A Note on Orthogonal Dirichlet Polynomials with Rational Weight

S. Doron Lubinsky

Communicated by S. De Marchi

Abstract

Let \(\lambda_j \to \infty \) be a strictly increasing sequence of positive numbers with \(\lambda_1 > 0 \). We find an explicit formula for the orthogonal Dirichlet polynomials \(\{ \phi_n \} \) formed from linear combinations of \(\{ \lambda_j^{-it} \}_{j=1}^n \), associated with rational weights

\[
w(t) = \sum_{j=1}^L \frac{c_j}{\pi (1 + (b_j t)^2)},
\]

where \(0 < b_1 < b_2 < ... \), and the \(\{ c_j \} \) are appropriately chosen. Only \(\{ \lambda_j^{-it} \}_{j=1}^n \) appear in the formula. In the case \(L = 2 \), we show that the weight can always be taken positive in \(\mathbb{R} \).

Keywords: Dirichlet polynomials, orthogonal polynomials.

AMS Subject Class 2010: 42C05

1 Introduction

Throughout, let

\[
0 < \lambda_1 < \lambda_2 < \lambda_3 <
\]

Let \(L_n \) denote the set of Dirichlet polynomials

\[
\sum_{j=1}^n c_j \lambda_j^{-it}
\]

with complex coefficients \(\{ c_j \} \).

In a 2014 paper [5], we showed that

\[
\phi_n(t) = \frac{\lambda_n^{1-it} - \lambda_{n-1}^{1-it}}{\sqrt{\lambda_n^2 - \lambda_{n-1}^2}} = \frac{-1}{\sqrt{\lambda_n^2 - \lambda_{n-1}^2}} \det \begin{pmatrix} \lambda_n^{1-it} \\ \lambda_{n-1}^{1-it} \end{pmatrix}
\]

is the \(n \)th orthogonal Dirichlet polynomial for the arctan density, that is

\[
\int_{-\infty}^{\infty} \phi_n(t) \phi_m(t) \frac{dt}{\pi (1 + t^2)} = \delta_{mn}, \ n,m \geq 1.
\]

We also estimated the Christoffel functions, convergence of associated orthonormal expansions, and universality limits. These orthonormal polynomials have been applied and provided in a variety of questions by Weber and Dimitrov as well as the author [4], [6], [8], [10], [11], [12]. In a follow up paper [7], the author considered orthogonal Dirichlet polynomials for the Laguerre weight, though it turned out that much of the material there was already subsumed by Müntz orthogonal polynomials [3].

In this note, we consider rational densities

\[
w(t) = \sum_{m=1}^L \frac{c_m}{\pi (1 + (b_m t)^2)}
\]

with appropriately chosen \(\{ c_j \} \). Here \(L \geq 1 \), and

\[
1 = b_1 < b_2 < ... < b_L.
\]

1Research supported by NSF grant DMS1800251
2School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160 (USA). email: lubinsky@math.gatech.edu
Define, for \(n \geq L \),
\[
\psi_n(t) = \det \begin{bmatrix}
\lambda_{n-1}^{(t)} & \lambda_{n-1}^{(t)} & \cdots & \lambda_{n-1}^{(t)} \\
\lambda_{n-1}^{(t)} & \lambda_{n-2}^{(t)} & \cdots & \lambda_{n-2}^{(t)} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{n-1}^{(t)} & \lambda_{n-2}^{(t)} & \cdots & \lambda_{n-2}^{(t)} \\
\lambda_{n-1}^{(t)} & \lambda_{n-2}^{(t)} & \cdots & \lambda_{n-2}^{(t)} \\
\end{bmatrix}.
\] (5)

Observe that \(\psi_n(t) \) is a linear combination of only \(\{\lambda_j^{(t)}\}_{n-L \leq j \leq n} \). Also define for a given fixed \(n \), and \(j \geq 1, 1 \leq m \leq L \),
\[
d_{jm} = \int_{-\infty}^{\infty} \psi_n(t) \frac{\lambda_j^{(t)}}{\pi(1 + (b_m t)^2)} \, dt
\] (6)
and let \(B \) be the \((L-1) \times L\) matrix
\[
B = \begin{bmatrix}
d_{n-L+1,1} & d_{n-L+1,2} & \cdots & d_{n-L+1,L} \\
d_{n-L+2,1} & d_{n-L+2,2} & \cdots & d_{n-L+2,L} \\
\vdots & \vdots & \ddots & \vdots \\
d_{n-1,1} & d_{n-1,2} & \cdots & d_{n-1,L} \\
\end{bmatrix}.
\] (7)
and
\[
D = \det \begin{bmatrix}
d_{n-L+1,1} & d_{n-L+1,2} & \cdots & d_{n-L+1,L} \\
d_{n-L+2,1} & d_{n-L+2,2} & \cdots & d_{n-L+2,L} \\
\vdots & \vdots & \ddots & \vdots \\
d_{n,1} & d_{n,2} & \cdots & d_{n,L} \\
\end{bmatrix}.
\] (8)

Theorem 1

Let \(n \geq L \geq 1 \). Let \(0 < \lambda_1 < \lambda_2 < \cdots < \lambda_n \) and \(\psi_n \) be given by (5).

(a) \(\mathbf{c} = [c_1, c_2, \ldots, c_L]^T \) be taken as any non-trivial solution of \(B \mathbf{c} = \mathbf{0} \). Let
\[
w(t) = \sum_{m=1}^{L} \frac{c_m}{\pi(1 + (b_m t)^2)}. \]
(9)

Then for \(1 \leq j \leq n-1 \),
\[
\int_{-\infty}^{\infty} \psi_n(t) \lambda_j^{(t)} w(t) \, dt = 0.
\] (10)

(b) If \(D \) defined by (8) is non-0, then we can take
\[
w(t) = A \det \begin{bmatrix}
d_{n-L+1,1} & d_{n-L+1,2} & \cdots & d_{n-L+1,L} \\
d_{n-L+2,1} & d_{n-L+2,2} & \cdots & d_{n-L+2,L} \\
\vdots & \vdots & \ddots & \vdots \\
d_{n,1} & d_{n,2} & \cdots & d_{n,L} \\
\end{bmatrix}
\]
\[
\frac{1}{\pi(1 + (b_m t)^2)} \
\] (11)
for any \(A \neq 0 \), while
\[
\int_{-\infty}^{\infty} \psi_n(t) \lambda_j^{(t)} w(t) \, dt = AD.
\] (12)

(c)
\[
\psi_n(t) = \sum_{j=1}^{n} \alpha_j \lambda_j^{(t)}
\]
(13)
where for \(n-L \leq j \leq n \),
\[
\alpha_j (-1)^{n+1} > 0.
\] (14)

Remarks

(a) Note that as \(\left\{ \frac{1}{\pi(1 + (b_m t)^2)} \right\}_{m=1}^{L} \) are linearly independent, \(w \) above is not identically 0. As an even rational function with numerator degree at most \(2L-2 \) and denominator degree \(2L \), \(w \) has at most \(L-1 \) sign changes in \((0, \infty)\). It seems to be an interesting problem to investigate the positivity of \(w \).

(b) In addition to the orthogonality relation above, we note that for any \(1 \leq m \leq L \), and \(0 < \lambda \leq \lambda_{n-L} \),
\[
\int_{-\infty}^{\infty} \psi_n(t) \frac{\lambda^{(t)}}{\pi(1 + (b_m t)^2)} \, dt = 0.
\]
This does not require anything of the \(\{c_i\} \) above.

In the case \(L = 2 \), we can prove positivity of the weight:

Theorem 2

Assume the notation of Theorem 1 with \(L = 2 \). Then we can choose \(c_1 < 0 < c_2 \) such that if

\[
 w(t) = \sum_{k=1}^{2} \frac{c_k}{\pi (1 + (b_k t)^2)}
\]

then

\[
 w(t) > 0, \; t \in \mathbb{R},
\]

and \(w \) is given by the determinant (11), with

\[
 A = \frac{c_2}{d_{n-1,1}^2} < 0.
\]

Remark

In the proof of Theorem 2, we show that one can take

\[
 c_1 = -c_2 \frac{g \left(\frac{1}{a} \right)}{g \left(\frac{1}{b} \right)}
\]

where

\[
 g(s) = s \left(\frac{\lambda_{m-2}}{\lambda_{m-1}} \right)^s - \left(\frac{\lambda_{m-2}}{\lambda_{m-1}} \right)^{-s}.
\]

We prove the theorems in the next section.

2 Proofs

Proof of Theorem 1

(a) We use the following simple consequence of the residue theorem: for real \(\mu \),

\[
 \int_{-\infty}^{\infty} e^{\mu t} \frac{1}{1 + t^2} dt = e^{-|\mu|}.
\]

Then if \(0 < \lambda \leq \lambda_{m-L} \), and \(n-L \leq k \leq n \),

\[
 \int_{-\infty}^{\infty} \frac{(\lambda/\lambda_k)^{it}}{\pi (1 + (b_n t)^2)} dt = \frac{1}{b_n} \int_{-\infty}^{\infty} e^{it \log(\lambda/\lambda_k)} \frac{1}{\pi (1 + s^2)} ds = \frac{1}{b_n} \frac{\lambda}{\lambda_k} \lambda_k^{1/b_n}.
\]

Then for such \(\lambda \),

\[
 \int_{-\infty}^{\infty} \psi_n(t) \frac{\lambda^{iz}}{\pi (1 + (b_n t)^2)} dt = \text{det} \begin{bmatrix} \lambda_k^{-1/b_n} & \cdots & \lambda_k^{-1/b_n} \\ \cdots & \cdots & \cdots \\ \lambda_k^{-1/b_n} & \cdots & \lambda_k^{-1/b_n} \end{bmatrix} = 0,
\]

by taking \(\frac{1}{b_n} \lambda^{1/b_n} \) times row \(m+1 \) from the first row. So we have the orthogonality relation (10) for \(\lambda = \lambda_j \), all \(j \leq n-L \). Next, the equations

\[
 \int_{-\infty}^{\infty} \psi_n(t) \lambda_{m-L-j}^{iz} w(t) dt = 0, \; 1 \leq j \leq L - 1
\]

are equivalent to (recall (3) and (6))

\[
 \sum_{n=1}^{L} c_m d_{n-L-j,m} = \sum_{n=1}^{L} c_m \int_{-\infty}^{\infty} \psi_n(t) \frac{\lambda_{m-L-j}^{iz}}{\pi (1 + (b_n t)^2)} dt = 0, \; 1 \leq j \leq L - 1
\]
which in turn is equivalent to \(Bc = 0 \), recall (7). This is a system of \(L - 1 \) homogeneous linear equations in \(L \) variables, so there is a non-trivial solution for \(c \).

(b) First observe that \(w \) defined by (11) is indeed a linear combination of \(\frac{1}{\pi(1 + (b_k t)^2)} \) for \(k = 1, \ldots, L \). Next, we see from (11) that

\[
\int_{-\infty}^{\infty} \psi_n(t) \lambda_i^n w(t) \, dt = A \det \begin{bmatrix}
 d_{n-L+1,1} & d_{n-L+1,2} & \cdots & d_{n-L+1,L} \\
 d_{n-L+2,1} & d_{n-L+2,2} & \cdots & d_{n-L+2,L} \\
 \vdots & \vdots & \ddots & \vdots \\
 d_{n-1,1} & d_{n-1,2} & \cdots & d_{n-1,L} \\
 d_{k,1} & d_{k,2} & \cdots & d_{k,L}
\end{bmatrix} = 0,
\]

if \(n - L + 1 \leq k \leq n - 1 \). If \(k = n \), we instead obtain the non-0 number \(AD \). It also then follows that \(w \) cannot be the zero function.

(c) Let \(E \) be the \(L \times (L + 1) \) matrix

\[
E = \begin{bmatrix}
 \lambda_{n-L}^{-1/b_1} & \lambda_{n-L+1}^{-1/b_1} & \cdots & \lambda_n^{-1/b_1} \\
 \vdots & \vdots & \ddots & \vdots \\
 \lambda_{n-L}^{-1/b_{k-1}} & \lambda_{n-L+1}^{-1/b_{k-1}} & \cdots & \lambda_n^{-1/b_{k-1}} \\
 \lambda_{n-L}^{-1/b_k} & \lambda_{n-L+1}^{-1/b_k} & \cdots & \lambda_n^{-1/b_k}
\end{bmatrix}.
\]

Thus \(E \) consists of the last \(L \) rows of the matrix used to define \(\psi_n \). For \(1 \leq k \leq L + 1 \), let \(E(k) \) denote the \(L \times L \) matrix obtained from \(E \) by deleting its \(k \)th column. Then with the notation (13), we see that

\[
\alpha_j = (-1)^{j+n+1} \det(E(j-n+L+1)).
\]

To show that each \(\det (E(k)) > 0 \), we use the fact that the kernel \(K(s, t) = e^{it} \) is totally positive for \(s, t \in \mathbb{R} \) [1, p. 212] or [9]. If we set \(s_j = -\frac{1}{b_j} \), while \(t_j = \log \lambda_{n-L+j-1} \), then \(s_1 < s_2 < \ldots < s_L \) and \(t_1 < t_2 < \ldots < t_{L+1} \), then

\[
\det(E(k)) = \det \begin{bmatrix}
 K(s_1, t_1) & \cdots & K(s_1, t_{k-1}) & K(s_1, t_{k+1}) & \cdots & K(s_1, t_{L+1}) \\
 K(s_2, t_1) & \cdots & K(s_2, t_{k-1}) & K(s_2, t_{k+1}) & \cdots & K(s_2, t_{L+1}) \\
 \vdots & \cdots & \vdots & \cdots & \vdots & \cdots \\
 K(s_L, t_1) & \cdots & K(s_L, t_{k-1}) & K(s_L, t_{k+1}) & \cdots & K(s_L, t_{L+1})
\end{bmatrix} > 0.
\]

Proof of Theorem 2

From (5) for \(L = 2 \),

\[
\psi_n(t) = \det \begin{bmatrix}
 \lambda_{n-1}^{-it} & \lambda_n^{-it} \\
 \lambda_{n-2}^{-it} & \lambda_{n-1}^{-it}
\end{bmatrix}.
\]

Let

\[
w(t) = \sum_{k=1}^{2} \frac{c_k}{\pi \left(1 + (b_k t)^2 \right)},
\]

where for the moment we do not specify the choice of \(c_1, c_2 \). Then we already have for \(k = 1, 2, \ldots, n - 2 \),

\[
\int_{-\infty}^{\infty} \psi_n(t) \lambda_i^n w(t) \, dt = 0
\]

no matter what is the choice of \(c_1, c_2 \) - as follows from the proof of Theorem 1(a). So let us investigate the remaining condition in (10), namely

\[
\int_{-\infty}^{\infty} \psi_n(t) \lambda_i^{-1} w(t) \, dt = 0.
\]

This is equivalent to

\[
0 = \sum_{k=1}^{2} c_k \int_{-\infty}^{\infty} \psi_n(t) \lambda_i^{-1} \frac{dt}{\pi \left(1 + (b_k t)^2 \right)} = c_1 d_{n-1,1} + c_2 d_{n-1,2}.
\]

(17)
Now for \(k = 1, 2 \), we see from the determinant expression (16) and then from (15) that

\[
d_{n-1,k} = \frac{1}{b_k} \det \left[\begin{array}{cccc} f_0 & \cdots & f_{n-1} & f_n \\ \lambda_{n-1}^{-1/2} & \cdots & \lambda_{n-2}^{-1/2} & \lambda_{n-1}^{-1/2} \\ \lambda_{n-1}^{-1/2} & \cdots & \lambda_{n-2}^{-1/2} & \lambda_{n-1}^{-1/2} \\ \vdots & \cdots & \vdots & \vdots \\ \lambda_{n-1}^{-1/2} & \cdots & \lambda_{n-2}^{-1/2} & \lambda_{n-1}^{-1/2} \\ \end{array} \right] \
\]

\[
= \frac{1}{b_k} \lambda_{n-1}^{-1/2} \det \left[\begin{array}{cccc} (\lambda_{n-2}^{-1/2})^{1/2} & \cdots & (\lambda_{n-2}^{-1/2})^{1/2} & (\lambda_{n-1}^{-1/2})^{1/2} \\ \lambda_{n-1}^{-1/2} & \cdots & \lambda_{n-2}^{-1/2} & \lambda_{n-1}^{-1/2} \\ \lambda_{n-1}^{-1/2} & \cdots & \lambda_{n-2}^{-1/2} & \lambda_{n-1}^{-1/2} \\ \vdots & \cdots & \vdots & \vdots \\ \lambda_{n-1}^{-1/2} & \cdots & \lambda_{n-2}^{-1/2} & \lambda_{n-1}^{-1/2} \\ \end{array} \right] \
\]

\[
= \frac{1}{b_k} \lambda_{n-1}^{-1/2} \det \left[\begin{array}{cccc} \lambda_{n-1}^{-1/2} & \cdots & \lambda_{n-2}^{-1/2} & 0 \\ \lambda_{n-1}^{-1/2} & \cdots & \lambda_{n-2}^{-1/2} & 0 \\ \vdots & \cdots & \vdots & \vdots \\ \lambda_{n-1}^{-1/2} & \cdots & \lambda_{n-2}^{-1/2} & 0 \\ \end{array} \right] \
\]

\[
= \frac{1}{b_k} \lambda_{n-1}^{-1/2} \lambda_{n-2}^{-1/2} - \lambda_{n-1}^{-1/2} \lambda_{n-2}^{-1/2} < 0, \\
\]

as \(\frac{\lambda_{n-2}}{\lambda_{n-1}} \in (0, 1) \), \(\frac{1}{b_1} - \frac{1}{b_2} > 0 \), and

\[
\lambda_{n-1}^{-1/2} \lambda_{n-2}^{-1/2} - \lambda_{n-1}^{-1/2} \lambda_{n-1}^{-1/2} = \lambda_{n-1}^{-1/2} \lambda_{n-2}^{-1/2} \left[1 - \left(\frac{\lambda_{n-2}}{\lambda_{n-1}} \right)^{1/2} \right] > 0.
\]

In summary,

\[
d_{n-1,k} < 0, \quad k = 1, 2.
\]

Next, let \(r = \frac{\lambda_{n-2}}{\lambda_{n-1}} \in (0, 1) \), and

\[
g(s) = s \left[r^t - r^{-s} \right].
\]

From (18) and (17) and cancelling a common factor of \(\lambda_{n-1}^{-1/2} \lambda_{n-2}^{-1/2} - \lambda_{n-1}^{-1/2} \lambda_{n-2}^{-1/2} \), we have

\[
c_1 g \left(\frac{1}{b_1} \right) + c_2 g \left(\frac{1}{b_2} \right) = 0.
\]

Here

\[
g' (s) = (r^t - r^{-s}) + (s \ln r) (r^t + r^{-s}) < 0,
\]

as \(r = \frac{\lambda_{n-2}}{\lambda_{n-1}} < 1 \) so \(\ln r < 0 \). Then \(g \) is decreasing and negative, and

\[
0 > g \left(\frac{1}{b_2} \right) > g \left(\frac{1}{b_1} \right)
\]

so (20) gives

\[
c_1 = -c_2 \frac{g \left(\frac{1}{b_1} \right)}{g \left(\frac{1}{b_2} \right)} \quad \text{and} \quad |c_1| < |c_2|.
\]

To ensure that \(w(0) = \frac{1}{T} \left(c_1 + c_2 \right) > 0 \), we then need to choose \(c_1 < 0 < c_2 \). To ensure that \(w(t) > 0 \) for all \(t \), we need for all such \(t \).

\[
|c_1| \leq c_2 \frac{1 + (b_1 t)^2}{1 + (b_2 t)^2}.
\]

As

\[
\min_{t \in \mathbb{R}} \frac{1 + (b_1 t)^2}{1 + (b_2 t)^2} = \left(\frac{b_1}{b_2} \right)^2,
\]

this is equivalent to

\[
g \left(\frac{1}{b_2} \right) \leq \left(\frac{b_1}{b_2} \right)^2.
\]
that is, (recall $g < 0$),
\[b_2 \left[r^{-1/b_2} - r^{-1/b_1} \right] \leq b_1 \left[r^{-1/b_1} - r^{-1/b_1} \right]. \]

Now let
\[h(s) = \frac{1}{s} \left[r^{-s} - r^{-s} \right], \]
so that we want
\[h \left(\frac{1}{b_2} \right) \leq h \left(\frac{1}{b_1} \right). \quad (22) \]

This would be true if h is increasing over the range $\left[\frac{1}{b_2}, \frac{1}{b_1} \right]$. Now
\[h'(s) = -\frac{1}{s^2} \left[r^{-s} - r^{-s} \right] - \frac{1}{s} \left(\ln r \right) \left[r^{-s} + r^{-s} \right] \]
\[= -\frac{r^{-s}}{s^2} \left[1 - r^{-s} + \frac{1}{2} \left(\ln r^2 \right) \left[1 + r^{-s} \right] \right] = -\frac{r^{-s}}{s^2} G(x) \]
where
\[x(s) = r^{s} \in (0, 1) \] decreases as s increases
and
\[G(x) = 1 - x + \frac{1}{2} (\ln x) (1 + x). \]

Here $G(0+) = -\infty$ and $G(1) = 0$ while for $x \in (0, 1)$,
\[G'(x) = \frac{1}{2} + \frac{1}{2x} + \frac{1}{2} \ln x \]
\[\Rightarrow G''(x) = \frac{1}{2x} \left(1 - \frac{1}{x} \right) < 0. \]

Thus G is concave in $(0, 1)$ and G' is a decreasing function of x with $G'(0+) = \infty$ and $G'(1) = 0 = G(1)$. It follows that $G'(x) > 0$ for $x \in (0, 1)$, so
\[G(x) < G(1) = 0 \text{ for } x \in (0, 1). \]

So, indeed,
\[h'(s) = -\frac{r^{-s}}{s^2} G(x) > 0 \text{ for } s > 0, \]
and as desired, we have (22). Then with c_1 and c_2 given by (21), and $c_2 > 0$, we do have
\[w(t) > 0, \quad t \in (-\infty, \infty). \]

It remains to show that this w is also given by (11) with $L = 2$. We know that c_1, c_2 are non-0 so
\[
\begin{align*}
\det \begin{bmatrix}
\frac{d_{n-1,1}}{\pi(1+t^2/r^2)} & \frac{d_{n-1,2}}{\pi(1+t^2/r^2)} \\
\frac{d_{n-1,1}}{\pi(1+t^2/r^2)} & \frac{d_{n-1,2} + \frac{1}{c_2}d_{n-1,1}}{\pi(1+t^2/r^2)}
\end{bmatrix}
&= \det \begin{bmatrix}
\frac{d_{n-1,1}}{\pi(1+t^2/r^2)} & \frac{0}{\pi(1+t^2/r^2)} \\
\frac{d_{n-1,1}}{\pi(1+t^2/r^2)} & \frac{1}{c_2} w(t)
\end{bmatrix}
&= \frac{d_{n-1,1}}{c_2} w(t).
\end{align*}
\]
Thus the determinant is of one sign. Choosing $A = \frac{c_2}{d_{n-1,1}} < 0$ gives the result. ■

References