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Abstract. We study tensor structures on (RepG)-module cate-
gories defined by actions of a compact quantum group G on unital
C∗-algebras. We show that having a tensor product which defines
the module structure is equivalent to enriching the action of G to the
structure of a braided-commutative Yetter–Drinfeld algebra. This
shows that the category of braided-commutative Yetter–Drinfeld G-
C∗-algebras is equivalent to the category of generating unitary ten-
sor functors from RepG into C∗-tensor categories. To illustrate this
equivalence, we discuss coideals of quotient type in C(G), Hopf–Galois
extensions and noncommutative Poisson boundaries.
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Introduction

This paper is a contribution to the study of compact quantum group actions
from the categorical point of view. The idea of this approach can be traced to
works of Wassermann [Was88] and Landstad [Lan92] in the 1980s. From the
modern point of view, they proved that there is a one-to-one correspondence
between full multiplicity ergodic actions of a compact groupG and unitary fiber
functors RepG → Hilbf . The quantum analogue of this result in the purely
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algebraic setting was proved by Ulbrich [Ulb89] and Schauenburg [Sch96], and
the corresponding result in the C∗-algebraic setting was proved by Bichon, De
Rijdt and Vaes [BDRV06]. Thus, for a compact quantum group G, there is
a correspondence between unitary fiber functors on RepG and full quantum
multiplicity ergodic actions of G. It is natural to ask then what corresponds
to unitary tensor functors from RepG into arbitrary C∗-tensor categories. We
show that this is braided-commutative Yetter–Drinfeld algebras, which are al-
gebras equipped with actions of G and Ĝ satisfying certain compatibility con-
ditions. Therefore such algebras play the same role for general tensor functors
as Hopf–Galois objects for fiber functors, at least in the C∗-setting.
This can also be interpreted as follows. As has recently been shown in [DCY13,
Nes], actions of G can be described in terms of (RepG)-module categories.
Then our result says that such a module category structure is defined by a
tensor functor if and only if we can also define an action of Ĝ to get a braided-
commutative Yetter–Drinfeld algebra.
As an application, we strengthen a result of Tomatsu [Tom07] characterizing
coideals of quotient type in C(G), and extend this characterization to Hopf–
Galois objects. We also show that the correspondence between Yetter–Drinfeld
algebras and tensor functors provides a rigorous link between Izumi’s theory of
Poisson boundaries of discrete quantum groups [Izu02] and categorical Poisson
boundaries we introduced in [NY14a].

Acknowledgement Part of this research was carried out while the authors
were attending the workshop “Noncommutative Geometry” at Mathematisches
Forschungsinstitut Oberwolfach in September 2013. We thank the organizers
and the staff for their hospitality. M.Y. thanks P. Schauenburg and K. Shimizu
for bringing his attention to [BN11] and [DMNO13].

1 Preliminaries

In this section we briefly summarize the theory of compact quantum groups
and their actions on operator algebras in the C∗-algebraic formulation, as well
as discuss an algebraic approach to Yetter–Drinfeld C∗-algebras.

We mainly follow the conventions of [NT13]. When A and B are C∗-algebras,
A⊗B denotes their minimal tensor product. Unless said otherwise, we assume
that C∗-categories are closed under subobjects. On the other hand, for C∗-
tensor categories we do not assume that the unit object is simple. For objects U
and V in a category C we denote by C(U, V ) the set of morphisms U → V .

1.1 Compact quantum groups

A compact quantum group G is represented by a unital C∗-algebra C(G)
equipped with a unital ∗-homomorphism ∆: C(G) → C(G) ⊗ C(G) satisfying
the coassociativity (∆⊗ ι)∆ = (ι⊗∆)∆ and cancellation properties, meaning
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that (C(G) ⊗ 1)∆(C(G)) and (1⊗ C(G))∆(C(G)) are dense in C(G) ⊗ C(G).
There is a unique state h satisfying (h⊗ ι)∆ = h (and/or (ι⊗ h)∆ = h) called
the Haar state. If h is faithful, G is called a reduced quantum group, and we
are mainly interested in such cases.
A finite dimensional unitary representation of G is a unitary element U ∈
B(HU ) ⊗ C(G), where HU is a finite dimensional Hilbert space, such that
(ι ⊗ ∆)(U) = U12U13. The dense ∗-subalgebra of C(G) spanned by matrix
coefficients of finite dimensional representations is denoted by C[G]. The inter-
twiners between two representations U and V are the linear maps T from HU

to HV satisfying V (T ⊗ 1) = (T ⊗ 1)U . The tensor product of two represen-
tations U and V is defined by U13V23 and denoted by U #⊤ V . The category
RepG of finite dimensional unitary representations with intertwiners as mor-
phisms and with tensor product #⊤ becomes a semisimple C∗-tensor category.
Using the monoidal structure on RepG, for any W ∈ RepG, we can define
an endofunctor ι ⊗ W on RepG which maps an object U to U #⊤ W and a
morphism T to T ⊗ ι. A natural transformation between such functors ι⊗W
and ι ⊗ V is given by a collection of morphisms ηU : U #⊤ W → U #⊤ V for
U ∈ RepG that are natural in U .
Denote the Woronowicz character f1 ∈ U(G) = C[G]∗ by ρ. The space U(G)
has the structure of a ∗-algebra, defined by duality from the Hopf ∗-algebra
(C[G],∆). Every finite dimensional unitary representation U of G defines a ∗-
representation πU of U(G) onHU by πU (ω) = (ι⊗ω)(U). We will often omit πU

in expressions. Using the element ρ the conjugate unitary representation to U
is defined by

Ū = (j(ρ)1/2 ⊗ 1)(j ⊗ ι)(U∗)(j(ρ)−1/2 ⊗ 1) ∈ B(H̄U )⊗ C[G],

where j denotes the canonical ∗-anti-isomorphism B(HU ) ∼= B(H̄U ) defined
by j(T )ξ̄ = T ∗ξ. We have morphisms RU : 1 → Ū #⊤ U and R̄U : 1 → U #⊤ Ū
defined by

RU (1) =
∑

i

ξ̄i ⊗ ρ−1/2ξi and R̄U (1) =
∑

i

ρ1/2ξi ⊗ ξ̄i,

where {ξi}i is an orthonormal basis in HU . They solve the conjugate equations
for U and Ū , meaning that

(R∗
U ⊗ ι)(ι ⊗ R̄U ) = ιŪ and (R̄∗

U ⊗ ι)(ι⊗RU ) = ιU .

Therefore RepG is a rigid C∗-tensor category. Woronowicz’s Tannaka–Krein
duality theorem recovers the ∗-Hopf algebra C[G] from the rigid semisimple
C∗-tensor category RepG and the forgetful fiber functor U 7→ HU .

1.2 G-algebras and (RepG)-module categories

Given a compact quantum group G, a unital G-C∗-algebra is a unital C∗-
algebra B equipped with a continuous left action α : B → C(G)⊗B of G. This
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means that α is an injective unital ∗-homomorphism such that (∆ ⊗ ι)α =
(ι ⊗ α)α and such that the space (C(G) ⊗ 1)α(B) is dense in C(G) ⊗ B. The
linear span of spectral subspaces,

B = {x ∈ B | α(x) ∈ C[G]⊗alg B},

which is a dense ∗-subalgebra of B, is called the regular subalgebra of B, and
the elements of B are called regular. More concretely, the algebra B is spanned
by the elements of the form (h⊗ ι)((x⊗ 1)α(a)) for x ∈ C[G] and a ∈ B. This
algebra is of central importance for the categorical reconstruction of B.
When D is a C∗-category, the category End(D) of endofunctors of D, with
bounded natural transformations as morphisms, forms a C∗-tensor category.
A C∗-category D endowed with a unitary tensor functor from RepG to the
opposite of End(D) is called a right (RepG)-module category. For U ∈ RepG,
we denote the induced functor on D by X 7→ X × U . An object X in a
(RepG)-module category D is said to be generating if any other object Y ∈ D
is isomorphic to a subobject of X × U for some U ∈ RepG.
Let us summarize the categorical duality theory of continuous actions of re-
duced compact quantum groups on unital C∗-algebras developed in [DCY13]
and [Nes].

Theorem 1.1 ([DCY13, Theorem 6.4; Nes, Theorem 3.3]). Let G be a reduced

compact quantum group. Then the following two categories are equivalent:

(i) The category of unital G-C∗-algebras B with unital G-equivariant ∗-homo-

morphisms as morphisms.

(ii) The category of pairs (D,M), where D is a right (RepG)-module C∗-

category and M is a generating object in D, with equivalence classes of

unitary (RepG)-module functors respecting the prescribed generating ob-

jects as morphisms.

We omit the precise definition of the equivalence relation on functors between
pairs (D,M), since it will not be important to us, see [DCY13, Theorem 7.1]
for details. Note also that, as follows from the proof, under the above corre-
spondence the fixed point algebra BG is isomorphic to EndD(M).

In the following subsections we overview the proof of the theorem.

1.3 From algebras to module categories

Given a G-C∗-algebra (B,α), we consider the category DB of G-equivariant
finitely generated right Hilbert B-modules. In other words, objects of DB

are finitely generated right Hilbert B-modules X equipped with a linear map
δ = δX : X → C(G) ⊗X which satisfies the comultiplicativity property

(∆⊗ ι)δ = (ι⊗ δ)δ,
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such that (C(G)⊗ 1)δ(X) is dense in C(G)⊗X , and such that δ is compatible
with the Hilbert B-module structure in the sense that

δ(ξa) = δ(ξ)α(a), 〈δ(ξ), δ(ζ)〉 = α(〈ξ, ζ〉),

for ξ, ζ ∈ X and a ∈ B. Here, C(G) ⊗ X is considered as a right Hilbert
(C(G) ⊗B)-module.
For X ∈ DB and U ∈ RepG, we obtain a new object X × U in DB given by
the linear space HU ⊗X , which is a right Hilbert B-module such that

(ξ ⊗ x)a = ξ ⊗ xa and 〈ξ ⊗ x, η ⊗ y〉B = (η, ξ)〈x, y〉B

for ξ, η ∈ HU , x, y ∈ X , a ∈ B, together with the compatible C(G)-coaction
map

δ = δHU⊗X : HU ⊗X → C(G)⊗HU ⊗X, δ(ξ⊗x) = U∗
21(ξ⊗δX(x))213. (1.1)

This construction is natural both in X and U , and satisfies (X × U) × V ∼=
X× (U #⊤ V ), with the obvious isomorphism mapping ζ⊗ ξ⊗x ∈ HV ⊗HU ⊗X
into ξ ⊗ ζ ⊗ x. We keep the notation HU ⊗X when we want to emphasize the
realization of the object X × U as a Hilbert module. This way DB becomes a
right (RepG)-module category.
It is known that by the stabilization argument, any object inDB is a direct sum-
mand of B×U for some U ∈ RepG. Thus we may, and often will, consider DB

as an idempotent completion of RepG via the correspondence U 7→ B×U . To
be precise, we start from a C∗-category with the same objects as in RepG, but
with the new enlarged morphism sets

CB(U, V ) = HomG,B(HU ⊗B,HV ⊗ B),

and form new objects from projections in the C∗-algebras CB(U,U), thus ob-
taining a C∗-category CB. Note that, more explicitly, the set CB(U, V ) consists
of elements T ∈ B(HU , HV )⊗B such that

V ∗
12(ι⊗ α)(T )U12 = T13.

Note also that we automatically have CB(U, V ) ⊂ B(HU , HV )⊗ B.
For every W ∈ RepG, the functor ι⊗W on RepG extends to CB in the obvious
way: given a morphism T ∈ CB(U, V ) ⊂ B(HU , HV ) ⊗ B the corresponding
morphism T ⊗ ι ∈ CB(U #⊤ W,V #⊤ W ) is T13 ∈ B(HU , HV )⊗B(HW )⊗B. The
right (RepG)-module C∗-categories CB and DB are equivalent via the functor
mapping U into B × U .
Although the category CB might appear somewhat ad hoc compared to DB,
it is more convenient for computations and some of the constructions become
simpler for CB. For example, suppose that f : B0 → B1 is a morphism of G-
C∗-algebras. Then, ι ⊗ f defines linear transformations f#,U,V : CB0

(U, V ) →
CB1

(U, V ), which together define a functor f# : CB0
→ CB1

. The pair
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(f#, ι)U,V gives a (RepG)-module homomorphism in the sense of [DCY13, Def-
inition 3.17]. Under the above equivalence DB ≃ CB, this obvious construc-
tion corresponds to the scalar extension functor DB0

→ DB1
, mapping X into

X ⊗B0
B1, discussed in [DCY13]. Note also that for the composition of G-

equivariant maps we have the desired equality of functors f#g# = (fg)# be-
tween the categories CB, rather than a natural isomorphism of functors, which
we would have for the categories DB.

1.4 From module categories to algebras

We recall the construction of an action from a pair (D,M) following [Nes].
Without loss of generality we may assume that the (RepG)-module category D
is strict. Furthermore, in order to simplify the notation, by replacing D by an
equivalent category we may assume that it is the idempotent completion of the
category RepG with larger morphism sets D(U, V ) than in RepG, such that M
is the unit object 1 in RepG and the functor ι×U on D is an extension of the
functor ι ⊗ U on RepG. Namely, we simply define the new set of morphisms
between U and V as D(M × U,M × V ).
Choose representatives Us of isomorphism classes of irreducible representations
of G, and assume that Ue = 1 for some index e. We write Hs instead of HUs

.
Consider the linear space

B =
⊕

s

(H̄s ⊗D(1, Us)). (1.2)

We may assume that RepG is small and consider also the much larger linear
space

B̃ =
⊕

U

(H̄U ⊗D(1, U)), (1.3)

where the summation is over all objects in RepG. Define a linear map
π : B̃ → B as follows. Given a finite dimensional unitary representation U ,
choose isometries wi : Hsi → HU defining a decomposition of U into irre-
ducibles. Then, for ξ̄ ⊗ T ∈ H̄U ⊗D(1, U), put

π(ξ̄ ⊗ T ) =
∑

i

w∗
i ξ ⊗ w∗

i T.

This map is independent of any choices. The space B̃ is an associative algebra
with product

(ξ̄ ⊗ T ) · (ζ̄ ⊗ S) = (ξ ⊗ ζ)⊗ (T ⊗ ι)S.

This product defines a product on B such that π(x)π(y) = π(x · y) for all
x, y ∈ B̃.
In order to define the ∗-structure on B, first define an antilinear map • on B̃
by

(ξ̄ ⊗ T )• = ρ−1/2ξ ⊗ (T ∗ ⊗ ι)R̄U for ξ̄ ⊗ T ∈ H̄U ⊗D(1, U). (1.4)
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This map does not define an involution on B̃, but on B we get an involution
such that π(x)∗ = π(x•) for all x ∈ B̃.
The ∗-algebra B has a natural left C[G]-comodule structure defined by the map
α : B → C[G] ⊗ B such that if U is a finite dimensional unitary representation
of G, {ξi}i is an orthonormal basis in HU and uij are the matrix coefficients
of U in this basis, then

α(π(ξ̄i ⊗ T )) =
∑

j

uij ⊗ π(ξ̄j ⊗ T ). (1.5)

It is shown then that the action α is algebraic in the sense of [DCY13, Defini-
tion 4.2], meaning that the fixed point algebra A = BG ∼= EndD(1) is a unital
C∗-algebra and the conditional expectation (h ⊗ ι)α : B → A is positive and
faithful. It follows that there is a unique completion of B to a C∗-algebra B
such that α extends to an action of the reduced form of G on B. This finishes
the construction of an action from a module category.

Example 1.2. Consider the action of G on itself by left translations, so we
consider the coproduct map of C(G) as an action of G on C(G). It corresponds
to the module category D = Hilbf of finite dimensional Hilbert spaces, with
the distinguished object C, considered as a (RepG)-module category using the
forgetful tensor functor U 7→ HU . Explicitly, identifying D(1, HU ) with HU ,
we get an isomorphism of the algebra B̃ constructed from the pair (Hilbf ,C)

onto C̃[G] =
⊕

U H̄U ⊗ HU , and then an isomorphism B ∼= C[G] such that

π : B̃ → B turns into the map πG : C̃[G] → C[G] that sends ξ̄ ⊗ ζ ∈ H̄U ⊗HU

into the matrix coefficient ((· ζ, ξ) ⊗ ι)(U) of U . ♦

Returning to the general case, consider the action α : B → C(G) ⊗ B defined
by a pair (D,M) as described above. The equivalence between the (RepG)-
module categories D and DB can be very concretely described as follows. First
of all, as we have discussed, by replacing D by an equivalent category we may
assume that it is the idempotent completion of RepG with new morphisms
sets. Similarly, instead of DB we consider the category CB. Then in order to
define an equivalence we just have to describe the isomorphisms D(U, V ) ∼=
CB(U, V ). The equivalence between D and CB constructed in the proof of
[Nes, Theorem 2.3] (see also Section 3 there) has the property that a morphism
T ∈ D(1, V ) is mapped into

∑

j

ζj ⊗ π(ζ̄j ⊗ T ) ∈ CB(1, V ) ⊂ B(C, HV )⊗B,

where {ζj}j is an orthonormal basis in HV and we identify B(C, HV )⊗B with
HV ⊗B. Now assume that we have a morphism T ∈ D(U, V ). We can write it
as (ι⊗R∗

U )(S⊗ ι), with S = (T ⊗ ι)R̄U ∈ D(1, V ⊗ Ū). Choose an orthonormal
basis {ξi}i in HU . Then the morphism S ⊗ ιU defines the element
∑

i,j

ζj⊗ξ̄i⊗1⊗π
(

(ζj ⊗ ξ̄i)⊗S
)

∈ CB(U, V ⊗Ū⊗U) ⊂ B(HU , HV ⊗H̄U⊗HU )⊗B,
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where we identify B(HU , HV ⊗ H̄U ⊗HU ) with HV ⊗ H̄U ⊗B(HU ). It follows
that T = (ι⊗R∗

U )(S ⊗ ι) is mapped into

∑

ij

R∗
U (ξi ⊗ · )ζj ⊗ π

(

(ζj ⊗ ξ̄i)⊗ S
)

∈ CB(U, V ) ⊂ B(HU , HV )⊗B.

Since R∗
U (ξi ⊗ ξ) = (ρ−1/2ξ, ξi), we conclude that the isomorphism D(U, V ) ∼=

CB(U, V ) is such that

D(U, V ) → CB(U, V ), T 7→
∑

i,j

θζj ,ξiπU (ρ
−1/2)⊗ π

(

(ζj ⊗ ξ̄i)⊗ (T ⊗ ι)R̄U

)

,

where θζj ,ξi ∈ B(HU , HV ) is the operator defined by θζj ,ξiξ = (ξ, ξi)ζj . This
can also be written as

T 7→
∑

i,j

θζj ,ξi ⊗ π
(

(ζj ⊗ ρ−1/2ξi)⊗ (T ⊗ ι)R̄U

)

. (1.6)

1.5 Yetter–Drinfeld algebras

Assume we have a continuous left action of α : B → C(G) ⊗ B of a compact
quantum group G on a unital C∗-algebra B, as well as a continuous right action
β : B → M(B ⊗ c0(Ĝ)) of the dual discrete quantum group Ĝ. The action β
defines a left C[G]-module algebra structure � : C[G]⊗B → B on B by

x � a = (ι⊗ x)β(x) for x ∈ C[G] and a ∈ B.

Here we view c0(Ĝ) as a subalgebra of U(G) = C[G]∗. This structure is com-
patible with involution, in the sense that

x � a∗ = (S(x)∗ � a)∗. (1.7)

We say that B is a Yetter–Drinfeld G-C∗-algebra if the following identity holds
for all x ∈ C[G] and a ∈ B:

α(x � a) = x(1)a(1)S(x(3))⊗ (x(2) � a(2)), (1.8)

where we use Sweedler’s sumless notation, so we write ∆(x) = x(1) ⊗ x(2) and
α(a) = a(1) ⊗ a(2). Note that the above identity implies that B ⊂ B is a
submodule over C[G].
Yetter–Drinfeld G-C∗-algebras can be regarded as D(G)-C∗-algebras for the
Drinfeld double D(G) of G, and they are studied in the more general setting of
locally compact quantum groups by Nest and Voigt [NV10]. It is not difficult
to see that our definition is equivalent to theirs,‡ but the case of compact

‡It should also be taken into account that the definition of coproduct on C0(Ĝ) used in
the theory of locally compact quantum groups is opposite to the one usually used for compact
quantum groups.
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quantum groups allows for the above familiar algebraic formulation, which is
more convenient for our purposes. In the case of reduced compact quantum
groups we can make it purely algebraic by getting rid of the right action β
altogether.

Proposition 1.3. Assume that G is a reduced compact quantum group and

α : B → C(G) ⊗ B is a continuous action of G on a unital C∗-algebra B.

Let B ⊂ B be the subalgebra of regular elements. Suppose that B is also a

left C[G]-module algebra such that conditions (1.7) and (1.8) are satisfied for

all x ∈ C[G] and a ∈ B. Then there exists a unique continuous right action

β : B → M(B ⊗ c0(Ĝ)) such that x � a = (ι ⊗ x)β(a) for all x ∈ C[G] and
a ∈ B.

Proof. Let us show first that for any finite dimensional unitary representation
U =

∑

i,j mij ⊗ uij of G, where mij are matrix units in B(HU ), there exists a
unital ∗-homomorphism βU : B → B ⊗B(HU ) such that

βU (a) =
∑

i,j

(uij � a)⊗mij for all a ∈ B.

From the assumption that B is a C[G]-module algebra we immediately get that
βU : B → B ⊗ B(HU ) is a unital homomorphism. Condition (1.7) implies that
this homomorphism is ∗-preserving. Thus, all we have to do is to show that βU

extends to a ∗-homomorphism B → B ⊗ B(HU ). For this observe that the
Yetter–Drinfeld condition (1.8) implies that

(α⊗ ι)βU (a) = U31(ι⊗ βU )α(a)U
∗
31.

It follows that if we let BU to be the norm closure of βU (B) in B ⊗ B(HU ),
then the restriction of the map

B ⊗B(HU ) → C(G) ⊗B ⊗B(HU ), y 7→ U∗
31(α⊗ ι)(y)U31,

to BU gives us a well-defined unital ∗-homomorphism γ : BU → C(G) ⊗ BU .
Furthermore, since γ(βU (a)) = (ι ⊗ βU )α(a) for a ∈ B, the map γ defines a
continuous action of G on BU . It follows that if we define a new C∗-norm ‖ · ‖′

on B by
‖a‖′ = max{‖a‖, ‖βU(a)‖},

then the action α of G on B extends to a continuous action on the completion
of B in this norm. But according to [DCY13, Proposition 4.4] a C∗-norm with
such property is unique. Hence ‖a‖′ = ‖a‖ for all a ∈ B, and therefore the
map βU extends by continuity to B.

Since c0(Ĝ) ∼= c0-
⊕

s B(Hs), the homomorphisms βUs
define a unital ∗-

homomorphism β : B → M(B ⊗ c0(Ĝ)) = ℓ∞-
⊕

s(B ⊗ B(Hs)) such that
(ι ⊗ x)β(a) = x � a for all x ∈ C[G] and a ∈ B. It is then straightforward
to check that β is a continuous action. The uniqueness is also clear.
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2 Yetter–Drinfeld algebras and tensor functors

In this section we prove our main result, a categorical description of a class of
Yetter–Drinfeld C∗-algebras.

2.1 Two categories

A Yetter–Drinfeld G-C∗-algebra B is said to be braided-commutative if for all
a, b ∈ B we have

ab = b(2)(S
−1(b(1)) � a). (2.1)

When b is in the fixed point algebra A = BG, the right hand side reduces to ba,
and we see that A is contained in the center of B.

The following theorem is our principal result. A closely related result in
the purely algebraic framework has been obtained by Bruguières and Na-
tale [BN11].

Theorem 2.1. Let G be a reduced compact quantum group. Then the following

two categories are equivalent:

(i) The category YDbrc(G) of unital braided-commutative Yetter–Drinfeld G-

C∗-algebras with unital G- and Ĝ-equivariant ∗-homomorphisms as mor-

phisms.

(ii) The category Tens(RepG) of pairs (C, E), where C is a C∗-tensor category

and E : RepG → C is a unitary tensor functor such that C is generated by

the image of E. The set of morphisms (C, E) → (C′, E ′) in this category is

the set of equivalence classes of pairs (F , η), where F is a unitary tensor

functor F : C → C′ and η is a natural unitary monoidal isomorphism

η : FE → E ′.

Moreover, given a morphism [(F , η)] : (C, E) → (C′, E ′), the corresponding

homomorphism of Yetter–Drinfeld C∗-algebras is injective if and only if F is

faithful, and it is surjective if and only if F is full.

The condition that C is generated by the image of E means that any object
in C is isomorphic to a subobject of E(U) for some U ∈ RepG. We remind the
reader that we assume that C∗-categories are closed under subobjects. We also
stress that we do not assume that the unit in C is simple. In fact, as will be
clear from the proof, the C∗-algebra EndC(1) is exactly the fixed point algebra
BG in the C∗-algebra B corresponding to (C, E).
We have to explain how we define the equivalence relation on pairs (F , η).
Assume (F , η) is a pair consisting of a unitary tensor functor F : C → C′ and
a natural unitary monoidal isomorphism η : FE → E ′. Then, for all objects U
and V in RepG, we get linear maps

C(E(U), E(V )) → C′(E ′(U), E ′(V )), T 7→ ηV F(T )η−1
U .
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We say that two pairs (F , η) and (F̃ , η̃) are equivalent, if the corresponding
maps C(E(U), E(V )) → C′(E ′(U), E ′(V )) are equal for all U and V .

A somewhat more concrete way of thinking of the category Tens(RepG) of pairs
(C, E) is as follows. Assume (C, E) is such a pair. First of all observe that the
functor E is automatically faithful by semisimplicity and existence of conjugates
in RepG. Then replacing the pair (C, E) by an isomorphic one, we may assume
that C is a strict C∗-tensor category containing RepG and E is simply the
embedding functor. Namely, similarly to our discussion in Section 1.4, define
new sets of morphisms between objects U and V in RepG as C(E(U), E(V ))
and then complete the new category we thus obtain with respect to subobjects.

Assume now that we have two strict C∗-tensor categories C and C′ containing
RepG, and consider the embedding functors E : RepG → C and E ′ : RepG →
C′. Assume [(F , η)] : (C, E) → (C′, E ′) is a morphism. This means that the
unitary isomorphisms ηU : F(U) → U in C′ are such that F(T ) = η−1

V TηU for
any morphism T : U → V in RepG, and the morphisms

F2;U,V : F(U)⊗F(V ) → F(U ⊗ V )

defining the tensor structure of F are given by F2;U,V = η−1
U#⊤V (ηU ⊗ ηV ). We

can then define a new unitary tensor functor F̃ from the full subcategory of C
formed by the objects in RepG ⊂ C into C′ by letting F̃(U) = U , F̃(T ) =
ηV F(T )η−1

U for T ∈ C(U, V ), and F̃2;U,V = ι. This functor can be extended
to C, by sending any subobject X ⊂ U with corresponding projection pX ∈
EndC(U) to an object corresponding to the projection F̃(pX) ∈ EndC′(U).
Such an extension is unique up to a natural unitary monoidal isomorphism.
Then by definition [(F , η)] = [(F̃ , ι)].

Therefore morphisms (C, E) → (C′, E ′) are equivalence classes of unitary tensor
functors F : C → C′ such that F is the identity functor on RepG ⊂ C and
F2;U,V = ι for all objects U and V in RepG. Two such functors F and G are
equivalent, or in other words they define the same morphism, if F(T ) = G(T )
for all morphisms T ∈ C(U, V ) and all objects U and V in RepG.

The rest of this section is devoted to the proof of Theorem 2.1.

2.2 From Yetter–Drinfeld algebras to tensor categories

In this subsection the assumption that G is reduced will not be important.

Assume that B is a braided-commutative Yetter–Drinfeld G-C∗-algebra. Con-
sider the category DB of G-equivariant finitely generated right Hilbert B-
modules discussed in Section 1.3. Then DB can be turned into a C∗-tensor
category. This construction is known for the D(G)-equivariant B-modules in
the purely algebraic approach [CW94,CVOZ94], and our key observation is that
the same formula works for the G-equivariant modules, see also [DMNO13, Sec-
tion 3.7]. Let us say that, for X ∈ DB, a vector ξ ∈ X is regular if δX(ξ) lies
in the algebraic tensor product C[G]⊗alg X .
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Lemma 2.2. Assume that X is a G-equivariant finitely generated right Hilbert

B-module, and X be its subspace of regular vectors. Then there exists a

unique unital ∗-homomorphism πX : B → EndB(X) such that πX(a)ξ =
ξ(2)(S

−1(ξ(1)) � a) for all a ∈ B and ξ ∈ X . Furthermore, we have

δX(πX(a)ξ) = (ι⊗ πX)α(a)δX(ξ) for all a ∈ B and ξ ∈ X.

Proof. It suffices to consider the case X = HU ⊗ B for an irreducible unitary
representation U = Us of G, since any other module embeds into a finite
direct sum of such modules as a direct summand. Then, using the action
β : B → M(B⊗c0(Ĝ)) and the projectionB⊗c0(Ĝ) → B⊗B(Hs) ∼= B(Hs)⊗B,
we get a unital ∗-homomorphism πX : B → EndB(HU ⊗B) = B(HU )⊗B such
that

πX(a) =
∑

i,j

mij ⊗ (uij � a),

where U =
∑

i,j mij ⊗ uij and mij are the matrix units in B(HU ) defined by
an orthonormal basis {ξi}i in HU . In order to see that this gives the correct
definition of πX , take b ∈ B. Recalling definition (1.1) of δHU⊗B, we get

(ξi ⊗ b)(1) ⊗ (ξi ⊗ b)(2) =
∑

j

u∗
ijb(1) ⊗ (ξj ⊗ b(2)).

Hence

(ξi ⊗ b)(2)(S
−1((ξi ⊗ b)(1)) � a) =

∑

j

ξj ⊗ b(2)(S
−1(u∗

ijb(1)) � a)

=
∑

j

ξj ⊗ (S−1(u∗
ij) � a)b,

where the last equality follows by braided commutativity. Since S−1(u∗
ij) = uji,

we see that πX(a) acts as stated in the formulation of the lemma.

In order to show that δX(πX(a)ξ) = (ι⊗πX )α(a)δX(ξ) we take an arbitraryX .
It suffices to consider a ∈ B. Then for ξ ∈ X we have

δX(πX(a)ξ) = δX(ξ(2)(S
−1(ξ(1)) � a))

= ξ(2)(S
−1(ξ(1)) � a)(1) ⊗ ξ(3)(S

−1(ξ(1)) � a)(2).

Applying the Yetter–Drinfeld condition (1.8) we see that the last expression
equals

ξ(4)S
−1(ξ(3))a(1)ξ(1) ⊗ ξ(5)(S

−1(ξ(2)) � a(2))

= a(1)ξ(1) ⊗ ξ(3)(S
−1(ξ(2)) � a(2)),

and this is exactly (ι⊗ πX)α(a)δX(ξ).

If X is as in the lemma, we conclude that X has the structure of an G-
equivariant B-B-correspondence. If f is a G-equivariant endomorphism of the
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right Hilbert B-module X , it is automatically a B-bimodule map because of the
way the left action of B is defined. Therefore the categoryDB can be considered
as a full subcategory of the C∗-category of G-equivariant B-B-correspondences.
The latter category has a natural C∗-tensor structure. In order to show that
DB forms a C∗-tensor subcategory it suffices to show that, given objects X and
Y in DB , we have:

(i) X ⊗B Y is a finitely generated right B-module;

(ii) the left B-module structure on X ⊗B Y induced by that on X coincides
with the left B-module structure given by Lemma 2.2 using the action of
G and the right B-module structure on X ⊗B Y .

The second property is a routine computation similar to the one in the proof of
the second part of Lemma 2.2, so we omit it. In order to check (i) it suffices to
consider modules of the form HU ⊗B. For such modules we have the following
more precise result.

Lemma 2.3. For any finite dimensional unitary representations U and V of G,

the map

TU,V : (HV ⊗B)⊗B (HU ⊗B) → HU#⊤V ⊗B,

(ζ ⊗ b)⊗ (ξ ⊗ a) 7→ ξ(2) ⊗ ζ ⊗ (S−1(ξ(1)) � b)a,

is a G-equivariant unitary isomorphism of right Hilbert B-modules. Fur-

thermore, the isomorphisms TU,V have the property TU#⊤V,W (ι ⊗ TU,V ) =
TU,V #⊤W (TV,W ⊗ ι).

Recall that the C[G]-comodule structure on HU is given by ξ 7→ ξ(1) ⊗ ξ(2) =
U∗
21(1⊗ ξ).

Proof of Lemma 2.3. Since ξ(2) ⊗ (S−1(ξ(1))� b) = b(ξ⊗ 1), it is clear that the
map TU,V defines a right B-module isomorphism

(HV ⊗ B)⊗B (HU ⊗ B) ∼= HU#⊤V ⊗ B.

It is also obvious that TU,V is isometric on the subspace spanned by vectors of
the form (ζ ⊗ 1)⊗ (ξ ⊗ 1). Since such vectors generate (HV ⊗B)⊗B (HU ⊗B)
as a right B-module, and this module is dense in (HV ⊗ B) ⊗B (HU ⊗ B),
it follows that TU,V extends by continuity to a unitary isomorphism of right
Hilbert B-modules.

Next let us check the G-equivariance. The C[G]-comodule structure on

(HV ⊗ B)⊗B (HU ⊗ B)

is given by

δ((ζ ⊗ b)⊗ (ξ ⊗ a)) = (ζ ⊗ b)(1)(ξ ⊗ a)(1) ⊗ (ζ ⊗ b)(2) ⊗ (ξ ⊗ a)(2)

= ζ(1)b(1)ξ(1)a(1) ⊗ (ζ(2) ⊗ b(2))⊗ (ξ(2) ⊗ a(2)).
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Applying ι⊗ TU,V we get

ζ(1)b(1)ξ(1)a(1) ⊗ ξ(3) ⊗ ζ(2) ⊗ (S−1(ξ(2)) � b(2))a(2).

On the other hand, using the same symbol δ for the comodule structure on
HU#⊤V ⊗ B, since (U #⊤ V )∗ = V ∗

23U
∗
13 we get

(ι⊗ δ)TU,V ((ζ ⊗ b)⊗ (ξ ⊗ a))

= δ(ξ(2) ⊗ ζ ⊗ (S−1(ξ(1)) � b)a)

= ζ(1)ξ(2)(S
−1(ξ(1)) � b)(1)a(1) ⊗ ξ(3) ⊗ ζ(2) ⊗ (S−1(ξ(1)) � b)(2)a(2).

Applying (1.8) we see that the last expression equals

ζ(1)ξ(2)S
−1(ξ(1))(1)b(1)S(S

−1(ξ(1))(3))a(1) ⊗ ξ(3) ⊗ ζ(2) ⊗ (S−1(ξ(2)) � b(2))a(2)

= ζ(1)ξ(4)S
−1(ξ(3))b(1)ξ(1)a(1) ⊗ ξ(5) ⊗ ζ(2) ⊗ (S−1(ξ(2)) � b(2))a(2)

= ζ(1)b(1)ξ(1)a(1) ⊗ ξ(3) ⊗ ζ(2) ⊗ (S−1(ξ(2)) � b(2))a(2).

Therefore the map TU,V is indeed G-equivariant.

Finally, in order to prove the equality TU#⊤V,W (ι⊗ TU,V ) = TU,V #⊤W (TV,W ⊗ ι)
it suffices to check it on tensor products of vectors of the form ξ⊗ 1, since such
tensor products generate a dense subspace of triple tensor products as right
B-modules. But for such vectors the statement is obvious.

Therefore the category DB can be considered as a full C∗-tensor subcategory
of the category of G-equivariant B-B-correspondences. In view of the previous
lemma, it is convenient to replace the tensor product by the opposite one,
so we put X × Y = Y ⊗B X . Furthermore, the functor EB : RepG → CB
mapping U into the module HU ⊗ B, together with the unitary isomorphisms
TU,V : EB(U) ⊗ EB(V ) → EB(U #⊤ V ) from Lemma 2.3, is a unitary tensor
functor. We have thus proved the following result.

Theorem 2.4. Let G be a compact quantum group and B be a unital braided-

commutative Yetter–Drinfeld G-C∗-algebra. Then the G-equivariant finitely

generated right Hilbert B-modules form a C∗-tensor category DB with tensor

product X × Y = Y ⊗B X. Furthermore, there is a unitary tensor functor

EB : RepG → DB mapping U to the module HU ⊗B.

Up to an isomorphism, the pair (DB, EB) can be more concretely described as
follows. As we discussed in Section 1.3, the category DB is equivalent to the
category CB, which is the idempotent completion of the category with the same
objects as in RepG, but with the new morphism sets

CB(U, V ) ⊂ B(HU , HV )⊗ B

consisting of elements T such that V ∗
12(ι⊗α)(T )U12 = T13. We define the tensor

product of objects in CB as in RepG, and in order to completely describe the
tensor structure it remains to write down a formula for the linear maps

CB(U, V )⊗ CB(W,Z) → CB(U #⊤ W,V #⊤ Z).
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This can be done using Lemma 2.3. First, note that by the proof of Lemma 2.2,
if U =

∑

i,j mij ⊗ uij then for any ξ ∈ HU and b ∈ B we have

ξ(2) ⊗ (S−1(ξ(1)) � b) =
∑

ij

(mij ⊗ (uij � b))(ξ ⊗ 1).

Therefore the map TU,V from Lemma 2.2 can be written as

(ζ ⊗ b)⊗ (ξ ⊗ a) 7→
∑

i,j

mijξ ⊗ ζ ⊗ (uij � b)a.

It follows that given T =
∑

l Tl ⊗ bl ∈ CB(W,Z), the morphism ι ⊗ T ∈
CB(U #⊤ W,U #⊤ Z) considered as a map HU#⊤W ⊗B → HU#⊤Z ⊗B acts by

ξ ⊗ ζ ⊗ 1 7→ TU,Z

(

∑

l

(Tlζ ⊗ bl)⊗ (ξ ⊗ 1)

)

=
∑

i,j,l

mijξ ⊗ Tlζ ⊗ (uij � bl).

On the other hand, if S =
∑

k Sk ⊗ ak ∈ CB(U, V ), then the morphism S ⊗ ι ∈
CB(U #⊤ Z, V #⊤ Z) considered as a map HU#⊤W ⊗B → HU#⊤Z ⊗B acts by

ξ ⊗ ζ ⊗ 1 7→ TV,Z

(

∑

k

(ζ ⊗ 1)⊗ (Skξ ⊗ ak)

)

=
∑

k

Skξ ⊗ ζ ⊗ ak.

To summarize, the tensor structure on CB is described by the following rules:

ιU ⊗ T =
∑

i,j,l

mij ⊗ Tl ⊗ (uij � bl), if T =
∑

l

Tl ⊗ bl ∈ CB(W,Z); (2.2)

S ⊗ ιZ = S13, if S ∈ CB(U, V ). (2.3)

In this picture the functor EB : RepG → DB becomes the strict tensor functor
FB : RepG → CB which is the identity map on objects, while on morphisms it
is T 7→ T ⊗ 1.

2.3 From tensor categories to Yetter–Drinfeld algebras

Let us turn to the construction of a Yetter–Drinfeld algebra from a pair (C, E) ∈
Tens(Rep(G)). The category C can be considered as a right (RepG)-module
category with the distinguished object 1. Therefore by Theorem 1.1 we can
construct a C∗-algebra B = BC together with a left continuous action α : B →
C(G) ⊗B. Our goal is to prove the following.

Theorem 2.5. The G-C∗-algebra B corresponding to the (RepG)-module cat-

egory C with the distinguished object 1 has a natural structure of a braided-

commutative Yetter–Drinfeld C∗-algebra.
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The construction of the Yetter–Drinfeld structure can be described for any pair
(C, E), but in order to simplify the notation we assume that C is strict, RepG
is a C∗-tensor subcategory of C and E is simply the embedding functor. This
is enough by the discussion following the formulation of Theorem 2.1.
Recall from Section 1 that the subalgebra B ⊂ B of regular elements is given
by (1.2). By Proposition 1.3, to prove the theorem we have to define a C[G]-
module algebra structure on B satisfying properties (1.7), (1.8), and (2.1).
In Section 1 we also defined a ‘universal’ algebra B̃ =

⊕

U (H̄U ⊗ C(1, U)),

together with a homomorphism π : B̃ → B. Recall from Example 1.2 that we

denote by C̃[G] =
⊕

U (H̄U ⊗HU ) the algebra B̃ corresponding to the forget-
ful fiber functor RepG → Hilbf , and then the corresponding homomorphism

πG : C̃[G] → C[G] maps ξ̄ ⊗ ζ ∈ H̄U ⊗HU into ((· ζ, ξ) ⊗ ι)(U).
Define a linear map

�̃ : C̃[G]⊗ B̃ → B̃

by letting, for ξ̄ ⊗ ζ ∈ H̄U ⊗HU and η̄ ⊗ T ∈ H̄V ⊗ C(1, V ),

(ξ̄ ⊗ ζ) �̃ (η̄ ⊗ T ) = (ξ ⊗ η ⊗ ρ−1/2ζ)⊗ (ι⊗ T ⊗ ι)R̄U

∈ H̄U#⊤V #⊤Ū ⊗ C(1, U #⊤ V #⊤ Ū). (2.4)

We remind that R̄U : 1 → U #⊤ Ū is given by R̄U (1) =
∑

i ρ
1/2ξi ⊗ ξ̄i for an

orthonormal basis {ξi} in HU . Identifying C[G] with the subspace
⊕

s

(H̄s ⊗Hs) ⊂ C̃[G],

we define a linear map

� : C[G]⊗ B → B by letting x � a = π(x �̃ a) for x ∈ C[G] and a ∈ B.

Lemma 2.6. The map � defines a left C[G]-module algebra structure on B, and
we have

πG(x) � π(a) = π(x �̃ a) for all x ∈ C̃[G] and a ∈ B̃.

Proof. We start with the second statement. We have to show that

πG(x) � π(a) = π(x �̃ a)

for x ∈ C̃[G] and a ∈ B̃. Take x = ξ̄ ⊗ ζ ∈ H̄U ⊗ HU and a = η̄ ⊗ T ∈
H̄V ⊗ C(1, V ). Choose isometries ui : Hsi → HU and vj : Hsj → HV defining
decompositions of U and V into irreducibles. Then

πG(x) � π(a) = π





∑

i,j

(u∗
i ξ ⊗ u∗

i ξ) �̃ (v∗j η ⊗ v∗j T )





= π





∑

i,j

(u∗
i ξ ⊗ v∗j η ⊗ ρ−1/2u∗

i ζ)⊗ (ι⊗ v∗j T ⊗ ι)R̄si



 , (2.5)
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where R̄si = R̄Usi
. On the other hand,

π(x �̃ a) = π
(

(ξ ⊗ η ⊗ ρ−1/2ζ)⊗ (ι⊗ T ⊗ ι)R̄U

)

= π





∑

i,j,k

(u∗
i ξ ⊗ v∗j η ⊗ ū∗

kρ
−1/2ζ)⊗ (u∗

i ⊗ v∗j T ⊗ ū∗
k)R̄U



 , (2.6)

where the morphism ūk : HŪsk
= H̄sk → HŪ = H̄U is defined by ūk ξ̄ = ukξ.

Since u∗
kπU (ρ) = πUsk

(ρ)u∗
k, R̄U =

∑

i(ui⊗ ūi)R̄si and the partial isometries ui

have mutually orthogonal images, we see that expressions (2.5) and (2.6) are
equal.

In order to show that � defines a left C[G]-module structure, take x = ξ̄⊗ ζ ∈
H̄U ⊗HU , y = µ̄⊗ ν ∈ H̄W ⊗HW and a = η̄ ⊗ T ∈ H̄V ⊗ C(1, V ). Then

x �̃ (y �̃ a) = (ξ ⊗ µ⊗ η ⊗ ρ−1/2ν ⊗ ρ−1/2ζ)⊗ (ι⊗ ι⊗T ⊗ ι⊗ ι)(ι⊗ R̄W ⊗ ι)R̄U

is an element in H̄U#⊤W#⊤V #⊤W̄#⊤Ū ⊗ C(1, U #⊤ W #⊤ V #⊤ W̄ #⊤ Ū), and

(x · y) �̃ a = (ξ ⊗ µ⊗ η ⊗ (ρ−1/2ζ ⊗ ρ−1/2ν))⊗ (ι⊗ T ⊗ ι)R̄U#⊤W

is an element in H̄(U#⊤W )#⊤V #⊤(U#⊤W ) ⊗C(1, (U #⊤ W )#⊤ V #⊤ (U #⊤ W )). The only

reason why these two elements are different is that the representations W̄ #⊤ Ū
and U #⊤ W are equivalent, but not equal. The map σ : H̄W ⊗H̄U → HU ⊗HW ,
σ(µ̄⊗ ξ̄) = ξ ⊗ µ defines such an equivalence, and we have

R̄U#⊤W = (ι⊗ ι⊗ σ)(ι ⊗ R̄W ⊗ ι)R̄U .

It follows that upon projecting to B we get an honest equality

π(x �̃ (y �̃ a)) = π((x · y) �̃ a),

that is, πG(x) � (πG(y) � π(a)) = (πG(x)πG(y)) � π(a).

It remains to show that � respects the algebra structure on B, that is, x�(ab) =
(x(1) � a)(x(2) � b) for x ∈ C[G] and a, b ∈ B.
Take elements a = η̄ ⊗ T ∈ H̄V ⊗ C(1, V ) and b = ζ̄ ⊗ S ∈ H̄W ⊗ C(1,W )
in B̃. Let U be a finite dimensional unitary representation of G. Choose an
orthonormal bases {ξi}i in HU and denote by uij the corresponding matrix
coefficients of U . Since uij = πG(ξ̄i ⊗ ξj) and ∆(uij) =

∑

k uik ⊗ ukj , we then
have to show that

π
(

(ξ̄i ⊗ ξj)�̃(a · b)
)

=
∑

k

π
(

((ξ̄i ⊗ ξk)�̃a) · ((ξ̄k ⊗ ξj)�̃b)
)

.

We have

(ξ̄i ⊗ ξj)�̃(a · b) = (ξi ⊗ η ⊗ ζ ⊗ ρ−1/2ξj)⊗ (ι⊗ T ⊗ S ⊗ ι)R̄U . (2.7)
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On the other hand,
∑

k

((ξ̄i ⊗ ξk)�̃a) · ((ξ̄k ⊗ ξj)�̃b)

=
∑

k

(

(ξi ⊗ η ⊗ ρ−1/2ξk)⊗ (ι ⊗ T ⊗ ι)R̄U )
)

·
(

(ξk ⊗ ζ ⊗ ρ−1/2ξj)⊗ (ι⊗ S ⊗ ι)R̄U

)

=
∑

k

(ξi ⊗ η ⊗ ρ−1/2ξk ⊗ ξk ⊗ ζ ⊗ ρ−1/2ξj)

⊗ (ι⊗ T ⊗ ι⊗ ι⊗ S ⊗ ι)(R̄U ⊗ R̄U ).

Since
∑

k ρ
−1/2ξk ⊗ ξk = RU (1), and RU is, up to a scalar factor, an isomeric

embedding of 1 into Ū #⊤ U , by applying π to the above expression we get

π
(

(ξi ⊗ η ⊗ ζ ⊗ ρ−1/2ξj)⊗ (ι ⊗ T ⊗R∗
U ⊗ S ⊗ ι)(R̄U ⊗ R̄U )

)

.

Since (R∗
U⊗ι)(ι⊗R̄U ) = ι, this is exactly the expression we obtain by applying π

to (2.7).

We next check compatibility (1.7) of � with the ∗-structure.

Lemma 2.7. For all x ∈ C[G] and a ∈ B we have x � a∗ = (S(x)∗ � a)∗.

Proof. Recall that the involution on B arises from the map • on B̃ defined
by (1.4), so for a = η̄ ⊗ T ∈ H̄V ⊗ C(1, V ) we have

a• = ρ−1/2η ⊗ (T ∗ ⊗ ι)R̄V ∈ H̄V̄ ⊗ C(1, V̄ ).

Let us also define an antilinear map † on C̃[G] by letting, for x = ξ̄ ⊗ ζ ∈
H̄U ⊗HU ,

x† = ζ̄ ⊗ ξ.

We then have πG(x
†) = S(πG(x))

∗. Indeed, using that (ι ⊗ S)(U) = U∗, we
compute:

S(πG(x))
∗ = S(((· ζ, ξ)⊗ ι)(U))∗ = ((· ζ, ξ) ⊗ ι)(U∗))∗

= ((· ξ, ζ)⊗ ι)(U) = πG(x
†).

Turning now to the proof of the lemma, we have to show that

π(x �̃ a•) = π((x†
�̃ a)•).

We compute:

x �̃ a• = (ξ̄ ⊗ ζ) �̃

(

ρ−1/2η ⊗ (T ∗ ⊗ ι)R̄V

)

= (ξ ⊗ ρ−1/2η ⊗ ρ−1/2ζ)⊗ (ι⊗ T ∗ ⊗ ι⊗ ι)(ι ⊗ R̄V ⊗ ι)R̄U (2.8)
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and

(x†
�̃ a)• = ((ζ̄ ⊗ ξ) �̃ a)• =

(

(ζ ⊗ η ⊗ ρ−1/2ξ)⊗ (ι⊗ T ⊗ ι)R̄U

)•

= (ρ−1/2ζ ⊗ ρ−1/2η ⊗ ξ̄)⊗
((

(ι ⊗ T ⊗ ι)R̄U

)∗
⊗ ι

U#⊤V #⊤Ū

)

R̄U#⊤V #⊤Ū ,

(2.9)

where we used that πŪ (ρ) = j(πU (ρ))
−1, that is, ρξ̄ = ρ−1ξ. Similarly to the

proof of the previous lemma, the main reason why expressions (2.8) and (2.9)

are not equal is that the representations U #⊤ V̄ #⊤ Ū and U #⊤ V #⊤ Ū are equiv-

alent, but not equal. The map σ(ξ ⊗ η̄ ⊗ ζ̄) = ζ ⊗ η ⊗ ξ̄ defines such an equiv-
alence, and then

R̄U#⊤V #⊤Ū = (ι⊗ ι⊗ ι⊗ σ)(ι ⊗ ι⊗RU ⊗ ι⊗ ι)(ι ⊗ R̄V ⊗ ι)R̄U .

Since (R̄∗
U ⊗ ι)(ι ⊗RU ) = ι, we get

((

(ι⊗ T ⊗ ι)R̄U

)∗
⊗ ι
)

R̄U#⊤V #⊤Ū = σ(ι ⊗ T ∗ ⊗ ι⊗ ι)(ι⊗ R̄V ⊗ ι)R̄U .

From this we see that upon applying π expressions (2.8) and (2.9) indeed
become equal.

Our next goal is to check the Yetter–Drinfeld condition (1.8).

Lemma 2.8. For all x ∈ C[G] and a ∈ B we have

α(x � a) = x(1)a(1)S(x(3))⊗ (x(2) � a(2)).

Proof. Let U and V be finite dimensional unitary representations of G. Choose
orthonormal bases {ξi}i in HU and {ηk}k in HV , and let uij and vkl be the
matrix coefficients of U and V , respectively. In order to simplify the compu-
tations assume that the vectors ξi are eigenvectors of ρ, so ρξi = ρiξi for some
positive number ρi. Then the matrix coefficients of Ū in the basis {ξ̄i}i are
given by

ūij = ρ
1/2
i ρ

−1/2
j u∗

ij = ρ
1/2
i ρ

−1/2
j S(uji). (2.10)

Consider elements x = ui0j0 ∈ C[G] and a = π(ηk0
⊗ T ) ∈ B for some T ∈

C(1, V ). Recalling definition (1.5) of the action α, we have

α(a) =
∑

k

vk0k ⊗ π(η̄k ⊗ T ).

It follows that

x(1)a(1)S(x(3))⊗ (x(2) � a(2)) =
∑

i,j,k

ui0ivk0kS(ujj0)⊗ (uij � π(η̄k ⊗ T ))

=
∑

i,j,k

ρ
−1/2
j ui0ivk0kS(ujj0)⊗ π

(

(ξi ⊗ ηk ⊗ ξ̄j)⊗ (ι⊗ T ⊗ ι)R̄U

)

. (2.11)
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On the other hand,

α(x � a) = ρ
−1/2
j0

α
(

π
(

(ξi0 ⊗ ηk0
⊗ ξ̄j0)⊗ (ι⊗ T ⊗ ι)R̄U

))

= ρ
−1/2
j0

∑

i,j,k

ui0ivk0kūj0j ⊗ π
(

(ξi ⊗ ηk ⊗ ξ̄j)⊗ (ι⊗ T ⊗ ι)R̄U

)

.

(2.12)

Since ρ
−1/2
j S(ujj0) = ρ

−1/2
j0

ūj0j , we see that expressions (2.11) and (2.12) are
equal.

It remains to check the braided commutativity condition (2.1).

Lemma 2.9. For all and a, b ∈ B we have ab = b(2)(S
−1(b(1)) � a).

Proof. Let U , V , {ξi}i, uij , ūij be as in the proof of the previous lemma. Note
that by swapping the roles of U and Ū in (2.10) we get

S−1(uij) = ρ
−1/2
i ρ

1/2
j ūji.

(Recall again that ρξ̄i = ρ−1ξi.) Using this, take P ∈ C(1, U), η̄ ⊗ T ∈
H̄V ⊗ C(1, V ) and for a = π(η̄ ⊗ T ) and b = π(ξ̄i ⊗ P ) compute:

b(2)(S
−1(b(1)) � a) =

∑

j

π(ξ̄j ⊗ P )(S−1(uij) � π(η̄ ⊗ T ))

=
∑

j

ρ
−1/2
i ρ

1/2
j π(ξ̄j ⊗ P )π(( ¯̄ξj ⊗ ξ̄i) �̃ (η̄ ⊗ T ))

=
∑

j

ρ
−1/2
i ρ

1/2
j π(ξ̄j ⊗ P )

π
(

(ξ̄j ⊗ η ⊗ ρ−1/2ξ̄i)⊗ (ι⊗ T ⊗ ι)R̄Ū

)

=
∑

j

ρ
1/2
j π

(

(ξj ⊗ ξ̄j ⊗ η ⊗ ¯̄ξi)⊗ (P ⊗ (ι⊗ T ⊗ ι)R̄Ū )
)

.

Denote by w the map ξ 7→ ¯̄ξ defining an equivalence between U and ¯̄U . Then
R̄Ū = (ι⊗ w)RU . Hence the above expression equals

∑

j

ρ
1/2
j π

(

(ξj ⊗ ξ̄j ⊗ η ⊗ ξi)⊗ (P ⊗ (ι⊗ T ⊗ ι)RU )
)

= π
(

(R̄U (1)⊗ η ⊗ ξi)⊗ (ι⊗ ι⊗ T ⊗ ι)(ι⊗RU )P
)

.

Since R̄U is, up to a scalar factor, an isometric embedding of 1 into U #⊤ Ū , the
last expression equals

π
(

(η ⊗ ξi)⊗ (R̄∗
U ⊗ T ⊗ ι)(ι⊗RU )P

)

= π((η ⊗ ξi)⊗ (T ⊗ P )).

But this is exactly ab.

This finishes the proof of Theorem 2.5.

Documenta Mathematica 19 (2014) 1105–1139



Duality for Yetter–Drinfeld Algebras 1125

2.4 Functoriality

Consider the category YDbrc(G) of unital braided-commutative Yetter–Drinfeld
G-C∗-algebras. For every object B we have constructed isomorphic pairs
(DB , EB) and (CB,FB). Using the extension of scalars functor discussed at
the end of Section 1.3, either of this constructions extends to a functor, giv-
ing us two naturally isomorphic functors T : YDbrc(G) → Tens(RepG) and
T̃ : YDbrc(G) → Tens(RepG). Namely, giving a morphism f : B0 → B1 we
have a functor f# : DB0

→ DB1
which maps a G-equivariant finitely generated

right Hilbert B0-module X into X ⊗B0
B1. We define a tensor structure on

this functor by using the isomorphisms

(X ⊗B0
B1)⊗B1

(Y ⊗B0
B1) ∼= (X ⊗B0

Y )⊗B0
B1

such that (x ⊗ a) ⊗ (y ⊗ b) 7→ x ⊗ y(2) ⊗ (S−1(y(1)) � a)b. That these maps
are indeed well-defined and that they give us a tensor structure on f#, is not
difficult to check using arguments similar to those in the proof of Lemma 2.3.
The tensor functor f# together with the obvious isomorphisms

ηU : (HU ⊗B0)⊗B0
B1 → HU ⊗B1

define a morphism (DB0
, EB0

) → (DB1
, EB1

).
If we consider the map B 7→ (CB,FB) instead of B 7→ (DB , EB), then the
situation is even better: in this case the functor f# : CB0

→ CB1
defined by a

morphism f : B0 → B1 is a strict tensor functor, meaning that f#(T ⊗ S) =
f#(T )⊗ f#(S) on morphisms. This follows immediately from equations (2.2)
and (2.3) describing the tensor structure on the categories CB.

Let us now construct a functor S in the opposite direction. It is possible to
define this functor on the whole category Tens(RepG), but in order to simplify
notation we will construct it only on the full subcategory Tenssi(RepG) consist-
ing of pairs (C, E) such that C is a strict C∗-tensor category containing RepG, C
is generated by RepG, and that E is the embedding functor. Since the embed-
ding functor Tenssi(RepG) → Tens(RepG) is an equivalence of categories, any
functor Tenssi(RepG) → YDbrc(G) extends to Tens(RepG), and this extension
is unique up to a natural isomorphism.
Given two objects (C0, E0) and (C1, E1) in Tenssi(RepG), consider the cor-
responding Yetter–Drinfeld C∗-algebras B0 and B1, and take a morphism
[(F , η)] : (C0, E0) → (C1, E1). As we discussed after the formulation of Theo-
rem 2.1, we may assume that the restriction of F to RepG ⊂ C0 is the identity
tensor functor and ηU = ι. In this case it is obvious from the construction of the
algebras Bi that the maps H̄U ⊗C0(1, U) → H̄U ⊗C1(1, U), ξ̄⊗T 7→ ξ̄⊗F(T ),
define a unital ∗-homomorphism B0 → B1 that respects the C[G]-comodule and
C[G]-module structures. It extends to a homomorphism f of C∗-algebras by
[DCY13, Proposition 4.5]. It is also clear by our definition of morphisms in the
category of pairs (C, E) that f depends only on the equivalence class of (F , ι).
We thus get a functor S : Tenssi(RepG) → YDbrc(G).
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Furthermore, it is clear from the construction that the morphism f : B0 → B1

defined by a morphism [(F , ι)] : (C0, E0) → (C1, E1) is injective if and only if
the maps C0(1, Us) → C1(1, Us), T 7→ F(T ), are injective for all s, and f is
surjective if and only if these maps are surjective. Using Frobenius reciprocity it
is easy to see that the maps C0(1, Us) → C1(1, Us) are injective, resp. surjective,
for all s if and only if the maps C0(U,UV ) → C1(U, V ) are injective, resp.
surjective, for all objects U and V in RepG ⊂ C0, C1. Since the categories Ci
are generated by RepG, it follows that f is injective if and only if F is faithful,
and f is surjective if and only if F is full.

It is also worth noting that since a morphism T ∈ C(1, U) is zero if and only if
T ∗T = 0 in EndC(1), we have, given a morphism [(F , η)] : (C0, E0) → (C1, E1),
that F is faithful if and only if the homomorphism EndC0

(1) → EndC1
(1)

is injective. On the C∗-algebra level this corresponds to the simple property
that a morphism B0 → B1 of G-C∗-algebras for a reduced compact quantum
group G is injective if and only if its restriction to the fixed point algebra BG

0

is injective.

2.5 Equivalence of categories

To finish the proof of Theorem 2.1 it remains to show that the func-
tors T : YDbrc(G) → Tens(RepG) or T̃ : YDbrc(G) → Tens(RepG), and
S : Tens(RepG) → YDbrc(G) are inverse to each other up to an isomorphism.

Let us start with a strict C∗-tensor category C containing RepG and construct a
braided-commutative Yetter–Drinfeld C∗-algebra B as described in Section 2.3.
By Theorem 1.1 the (RepG)-module C∗-categories C and CB are equivalent. We
will use the concrete form of this equivalence explained in Section 1.4. Recall
that CB is the idempotent completion of the category RepG with morphisms
CB(U, V ) ⊂ B(HU , HV ) ⊗ B, and we have a unitary equivalence F : C → CB
such that F(U) = U for U ∈ RepG, while the action of F on morphisms is
given by (1.6), so

C(U, V ) ∋ T 7→
∑

i,j

θζj ,ξi ⊗ π
(

(ζj ⊗ ρ−1/2ξi)⊗ (T ⊗ ι)R̄U

)

,

where {ξi}i and {ζj}j are orthonormal bases in HU and HV , respectively. We
claim that F is a strict tensor functor on the full subcategory of C consisting
of objects U ∈ RepG. This tensor functor extends then to a unitary tensor
functor on the whole category C. Thus, we have to show that F(S ⊗ T ) =
F(S) ⊗ F(T ) on morphisms in C. Since F is an equivalence of right (RepG)-
module categories, we already know that this is true for morphisms S in C and
morphisms T in RepG; this is also not difficult to check directly, since the
formula for F(S)⊗ ι does not involve the Yetter–Drinfeld structure, see (2.3).
Therefore it remains to check that F(ι⊗ T ) = ι⊗F(T ) for morphisms T in C.
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Take T ∈ C(V,W ). Let {ηk}k be an orthonormal basis in HW . We then have

F(ιU ⊗ T ) =
∑

i,j,k,l

θξi⊗ηk,ξj⊗ζl

⊗ π
(

(ξi ⊗ ηk ⊗ (ρ−1/2ξj ⊗ ρ−1/2ζl))⊗ ((ι ⊗ T )⊗ ιU#⊤W )R̄U#⊤W

)

.

Similarly to the proof of Lemma 2.6, using that U #⊤ W is equivalent to W̄ #⊤ Ū
and that modulo this equivalence R̄U#⊤W coincides with (ι ⊗ R̄W ⊗ ι)R̄U , we
see that the above expression equals

∑

i,j,k,l

θξi⊗ηk,ξj⊗ζl ⊗ π
(

(ξi ⊗ ηk ⊗ ρ−1/2ζl ⊗ ρ−1/2ξj)⊗ (ι⊗ (T ⊗ ι)R̄W ⊗ ι)R̄U

)

.

The operators θξi,ξj are the matrix unitsmij in B(HU ). Recalling the definition
of � we can therefore write the above expression as

∑

i,j,k,l

mij ⊗ θηk,ζl ⊗
(

uij � π
(

(ηk ⊗ ρ−1/2ζl)⊗ (T ⊗ ι)R̄W

))

,

where uij are the matrix units of U . According to (2.2) this is exactly the
formula for ιU ⊗F(T ).

Conversely, consider a unital braided-commutative Yetter–Drinfeld C∗-al-
gebra B and the corresponding pair (CB,FB). Let BC be the Yetter–Drinfeld
C∗-algebra constructed from this pair. By Theorem 1.1 we know that there
exists an isomorphism λ : BC → B intertwining the actions of G. So all we
have to do is to check that λ is also a C[G]-module map. The isomorphism λ
is defined by

λ(π(ζ̄ ⊗ T )) = (ζ̄ ⊗ ι)(T ) (2.13)

for ζ ∈ HV and T ∈ CB(1, V ) ⊂ B(C, HV ) ⊗ B = HV ⊗ B, see the proof of
[Nes, Theorem 2.3]. As above, fix finite dimensional unitary representations U
and V of G and orthonormal bases {ξi}i and {ζk}k in HU and HV , and let uij

be the matrix coefficients of U . Take

T =
∑

k

ζk ⊗ bk ∈ CB(1, V ) ⊂ HV ⊗ B.

Then λ(π(ζ̄k0
⊗ T )) = bk0

, and we want to check that

λ(ui0j0 � π(ζ̄k0
⊗ T )) = ui0j0 � bk0

.

By definition we have

ui0j0 � π(ζ̄k0
⊗ T ) = π((ξ̄i0 ⊗ ξj0) �̃ (ζ̄k0

⊗ T ))

= π
(

(ξi0 ⊗ ζk0
⊗ ρ−1/2ξj0)⊗ (ι⊗ T ⊗ ι)R̄U

)

.
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In order to compute the image of this element under λ, we need an explicit
formula for (ι ⊗ T ⊗ ι)R̄U ∈ CB(1, U ⊗ V ⊗ Ū) ⊂ HU#⊤V #⊤Ū ⊗ B. By (2.2)
and (2.3), the element

ιU ⊗ T ⊗ ιU ∈ CB(U #⊤ Ū , U #⊤ V #⊤ Ū) ⊂ B(HU )⊗HV ⊗B(H̄U )⊗ B

equals
∑

i,j,k mij ⊗ ζk ⊗ 1⊗ (uij � bk). It follows that

(ι⊗ T ⊗ ι)R̄U =
∑

i,j,k

(ξi ⊗ ζk ⊗ ρ1/2ξj)⊗ (uij � bk).

Therefore

ui0j0 � π(ζ̄k0
⊗ T )

= π



(ξi0 ⊗ ζk0
⊗ ρ−1/2ξj0)⊗





∑

i,j,k

(ξi ⊗ ζk ⊗ ρ1/2ξj)⊗ (uij � bk)







 .

Applying λ we get the required equality λ(ui0j0 � π(ζ̄k0
⊗ T )) = ui0j0 � bk0

.
Since the algebra B is spanned by such elements bk0

for different V , it follows
that λ is a C[G]-module map. This completes the proof of Theorem 2.1.

3 Coideals of quotient type and their generalizations

In this section we illustrate Theorem 2.1 by considering well-known examples
of Yetter–Drinfeld algebras arising from quantum subgroups and Hopf–Galois
extensions.

3.1 Quotient type coideals

By a closed quantum subgroup of G we mean a compact quantum group H
together with a surjective homomorphism π : C[G] → C[H ] of Hopf ∗-algebras.
This is consistent with the definition used in the theory of locally compact
quantum groups, but is weaker than e.g. the definition used in [Tom07]. As-
suming that both G and H are reduced, the homomorphism π does not always
extend to a homomorphism C(G) → C(H). Nevertheless the algebra C(G/H)
of continuous functions on the quantum homogeneous space G/H is always
well-defined: it is the norm closure of

C[G/H ] = {x ∈ C[G] | (ι⊗ π)∆(x) = x⊗ 1}.

The algebra C(G/H) is a braided-commutative Yetter–Drinfeld G-C∗-algebra,
with the left action of G defined by the restriction of ∆ to C(G/H), and the
action of Ĝ defined by the restriction of the right adjoint action on C(G) to
C(G/H). In other words, the C[G]-module structure on C[G/H ] is defined by

x � a = x(1)aS(x(2)).
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It is known and is easy to see that the G-C∗-algebra C(G/H) corresponds
to the category RepH with the distinguished object 1, viewed as a (RepG)-
module category via the forgetful tensor functor RepG → RepH . Namely,
in the notation of Section 2.3, by identifying HomH(C, HU ) with a subspace
of HU , we can view the algebra B̃ corresponding to the functor RepG → RepH

as a subalgebra of C̃[G] =
⊕

U (H̄U ⊗HU ). Then the map πG : C̃[G] → C[G]
induces a G-equivariant isomorphism B ∼= C[G/H ].
We claim that the C[G]-module structure on C[G/H ] defined by the tensor
functor RepG → RepH is exactly the adjoint action. In order to show this it
is enough to consider the case of trivial H , since it corresponds to the inclu-
sion RepG →֒ Hilbf , while the general case corresponds to the intermediate
inclusion RepG →֒ RepH . As in the proof of Lemma 2.8, fix unitary represen-
tations U and V and orthonormal bases {ξi}i in HU and {ζk}k in HV such that
ρξi = ρiξi. Denote matrix coefficients of U , V and Ū by uij , vkl, ūij . Recall

that by (2.10) we have ūij = ρ
1/2
i ρ

−1/2
j S(uji). Then

(ξ̄i ⊗ ξj) �̃ (ζ̄k ⊗ ζl) =
∑

m

(ξi ⊗ ζk ⊗ ρ
−1/2
j ξ̄j)⊗ (ρ1/2m ξm ⊗ ζl ⊗ ξ̄m)

It follows that

uij � vkl =
∑

m

ρ
−1/2
j ρ1/2m uimvklūjm =

∑

m

uimvklS(umj),

which is exactly the formula for the adjoint action.

As a simple application of Theorem 2.1 we now get the following result, which
under slightly stronger assumptions has been already established in [Tom07]
and [Sal11].

Theorem 3.1. Let G be a reduced compact quantum group. Then any unital

left G- and right Ĝ-invariant C∗-subalgebra of C(G) has the form C(G/H) for
a unique closed quantum subgroup H of G.

Proof. Let B ⊂ C(G) be a unital left G- and right Ĝ-invariant C∗-algebra.
Consider the corresponding pair (DB, EB) = T (B) ∈ Tens(RepG). By the
ergodicity of the G-action on B, the unit object in DB is simple. Since DB is
generated by the image of RepG and the category RepG is rigid, the C∗-tensor
category DB is rigid as well. The inclusion B →֒ C(G) defines a morphism

(DB, EB) → (DC(G), EC(G)) ∼= (Hilbf ,F),

where F : RepG → Hilbf is the forgetful fiber functor. This means thatDB has
a unitary fiber functor E : DB → Hilbf such that F = EEB. By Woronowicz’s
Tannaka–Krein duality theorem, the pair (DB, E) defines a compact quantum
group H . Then the functor EB defines a functor RepG → RepH such that the
forgetful fiber functor F on RepG factors through that on RepH . It follows
that H can be regarded as a quantum subgroup of G.
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Since by the discussion preceding the theorem the factorization of the fiber func-
tor F : RepG → Hilbf through RepG → RepH corresponds to the inclusion
C(G/H) →֒ C(G), we have therefore shown that there exists a closed quan-
tum subgroup H ⊂ G and an isomorphism (DB, EB) ∼= (DC(G/H), EC(G/H))
such that the morphism (DB, EB) → (DC(G), EC(G)) under this isomorphism
becomes the morphism (DC(G/H), EC(G/H)) → (DC(G), EC(G)) defined by the
inclusion C(G/H) →֒ C(G). Since T is an equivalence of categories, this im-
plies that B = C(G/H).

It remains to prove the uniqueness. In other words, we want to show that
C(G/H) ⊂ C(G) determines the kernel of the restriction map C[G] → C[H ].
Since C[G/H ] is spanned by the matrix coefficients aξ,ζ = ((· ζ, ξ)⊗ ι)(U) such
that ζ is an H-invariant vector, we can recover HomH(1, U) ⊂ HU for any
representation U of G from C(G/H). Using the duality morphisms in RepG
we can then recover HomH(V, U) ⊂ B(HV , HU ) for all V and U . Finally,
observe that a finite combination

∑

i aξi,ζi of matrix coefficients in C[G], with
ξi, ζi ∈ HU , is in the kernel of the restriction map C[G] → C[H ] if and only if
∑

i(· ζi, ξi) vanishes on the commutant of EndH(HU ) in B(HU ).

3.2 Invariant subalgebras of linking algebras

The considerations of the previous subsection can be generalized to the linking
algebras defined by monoidal equivalences. Let F be the forgetful functor
RepG → Hilbf , and F ′ : RepG → Hilbf , U 7→ H ′

U , be another unitary fiber
functor. We denote the compact quantum group corresponding to F ′ by G′.
Then it is not difficult to check that the linking algebra between G and G′,
introduced in the C∗-algebraic setting in [BDRV06] and in the purely algebraic
setting earlier in [Sch96], is exactly the C∗-algebra B(F ,F ′) corresponding to
the pair (Hilbf ,F

′) by our construction. In addition to the left action of G it
carries also a commuting right action of G′, which is easy to see using that the
regular subalgebra of B(F ,F ′) is B(F ,F ′) =

⊕

s(H̄s ⊗H ′
s).

The G-C∗-algebras B of the form B(F ,F ′) can be abstractly characterized
by saying that the regular subalgebra B ⊂ B is a Hopf–Galois extension of C
over C[G], which is a well-studied notion in the algebraic approach to quantum
groups, see [Bic10]. By definition, this means that the Galois map

Γ: B ⊗ B → C[G]⊗ B, x⊗ y 7→ x(1) ⊗ x(2)y,

is bijective. Analogously to the case of C[G] (which is the linking algebra
B(F ,F)), there is a standard structure of a braided-commutative Yetter–
Drinfeld algebra over G on B. Namely, the action of C[G] on B is the so
called Miyashita–Ulbrich action, defined by

x � a = Γ−1(x⊗ 1)1aΓ
−1(x⊗ 1)2.

We claim that this action is the same as the one induced by the pair (Hilbf ,F
′)

by our construction. In order to show this, replace (Hilbf ,F
′) by an iso-

morphic pair consisting of a strict C∗-tensor category C containing RepG
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and the embedding functor RepG → C, as explained in Section 2.1. What
is now special about C, is that the unit object is simple and the maps
C(1, U) ⊗ C(1, V ) → C(1, U #⊤ V ) are bijective. As in the previous subsec-
tion, fix unitary representations U and V of G and an orthonormal basis {ξi}i
in HU such that ρξi = ρiξi. We can find elements Tl ∈ C(1, U) and Sl ∈ C(1, Ū)
such that

R̄U =
∑

l

Tl ⊗ Sl in C.

Then, for any P ∈ C(1, V ) and ζ ∈ HV , we have

(ξ̄i ⊗ ξj)�̃(ζ̄ ⊗ P ) = ρ
−1/2
j (ξi ⊗ ζ ⊗ ξ̄j)⊗ (ι⊗ P ⊗ ι)R̄U

= ρ
−1/2
j

∑

l

(ξ̄i ⊗ Tl) · (ζ̄ ⊗ P ) · ( ¯̄ξj ⊗ Sl).

Therefore in order to prove the claim it suffices to check that

∑

l

Γ(π(ξ̄i ⊗ Tl)⊗ π( ¯̄ξj ⊗ Sl)) = ρ
1/2
j uij ⊗ 1.

But this is true by the following simple computation:

∑

l

Γ(π(ξ̄i ⊗ Tl)⊗ π( ¯̄ξj ⊗ Sl)) =
∑

k,l

uik ⊗ π(ξ̄k ⊗ Tl)π(
¯̄ξj ⊗ Sl)

=
∑

k

uik ⊗ π((ξk ⊗ ξ̄j)⊗ R̄U ) =
∑

k

uik ⊗ R̄∗
U (ξk ⊗ ξ̄j) = ρ

1/2
j uij ⊗ 1.

If H ′ is a closed quantum subgroup of G′, then, similarly to the C∗-algebras
C(G/H) ⊂ C(G), we may define C∗-algebras B(F ,F ′)H

′

⊂ B(F ,F ′). Then
by a completely analogous argument to that in the proof of Theorem 3.1 we
obtain the following result.

Theorem 3.2. Let G be a reduced compact quantum group and B = B(F ,F ′)
be the linking C∗-algebra defined by the forgetful fiber functor F : RepG →
Hilbf and a unitary fiber functor F ′ : RepG → Hilbf . Let G′ be the compact

quantum group defined by F ′. Then any unital left G- and right Ĝ-invariant C∗-

subalgebra of B(F ,F ′) has the form B(F ,F ′)H
′

for a unique closed quantum

subgroup H ′ ⊂ G′.

Let us finally say a few words about the differences between our approach to
reconstructing the tensor functor F ′ from B(F ,F ′) and that in [BDRV06].
Assume B is a unital G-C∗-algebra such that BG = C1. We can define a
weak unitary tensor functor E : RepG → Hilbf , called the spectral functor, by
letting

E(U) = DB(B,B×U) and E2;U,V : E(U)⊗E(V ) → E(U#⊤V ), T⊗S 7→ (T⊗ι)S.
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The scalar product on E(U) is defined by S∗T = (T, S)1, which makes sense by
the ergodicity assumption. In general the maps E2;U,V are not unitary but only
isometric. When they are unitary, so that (E , E2) becomes a unitary tensor func-
tor, then the ergodic action of G on B is said to be of full quantum multiplicity.
In this case, if G is reduced, then B ∼= B(F , E) as G-C∗-algebras [BDRV06] (see
also [Nes], where a more general result is proved in the notation consistent with
the present work). In particular, another way of formulating the Hopf–Galois
condition is to say that the action of G is of full quantum multiplicity.
The spectral functor is constructed in a simple way using only the action of G,
while in order to construct a tensor functor in our approach we also have to
use the Miyashita–Ulbrich action. The reason why the two constructions give
isomorphic functors is basically the following observation. Given a unitary
fiber functor F ′ : RepG → Hilbf , we can define a new unitary fiber functor
E : RepG → Hilbf by letting E(U) = Hom(C,F ′(U)) and

E2;U,V : E(U)⊗ E(V ) → E(U #⊤ V ), T ⊗ S 7→ F ′
2;U,V (T ⊗ ι)S.

But it is clear that under the identification of Hom(C, H) with H , the tensor
functor E becomes identical to F ′.

4 Noncommutative Poisson boundaries

In this section we show that Theorem 2.1 provides a link between Izumi’s
theory of Poisson boundaries of discrete quantum groups [Izu02] and categorical
Poisson boundaries introduced in [NY14a]. We start by giving a categorical
description of discrete duals.

4.1 Discrete dual

Consider the algebra ℓ∞(Ĝ) ⊂ U(G) = C[G]∗ of bounded functions on Ĝ. We
have a left adjoint action α of G on

ℓ∞(Ĝ) ∼= ℓ∞-
⊕

s

B(Hs)

defined by
B(Hs) ∋ T 7→ (Us)

∗
21(1⊗ T )(Us)21. (4.1)

This action is continuous only in the von Neumann algebraic sense, so in order
to stay within the class of G-C∗-algebras, instead of ℓ∞(Ĝ) we should rather
consider the norm closure B(Ĝ) of the regular subalgebra ℓ∞alg(Ĝ) ⊂ ℓ∞(Ĝ).

Then the right action ∆̂ of Ĝ on ℓ∞(Ĝ) makes this algebra into a unital braided-
commutative Yetter–Drinfeld C∗-algebra. In other words, the left C[G]-module
structure on ℓ∞alg(Ĝ) is defined by

x � a = (ι ⊗ x)∆̂(a). (4.2)
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In the subsequent computations we will use the notation ∆̂(a) = a(1) ⊗ a(2).
Literally this does not make sense, but the expressions like a(1) ⊗ πU (a

(2)) are
still meaningful, since (ι⊗πU )∆̂(a) is an element of the algebraic tensor product
ℓ∞(Ĝ)⊗B(HU ).

We want to describe the corresponding C∗-tensor category C = CB(Ĝ) and the
unitary tensor functor F = FB(Ĝ) : RepG → C. By definition, the category C is
the idempotent completion of the category with the same objects as in RepG,
but with the morphism sets C(U, V ) ⊂ B(HU , HV ) ⊗ ℓ∞alg(Ĝ). In fact, for
the reasons that will become apparent in a moment, it is more convenient to
consider C(U, V ) as a subset of ℓ∞alg(Ĝ)⊗B(HU , HV ). Thus, we define C(U, V )

as the set of elements T ∈ ℓ∞alg(Ĝ)⊗B(HU , HV ) such that

V ∗
31(α⊗ ι)(T )U31 = 1⊗ T.

From the definition of the adjoint action α we see that an element T ∈ ℓ∞alg(Ĝ)⊗
B(HU , HV ) lies in C(U, V ) if and only if it defines a G-equivariant map Hs ⊗
HU → Hs⊗HV for all s. It follows that C(U, V ) can be identified with the space
Natb(ι⊗U, ι⊗V ) of bounded natural transformations between the functors ι⊗U
and ι⊗ V on RepG.

Using this picture we get a natural tensor structure on C: the tensor product
of objects is defined as in RepG, while the tensor product of natural transfor-
mations ν : ι⊗ U → ι⊗ V and η : ι⊗W → ι⊗ Z is defined by

ν ⊗ η = (ν ⊗ ιZ)(ιU ⊗ η) = (ιV ⊗ η)(ν ⊗ ιW ),

where ν ⊗ ιZ is defined by (ν ⊗ ιZ)X = νX ⊗ ιZ , while ιU ⊗ η is defined by
(ιU ⊗ η)X = ηX#⊤U . Explicitly, if ν =

∑

i ai ⊗ Ti ∈ ℓ∞alg(Ĝ) ⊗ B(HU , HV ) and

η =
∑

j bj ⊗ Sj ∈ ℓ∞alg(Ĝ)⊗B(HW , HZ), then

ν⊗η =
∑

i,j

aib
(1)
j ⊗(TiπU (b

(2)
j )⊗Sj) ∈ ℓ∞alg(Ĝ)⊗B(HU⊗HW , HV ⊗HZ). (4.3)

The functor F : RepG → C is now the strict tensor functor such that F(U) = U
on objects and F(T ) = 1⊗ T on morphisms.

It remains to show that the tensor structure on C defines the same C[G]-module
structure on ℓ∞alg(Ĝ) as (4.2). Consider an element ζ̄ ⊗ T ∈ H̄V ⊗ C(1, V ).
Identifying B(C, HV ) with HV we can write T =

∑

k ak ⊗ ζk for some ak ∈

ℓ∞alg(Ĝ) and ζk ∈ HV . Then, identifying the algebra B constructed from the

pair (C,F) with ℓ∞alg(Ĝ), the element a = π(ζ̄ ⊗ T ) ∈ B = ℓ∞alg(Ĝ) equals
∑

k(ζk, ζ)ak, see equation (2.13). Choose a unitary representations U and an
orthonormal basis {ξi}i in HU consisting of eigenvectors of ρ, so ρξi = ρiξi.
By (4.3) the morphism

(ι⊗ T ⊗ ι)R̄U ∈ C(1, U #⊤ V #⊤ Ū) ⊂ ℓ∞(Ĝ)⊗ (HU ⊗HV ⊗ H̄U )
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is represented by the element

∑

k,l

a
(1)
k ⊗

(

ρ
1/2
l a

(2)
k ξl ⊗ ζk ⊗ ξ̄l

)

.

Then by definition (2.4) of the map �̃ we get

(ξ̄i ⊗ ξj) �̃

(

ζ̄ ⊗

(

∑

k

ak ⊗ ζk

))

= (ξi ⊗ ζ ⊗ ρ
−1/2
j ξ̄j)⊗





∑

k,l

a
(1)
k ⊗

(

ρ
1/2
l a

(2)
k ξl ⊗ ζk ⊗ ξ̄l

)



 ,

whence
uij � a =

∑

k

(a
(2)
k ξj , ξi)(ζk, ζ)a

(1)
k = (a(2)ξj , ξi)a

(1).

But this is exactly how the action (4.2) is defined.

4.2 Poisson boundaries

Let us briefly overview the theory of noncommutative Poisson boundaries de-
veloped by Izumi [Izu02].
For a finite dimensional unitary representation U of G, consider the state φU

on B(HU ) defined by

φU (T ) =
Tr(TπU (ρ)

−1)

dimq U
for T ∈ B(H). (4.4)

If U is irreducible, it can be characterized as the unique state satisfying

(ι ⊗ φU )(U
∗
21(1⊗ T )U21) = φU (T ).

For our fixed representatives of irreducible representations {Us}s of G, we
write φs instead of φUs

.
When φ is a normal state on ℓ∞(Ĝ), we define a completely positive map Pφ

on ℓ∞(Ĝ) by
Pφ(a) = (φ⊗ ι)∆̂(a).

If µ is a probability measure on the set Irr(G) of isomorphism classes of ir-
reducible representations of G, we define a normal unital completely positive
map Pµ on ℓ∞(Ĝ) by Pµ =

∑

s µ(s)Pφs
. The space

H∞(Ĝ, µ) = {x ∈ ℓ∞(Ĝ) | x = Pµ(x)}

of Pµ-harmonic elements is called the noncommutative Poisson boundary of Ĝ

with respect to µ. This is an operator subspace of ℓ∞(Ĝ) closed under the left
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adjoint action α of G defined by (4.1) and the right action ∆̂ of Ĝ on itself by
translations. It has a new product structure

x · y = lim
n→∞

Pn
µ (xy),

where the limit is taken in the strong∗ operator topology. With this product
H∞(Ĝ, µ) becomes a von Neumann algebra (with the original operator space
structure), and the actions of G and Ĝ on ℓ∞(Ĝ) define continuous, in the von
Neumann algebraic sense, actions on H∞(Ĝ, µ).
Consider the regular subalgebra H∞

alg(Ĝ, µ) = H∞(Ĝ, µ)∩ ℓ∞alg(Ĝ) of H∞(Ĝ, µ)

and denote by B(Ĝ, µ) its norm closure. In other words, in the notation of
Section 4.1, B(Ĝ, µ) = B(Ĝ) ∩H∞(Ĝ, µ). We will show in Theorem 4.1 that
the action of Ĝ on H∞(Ĝ, µ) restricts to a continuous action on B(Ĝ, µ) and
that B(Ĝ, µ) becomes a braided-commutative Yetter–Drinfeld G-C∗-algebra.

Let us now recall the construction of the Poisson boundary of (RepG,µ) defined
in [NY14a].

The image of HomG(U #⊤ V, U #⊤ W ) under the map

φU ⊗ ι : B(HU )⊗B(HV , HW ) → B(HV , HW )

is contained in HomG(V,W ), and the maps

φU ⊗ ι : HomG(U #⊤ V, U #⊤ W ) → HomG(V,W )

we thus get, are what we called the partial categorical traces on RepG
in [NY14a]. They allow us to define an operator PU on the space of natu-
ral transformations Nat(ι⊗ V, ι⊗W ) by

PU (η)X = (φU ⊗ ι)(ηU⊗X ).

It is easy to see that this operation preserves the subspace Natb(ι ⊗ V, ι⊗W )
of bounded natural transformations. Given a probability measure µ on Irr(G),
we define an operator Pµ acting on Natb(ι⊗ V, ι⊗W ) by Pµ =

∑

s µ(s)PUs
.

A bounded natural transformation η : ι⊗ V → ι ⊗W is called Pµ-harmonic if
Pµ(η) = η. Any morphism T : V → W defines a bounded natural transforma-
tion (ιX ⊗ T )X , which is obviously Pµ-harmonic for every µ.
The categorical Poisson boundary (P ,Π) of (RepG,µ) consists of the C∗-tensor
category P and the strict unitary tensor functor Π: C → P defined as follows.
The category P is the idempotent completion of RepG with the new morphism
sets

P(U, V ) = {η ∈ Natb(ι⊗ U, ι⊗ V ) | Pµ(η) = η},

endowed with the composition law

(η · ν)X = lim
n→∞

Pn
µ (ην)X .
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On objects in RepG the tensor product in P is the same as in RepG, while on
morphisms it is given by

η ⊗ ν = (η ⊗ ι) · (ι⊗ ν) = (ι⊗ ν) · (η ⊗ ι),

where η ⊗ ι and ι ⊗ ν are defined as in Section 4.1. The functor Π: C → P is
defined by letting Π(U) = U on objects and Π(T ) = (ιX ⊗T )X on morphisms.
We usually omit Π and consider RepG as a subcategory of P .

Theorem 4.1. Let G be a compact quantum group and µ be a prob-

ability measure on Irr(G). Then the dense C∗-subalgebra B(Ĝ, µ) ⊂
H∞(Ĝ, µ) is a unital braided-commutative Yetter–Drinfeld G-C∗-algebra and

the pair (DB(Ĝ,µ), EB(Ĝ,µ)), consisting of the C∗-tensor category DB(Ĝ,µ) of G-

equivariant finitely generated Hilbert B(Ĝ, µ)-modules and the unitary tensor

functor EB(Ĝ,µ) : RepG → DB(Ĝ,µ), is isomorphic to the categorical Poisson

boundary of (RepG,µ).

Proof. When µ = δe, in which case H∞(Ĝ, µ) = ℓ∞(Ĝ), this theorem is the
contents of Section 4.1. The general case easily follows from this. Indeed,
denote by B̃µ and Bµ the algebras constructed from the Poisson boundary

(P ,Π) of (RepG,µ) as described in Section 2.3. If µ = δe, we simply write B̃
and B. Thus,

B̃ =
⊕

U

(H̄U ⊗Natb(ι, ι⊗ U)).

As we showed in Section 4.1, the Yetter–Drinfeld algebra B can be identified
with ℓ∞alg(Ĝ), and then the homomorphism π : B̃ → B = ℓ∞alg(Ĝ) is given by

π

(

ξ̄ ⊗

(

∑

k

ak ⊗ ζk

))

=
∑

k

(ζk, ξ)ak,

if we view Natb(ι, ι ⊗ U) as a subspace of ℓ∞-
⊕

s(B(Hs)⊗HU ).

The Markov operators Pµ on Natb(ι, ι ⊗ U) define an operator ι ⊗ Pµ on B̃.

Then by definition, the algebra B̃µ is the subspace of (ι⊗Pµ)-invariant elements

in B̃. Furthermore, by construction we have π(ι⊗Pµ) = Pµπ, where on the right

hand side by Pµ we mean the operator on ℓ∞(Ĝ) used to define the Poisson

boundary of Ĝ. This already implies that the restriction of π to B̃µ defines

a surjective homomorphism B̃µ → H∞
alg(Ĝ, µ). Recalling how Bµ is obtained

from B̃µ, we then conclude that this restriction factors through Bµ and defines

a G-equivariant ∗-isomorphism Bµ
∼= H∞

alg(Ĝ, µ).
It remains to compare the C[G]-module structures. For this part the compu-
tation is in fact exactly the same as for µ = δe. The point is that, in the
formula (2.4) for the C[G]-action, one only needs to compute the compositions
of the form (ι ⊗ T ⊗ ι)R̄U for U, V ∈ RepG and T ∈ P(1, V ). In general, if
η ∈ P(U, V ) and S ∈ W → U is a morphism in RepG, the composition η · S
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is represented by the family (ηX(ιX ⊗ S))X , which is independent of µ. Thus,
the C[G]-module structure on H∞

alg(Ĝ, µ) induced by the tensor category struc-

ture of P via the isomorphism Bµ
∼= H∞

alg(Ĝ, µ), is the restriction of that

on ℓ∞alg(Ĝ). But this is exactly how the original C[G]-module structure was

defined on H∞
alg(Ĝ, µ).

Recall that a probability measure µ on Irr(G) is called ergodic, if the only Pµ-

harmonic functions on Irr(G) are the constant functions, that is, H∞(Ĝ, µ)G

reduces to C1. Such a measure exists if and only if Irr(G) is at most countable
and RepG is weakly amenable, see [NY14a, Sections 2 and 7.1]. From the above
theorem and our results on categorical Poisson boundaries in [NY14a] we then
get the following theorem, originally proved by Tomatsu [Tom07, Theorem 4.8].
(To be more precise, Tomatsu formulates the result in a more restricted form,
but his proof shows that a stronger result formulated below is true.)

Theorem 4.2. Let G be a coamenable compact quantum group, and µ be an

ergodic probability measure on Irr(G). Then the Poisson boundary H∞(Ĝ, µ)
is G- and Ĝ-equivariantly isomorphic to L∞(G/K), where K is the maximal

Kac quantum subgroup of G.

Proof. The results of [NY14a, Section 4] imply that the Poisson boundary
of (RepG,µ) is isomorphic to the forgetful functor F : RepG → RepK,
see [NY14b, Section 2] for details. From Theorem 4.1 and the discussion in Sec-
tion 3.1, where we showed that we have an isomorphism (DC(G/K), EC(G/K)) ∼=

(RepK,F), we conclude that there exists a G- and Ĝ-equivariant isomor-
phism B(Ĝ, µ) ∼= C(G/K). Since H∞(Ĝ, µ) and L∞(G/K) are the von Neu-
mann algebras generated by B(Ĝ, µ) and C(G/K), respectively, in the GNS-
representations defined by the unique G-invariant states, we conclude that
H∞(Ĝ, µ) ∼= L∞(G/K).

Of course, conversely, the argument of Tomatsu could be used to show that
the Poisson boundary of (RepG,µ) is F : RepG → RepK without relying
on [NY14a, Section 4].
Note that in order to prove Theorem 4.2 we do not need the full strength of
Theorem 2.1, it suffices to understand how B(Ĝ, µ) and C(G/K) are recon-
structed from the functors Π: RepG → P and F : RepG → RepK. It is also
worth noting that independently of which approach to Theorem 4.2 one prefers,
all the results of this type have so far relied in a crucial, but every time different,
way on the so called Izumi’s Poisson integral [Izu02, INT06,Tom07,NY14a].

We finish the paper by proving a converse to Theorem 4.2.

Proposition 4.3. Let G be a compact quantum group and µ be a probability

measure on Irr(G). Assume that the Poisson boundary H∞(Ĝ, µ) is G- and Ĝ-

equivariantly isomorphic to L∞(G/H) for a closed quantum subgroup H of G.

Then G is coamenable, and hence H is the maximal Kac quantum subgroup

of G.
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Proof. Theorem 4.1 and the assumptions of the proposition imply that the Pois-
son boundary of (RepG,µ) is isomorphic to the forgetful functor F : RepG →
RepH . On the other hand, since the action of G on L∞(G/H) is ergodic,
the measure µ is ergodic, and therefore by [NY14a, Theorem 5.1] the Poisson
boundary of (RepG,µ) defines the amenable dimension function on RepG.
It follows that the classical dimension function on RepG is amenable, which
exactly means that G is coamenable.
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