1) trA0 − resz=0 trA(z)Q
′
1(z)Q1(z)

−1dz

− resz=∞ trA(z)Q′
2(z)Q2(z)

−1dz.

Here A0 is the constant term of A(z). We have

tr(AQ′
1Q

−1
1 ) = − tr(D−1BD′) = − tr(BD′D−1),

tr(AQ′
2Q

−1
2 ) = − tr(D−1BP ′P−1D−D−1BD′) = tr(BP ′P−1)− tr(BD′D−1).

As A = D−1BD, we have trA = trB, and trA0 = trB0. Hence

tr(psm ·B[z]) = (2m− 1) trB0 − resz=∞ trB(z)P ′(z)P (z)−1dz

+resz=0 trB(z)D′(z)D(z)−1dz + resz=∞ trB(z)D′(z)D(z)−1dz

+(2m− 1) trB0 − resz=∞ trB(z)P ′(z)P (z)−1dz

−
∑

ζ∈C×

resz=ζ trB(z)D′(z)D(z)−1dz.

Lemma 5.14. Suppose T ∈ GL(k,C((z))), C ∈ M(k,C[[z]]) and T−1CT ∈
M(k,C[[z]]). Then resz=0 trC(z)T

′(z)T (z)−1 = a−b, where a denotes the trace

of the operator multiplication by C in the space (C[[z]]k + TC[[z]]k)/TC[[z]]k,
while b denotes the trace of multiplication by C in the space

(C[[z]]k + TC[[z]]k)/C[[z]]k.

Proof. Both sides of the asserted equality do not change if (T,C) is replaced
by (UTV,UCU−1) where U, V ∈ GL(k,C[[z]]). We may then assume that
T is a diagonal matrix, hence that k = 1. When k = 1 both sides of the
asserted relation are simply mC(0), where m is the multiplicity of zero of T (z)
at z = 0.

It follows from the lemma that − resz=ζ tr(B(z)D′(z)D(z)−1)dz is just the
trace of the operator of multiplication by B(z) on the ζ component of the
module S/C[z, z−1]k. This, and the equality just before the lemma, implies the
proposition. �
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Suppose we have P (z−1) = P (z)−1. Replace the assumption P (z)−1B(z)P (z)
∈M(k,C[z, z−1]) in Proposition 5.13 with the stronger assumption

P (z)−1B(z)P (z) = B(z−1).

Recall that L is the space of all rational functions of the form u(z)+P (z)u(z−1)
with u ∈ C[z, z−1]m. In view of the stronger assumption, L is invariant under
multiplication by B.

Definition 6. Denote by BL the operator of multiplication by B on L. Put
Lm = L∩ z1−mC[[z]]k. Denote by Lm the set of rational functions of the form
u(z) + P (z)u(z−1) with u(z) ∈ z−mC[z−1]k.

Proposition 5.15. The space Lm is finite dimensional, and L = Lm ⊕ Lm.
Denote by πm : L→ L the projection with image Lm and kernel Lm. Suppose

the function P (z) is regular at z = ±1. Then for large enough m we have that

tr(πmBL) equals

(m− 1

2
) trB0 −

1

2
resz=∞ tr(B(z)P ′(z)P (z)−1)dz

+
c

2
+

1

4
[tr(B(1)P (1)) + tr(B(−1)P (−1))].

Here B0 is the constant term of B(z), and c is the trace of the operator of

multiplication by B(z) in the space (C[z, z−1]k + P (z)C[z, z−1]k)/C[z, z−1]k.

Proof. Let S, Sm, Sm, psm, B be as in Proposition 5.13. From P (z−1) =
P (z)−1 it follows that if u ∈ S then ũ, given by ũ(z) = P (z)u(z−1), is also in
S. Define τ : S → S by τ(u) = ũ. Then τ2 = 1, L = {u ∈ S; τ(u) = u},
Lm = Sm ∩ L, Lm = Sm ∩ L, and

tr(πmBL) =
1

2
tr(psm ·B[z]) +

1

2
tr(τ · psm ·B[z]).

The finite dimensionality of Sm and Proposition 5.13 then imply that the space
Lm is finite dimensional, and L = Lm ⊕ Lm. To deduce the last claim of the
proposition from Proposition 5.13, it remains to show that

tr(τ · psm ·[B]) =
1

2
(tr(B(1)P (1)) + tr(B(−1)P (−1)))

for large enough m.
Let D, Q1, Q2 be as in Proposition 5.13. Then under the isomorphism
S→̃C[z, z−1]k, u 7→ D−1u, the operator psm : S → S translates into the
operator prm (of Proposition 5.9), and multiplication by B : S → S translates
into multiplication by

A = D−1BD, C[z, z−1]k → C[z, z−1]k.
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The map τ : S → S translates into

[C]ι : C[z, z−1]k → C[z, z−1]k, (ιu)(z) = u(z−1), C(z) = D(z)−1P (z)D(z−1).

Hence

tr(τ · psm ·B[z]) = tr(C[z]ι · prm ·A[z]) = tr(ιprmA[z]C[z]),

which – by Proposition 5.9 – is

1

2
(trA(1)C(1) + trA(−1)C(−1)) = 1

2
tr(B(1)P (1) + trB(−1)P (−1));

note that D(z) is regular at z = ±1, since so is P (z).

If F ∈ M(k,C) and Y ⊂ Ck is an F -invariant subspace, write tr(F, Y ) for the
trace of F on Y .

Proposition 5.16. Fix P (z) ∈ GL(k,C(z)) with P (z−1) = P (z)−1. Suppose

that the function P (z) is regular on |z| = 1 and at z = 0, and that it has order

1 at all its poles ζ1, . . . , ζs inside {z ∈ C; 0 < |z| < 1}. Denote by Yi the image

of the operator limz→ζi(z − ζi)P (z) acting on Ck. Fix B(z) ∈ M(k,C[z, z−1])
and suppose B1(z) = P (z)−1B(z)P (z) ∈M(k,C[z, z−1]). Then

tr(psm ·[B]) = (2m− 1) trB0 +
1

2πi

∫

|z|=1

trB(z)P ′(z)P (z)−1dz

+
∑

1≤i≤s

tr(B(ζi) +B1(ζ
−1
i ), Yi),

with B0 being the constant term of B(z).
If in addition B1(z) = B(z−1) then

tr(πmBL) = (m− 1

2
) trB0 +

1

4πi

∫

|z|=1

trB(z)P ′(z)P (z)−1dz

+
∑

1≤i≤s

tr(B(ζi), Yi) +
1

4
[tr(B(1)P (1)) + tr(B(−1)P (−1))].

Note that the subspace Yi of C
k is invariant under B(ζi) and B1(ζ

−1
i ).

Proof. In view of Propositions 5.13 and 5.15 it suffices to verify that

1

2πi

∮

|z|=1

trB(z)P ′(z)P (z)−1dz +
∑

1≤i≤s

tr(B(ζi) +B1(ζ
−1
i ), Yi)

= tr([B], S/C[z, z−1]k)− resz=∞ trB(z)P ′(z)P (z)−1dz,

where
S = C[z, z−1]k + P (z)C[z, z−1]k.
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For any ζ 6= 0 in C denote by Mζ and Nζ the ζ-components of the C[z, z−1]-
modules S/C[z, z−1]k and S/P (z)C[z, z−1]k, respectively. From Cauchy’s for-
mula and Lemma 5.14, it follows that

1

2πi

∮

|z|=1

trB(z)P ′(z)P (z)−1dz =
∑

1<|ζ|<∞

tr([B],Mζ)

−
∑

1<|ζ|<∞

tr([B], Nζ)− resz=∞ tr(B(z)P ′(z)P (z)−1)dz.

On the other hand, tr([B], S/C[z, z−1]k) =
∑

ζ∈C× tr([B],Mζ). Hence the re-
quired identity follows from

∑

0<|ζ|<1

tr([B],Mζ) =
∑

1≤i≤s

tr(B(ζi), Yi),

∑

1<|ζ|<∞

tr([B], Nζ) =
∑

1≤i≤s

tr(B1(ζ
−1
i ), Yi).

If P (z) is regular at ζ then Mζ = 0. At each ζi, P (z) has a pole of order
one. Hence there exists isomorphisms Mζi→̃Yi which translate the operator
[B] :Mζi →Mζi to the operator of multiplication by B(ζi) on Yi. This implies
the first identity.
For the second identity, for any ζ ∈ C×, denote by N ζ the ζ-component
of the module (C[z, z−1]k +P (z)−1C[z, z−1]k)/C[z, z−1]k. Multiplication by
P (z)−1 induces an isomorphism Nζ→̃Nζ . Under this isomorphism, multiplica-
tion by B : Nζ → Nζ translates into multiplication by B1 : N ζ → N ζ , hence
tr([B], Nζ) = tr([B1], N ζ). From P (z)−1 = P (z−1) we deduce that N ζ = 0 if
P (z) is regular at z = ζ−1, and that tr([B1], N ζ−1

i
) = tr(B1(ζ

−1
i ), Yi). This

implies the second identity, hence the proposition.

5.3 Spectral terms

To deduce the trace formula from Proposition 5.16, we use properties of the
function M(µ1, µ2, t).
Recall that we have the projection πm : L→ L with kernel Lm and image Lm,
and BL denotes the operator of multiplication by B(z) on L. The operator P (z)
is the restriction to the subspace of U -invariant vectors of the operator M on
the space I0 = ⊕I0(µ1, µ2) (µ1, µ2 range over the characters of A×/F× · αZ),
which maps I0(µ1, µ2) to I0(µ2, µ1) via M(µ1, µ2, z).

Proposition 5.17. There exists af ∈ C such that for sufficiently large m,

tr(πmBL) = (m− 1

2
)af −

∑

5≤i≤8

Si(f).
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Proof. By Proposition 4.29 the function P (z) has two poles in the domain
|z| ≤ 1, namely at z = ±q−1/2, each of order 1. We have P (z−1) = P (z)−1 and
P (z)−1B(z)P (z) = B(z−1). Hence the final claim of Proposition 5.16 applies
and implies that for large enough m,

tr(πm[B]) = (m− 1

2
) trB0+

1

4πi

∮

|z|=1

trB(z)P ′(z)P (z)−1dz+tr(B(q−1/2), Y+)

+ tr(B(−q−1/2), Y−) +
1

4
[tr(B(1)P (1)) + tr(B(−1)P (−1))].

Here B0 is the constant term of B(z) and the image of the operator
limz→±q−1/2 (z∓q−1/2)P (z) is denoted by Y±. The proposition follows once we
show that

∮

|z|=1

trB(z)P ′(z)P (z)−1dz = −4πi(S5(f) + S6(f)), (1)

tr(B(q−1/2), Y+) + tr(B(−q−1/2), Y−) = −S8(f), (2)

tr(B(1)P (1)) + tr(B(−1)P (−1)) = −4S7(f). (3)

Denote by r(z) the representation of GL(2,A) by right translation in I(z) =
⊗µ1,µ2I(µ1νz−1 , µ2νz). Here µ1, µ2 are characters of A

×/F× ·αZ. Let r(z, f) be
the convolution operator defined by r(z) and the compactly supported function
f in C∞

c (GL(2,A)). Identify, as usual, I(z) to the space I0, and consider r(z, f)
as an operator in I0. From Proposition 4.36, B(z) coincides with the restriction
of r(z, f) to IU0 . Also, P (z) coincides with the restriction ofM(z) to IU0 . Hence
the integral on the left of (1) equals

∮

|z|=1

tr r(z, f)M ′(z)M(z)−1dz

=
∑

µ1,µ2

∮

|z|=1

tr I(µ2νz−1 , µ1νz, f)M
′(µ1, µ2, z)M(µ1, µ2, z)

−1dz

=
∑

µ1,µ2

∮

|z|=1

trM(µ1, µ2, z)
−1I(µ2νz−1 , µ1νz, f)M

′(µ1, µ2, z)dz

=
∑

µ1,µ2

∮

|z|=1

tr I(µ1νz, µ2νz−1 , f)M(µ1, µ2, z)
−1M ′(µ1, µ2, z)dz.

Then (1) follows from Proposition 4.9.
For (2), it follows from Proposition 4.29 that Y+ = LU , with L = ⊕Lµ, Lµ ⊂
I(µ, µ) being generated by the function x 7→ µ(x). The operator r(q−1/2, f)
acts in Lµ as the operator of multiplication by

∫

GL(2,A) f(x)µ(det x)dx. Hence

tr(B(q−1/2), Y+) = tr(r(q−1/2, f), L) =
∑

µ

∫

GL(2,A)

f(x)µ(det x)dx,
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where µ ranges over the set of characters of A×/F× · αZ. Similarly

tr(B(q−1/2), Y−) = tr(r(−q−1/2, f), L)

=
∑

µ

∫

GL(2,A)

f(x)µ(det x)ν−1(detx)dx.

Every character of A× which is trivial on F× · α2Z is either trivial on F× · αZ

or its product with ν−1 is, so (2) follows.

For (3) note that

trB(1)P (1) = tr r(1, f)M(1) =
∑

µ

tr I(µ, µ, f)M(µ, µ, 1) = −
∑

µ

tr I(µ, µ, f)

by Proposition 4.30. Similarly trB(−1)P (−1) = −∑

µ tr I(µν−1, µν−1, f).

This completes the proof of the trace formula.
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