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ABSTRACT: We present data which, to the best of our knowledge,
includes all known nontrivial values and bounds for specific graph,
hypergraph and multicolor Ramsey numbers, where the avoided
graphs are complete or complete without one edge. Many results per-
taining to other more studied cases are also presented. We give refer-
ences to all cited bounds and values, as well as to previous similar
compilations. We do not attempt complete coverage of asymptotic
behavior of Ramsey numbers, but concentrate on their specific values.
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1. Scope and Notation

There is vast literature on Ramsey type problems starting in 1930 with the original paper
of Ramsey [Ram]. Graham, Rothschild and Spencer in their book [GRS] present an exciting
development of Ramsey Theory. The subject has grown amazingly, in particular with regard
to asymptotic bounds for various types of Ramsey numbers (see the survey papers [GrRö,
Nes̆, ChGra2]), but the progress on evaluating the basic numbers themselves has been unsatis-
factory for a long time. In the last three decades, however, considerable progress has been
obtained in this area, mostly by employing computer algorithms. The few known exact values
and several bounds for different numbers are scattered among many technical papers. This
compilation is a fast source of references for the best results known for specific numbers. It
is not supposed to serve as a source of definitions or theorems, but these can be easily
accessed via the references gathered here.

Ramsey Theory studies conditions when a combinatorial object contains necessarily some
smaller given objects. The role of Ramsey numbers is to quantify some of the general existen-
tial theorems in Ramsey Theory.

Let G 1, G 2, . . . , Gm be graphs or s -uniform hypergraphs (s is the number of vertices
in each edge). R ( G 1, G 2, . . . , Gm ; s ) denotes the m -color Ramsey number for s -uniform
graphs/hypergraphs, avoiding Gi in color i for 1 ≤ i ≤ m . It is defined as the least integer n
such that, in any coloring with m colors of the s -subsets of a set of n elements, for some i
the s -subsets of color i contain a sub-(hyper)graph isomorphic to Gi (not necessarily
induced). The value of R ( G 1, G 2, . . . , Gm ; s ) is fixed under permutations of the first m
arguments. If s = 2 (standard graphs) then s can be omitted. If Gi is a complete graph Kk ,
then we may write k instead of Gi , and if Gi = G for all i we may use the abbreviation
Rm (G ; s ) or Rm (G ). For s = 2, Kk − e denotes a Kk without one edge, and for s = 3, Kk − t
denotes a Kk without one triangle (hyperedge).

The graph nG is formed by n disjoint copies of G , G ∪ H stands for vertex disjoint
union of graphs, and the join G + H is obtained by adding all the edges between vertices of
G and H to G ∪ H . Pi is a path on i vertices, Ci is a cycle of length i , and Wi is a wheel
with i −1 spokes, i.e. a graph formed by some vertex x , connected to all vertices of the cycle
Ci −1 (thus Wi = K 1 + Ci −1). Kn ,m is a complete n by m bipartite graph, in particular K 1,n is
a star graph. The book graph Bi = K 2 + Ki = K 1 + K 1,i has i + 2 vertices, and can be seen as i
triangular pages attached to a single edge. The fan graph Fn is defined by Fn = K 1 + nK 2.
For a graph G , n (G ) and e (G ) denote the number of vertices and edges, respectively, and
δ(G ) and ∆(G ) minimum and maximum degree in G . Finally, let χ(G ) be the chromatic
number of G . In general we follow the notation used by West [West].

Section 2 contains the data for the classical two color Ramsey numbers R (k , l ) for com-
plete graphs, section 3 for much studied two color cases of Kn − e , K 3, Km , n , and section 4
for numbers involving cycles. Section 5 lists other often studied two color cases for general
graphs. The multicolor and hypergraph cases are gathered in sections 6 and 7, respectively.
Finally, section 8 gives pointers to cumulative data and to other surveys.
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2. Classical Two-Color Ramsey Numbers

2.1. Values and bounds for R (k , l ), k ≤ 10, l ≤ 15

l 3 4 5 6 7 8 9 10 11 12 13 14 15

k

40 46 52 59 66 73
3 6 9 14 18 23 28 36

43 51 59 69 78 88

35 49 56 73 92 98 128 133 141 153
4 18 25

41 61 84 115 149 191 238 291 349 417

43 58 80 101 126 144 171 191 213 239 265
5

49 87 143 216 316 442 633 848 1139 1461 1878

102 113 132 169 179 253 263 317 401
6

165 298 495 780 1171 1804 2566 3705 5033 6911

205 217 241 289 405 417 511
7

540 1031 1713 2826 4553 6954 10581 15263 22116

282 317 817 861
8

1870 3583 6090 10630 16944 27490 41525 63620

565 581
9

6588 12677 22325 39025 64871 89203

798 1265
10

23556 81200

Table I. Known nontrivial values and bounds for two color
Ramsey numbers R (k , l ) = R (k , l ; 2).

l 4 5 6 7 8 9 10 11 12 13 14 15

k

Ka2 GR Ka2 Ex5 Ka2 Ex12 Piw1 Ex8 WW
3 GG GG Kéry

GrY MZ GR RK2 RK2 Les RK2 RK2 Les

Ka1 Ex9 Ex3 Ex15 Ex17 HaKr Ex18 SLL 2.3.e XXR XXR
4 GG

MR4 MR5 Mac Mac Mac Mac Spe3 Spe3 Spe3 Spe3 Spe3

Ex4 Ex9 CET HaKr Ex18 Ex18 Gerb Gerb Gerb Gerb Ex17
5

MR5 HZ1 Spe3 Spe3 Mac Mac HW+ HW+ HW+ HW+ HW+

Ka1 Ex17 XSR2 XXER Ex17 XXR XSR2 XXER 2.3.h
6

Mac Mac Mac Mac Mac HW+ HW+ HW+ HW+ HW+

She1 XSR2 XSR2 2.3.h XXER XSR2 XXR
7

Mac Mac HZ1 Mac HW+ HW+ HW+ HW+ HW+

BR XXER XXER 2.3.h
8

Mac Ea1 HZ1 HW+ HW+ HW+ HW+ HW+

She1 XSR2
9

ShZ1 Ea1 HW+ HW+ HW+ HW+

She1 2.3.h
10

Shi2 Yang

References for Table I. HW+ abbreviates HWSYZH.
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We split the data into the table of values and a table with corresponding references. In
Table I, known exact values appear as centered entries, lower bounds as top entries, and upper
bounds as bottom entries. For some of the exact values two references are given when the
lower and upper bound credits are different.

(a) The task of proving R (3, 3) ≤ 6 was the second problem in Part I of the William Lowell
Putnam Mathematical Competition held in March 1953 [Bush].

(b) Greenwood and Gleason [GG] in 1955 established the initial values R (3, 4) = 9,
R (3, 5) = 14 and R (4, 4) = 18.

(c) Kéry [Kéry] in 1964 found R (3, 6) = 18, but only recently an elementary and self-
contained proof of this result appeared in English [Car].

(d) All the critical graphs for the numbers R (k , l ) (graphs on R (k , l ) − 1 vertices without Kk

and without Kl in the complement) are known for k = 3 and l = 3, 4, 5 [Kéry], 6 [Ka2], 7
[RK3, MZ], and there are 1, 3, 1, 7 and 191 of them, respectively. All (3, k )-graphs, for
k ≤ 6, were enumerated in [RK3], and all (4,4)-graphs in [MR2]. There exists a unique
critical graph for R (4,4) [Ka2]. There are 430215 such graphs known for R (3,8) [McK],
1 for R (3,9) [Ka2] and 350904 for R (4, 5) [MR4], but there might be more of them.
The graphs constructed by Exoo in [Ex9, Ex12, Ex13, Ex14, Ex15, Ex16, Ex17], and
some others, are available electronically from http://ginger.indstate.edu/ge/RAMSEY.

(e) In [MR5], strong evidence is given for the conjecture that R (5, 5) = 43 and that there
exist exactly 656 critical graphs on 42 vertices.

(f) Cyclic (or circular ) graphs are often used for Ramsey graph constructions. Several
cyclic graphs establishing lower bounds were given in the Ph.D. dissertation by J.G.
Kalbfleisch in 1966, and many others were published in the next few decades (see
[RK1]). Harborth and Krause [HaKr] presented all best lower bounds up to 102 from
cyclic graphs avoiding complete graphs. In particular, no lower bound in Table I can be
improved with a cyclic graph on less than 102 vertices. See also item 2.3.k and section
5.16 [HaKr].

(g) The claim that R (5, 5) = 50 posted on the web [Stone] is in error, and despite being
shown to be incorrect more than once, this value is still being cited by some authors.
The bound R (3, 13) ≥ 60 [XieZ] cited in the 1995 version of this survey was shown to
be incorrect in [Piw1]. Another incorrect construction for R (3, 10) ≥ 41 was described
in [DuHu].

(h) There are really only two general upper bound inequalities useful for small parameters,
namely 2.3.a and 2.3.b. Stronger upper bounds for specific parameters were difficult to
obtain, and they often involved massive computations, like those for the cases of (3,8)
[MZ], (4,5) [MR4], (4,6) and (5,5) [MR5]. The bound R (6, 6) ≤ 166, only 1 more than
the best known [Mac], is an easy consequence of a theorem in [Walk] (2.3.b) and
R (4, 6) ≤ 41.

(i) T. Spencer [Spe3], Mackey [Mac], and Huang and Zhang [HZ1], using the bounds for
minimum and maximum number of edges in (4,5) Ramsey graphs listed in [MR3, MR5],
were able to establish new upper bounds for several higher Ramsey numbers, improving
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on all of the previous longstanding best results by Giraud [Gi3, Gi5, Gi6].

(j) Only some of the higher bounds implied by 2.3.* are shown, and more similar bounds
could be derived. In general, we show bounds beyond the contiguous small values if
they improve on results previously reported in this survey or published elsewhere. Some
easy upper bounds implied by 2.3.a are marked as [Ea1].

(k) We have recomputed the upper bounds in Table I marked [HZ1] using the method from
the paper [HZ1], because the bounds there relied on an overly optimistic personal com-
munication from T. Spencer. Further refinements of this method are studied in [HZ2,
ShZ1, Shi2]. The paper [Shi2] subsumes the main results of the manuscripts [ShZ1,
Shi2]. The upper bound R (10, 12) ≤ 81200 in Table I [Yang] was obtained by Yang
using the method of [HWSYZH] (abbreviated in the table as HW+).

2.2. Bounds for R (k , l ), higher parameters

l 15 16 17 18 19 20 21 22 23

k

73 79 92 99 106 111 122 131 139
3

WW WW WWY1 Ex17 WWY1 Ex17 WWY1 WSLX2 XWCS

153 164 200 205 213 234 242 314
4

XXR Gerb LWXS 2.3.e 2.3.g Ex17 SLZL LSLW

265 289 388 396 411 424 441 485 521
5

Ex17 2.3.h XSR2 2.3.g XSR2 XSR2 2.3.h 2.3.h 2.3.h

401 434 548 614 710 878 1070
6

2.3.h SLLL SLLL SLLL SLLL SLLL SLLL

609 711 797 908 1214
7

2.3.h 2.3.g 2.3.h SLLL SLLL

861 961 1045 1236 1617
8

2.3.h XSR2 2.3.g 2.3.g 2.3.h

l 24 25 26 27 28 29 30 31

k

143 154 159 167 173 184 190 199
3

WSLX1 WSLX2 WSLX1 WSLX1 WSLX2 WSLX2 WSLX2 WSLX2

l 32 33 34 35 36 37 38 39 40

k

214 218 226 231 239 244 256
3

WSLX2 ChW+ ChW+ ChW+ ChW+ ChW+ ChW+

Table II. Known nontrivial lower bounds for higher two color
Ramsey numbers R (k , l ), with references.
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(a) The construction by Mathon [Mat] and Shearer [She1] (see also items 2.3.i, 6.2.k and
6.2.l), using the data obtained by Shearer [She3] for primes up to 7000, implies in partic-
ular the following diagonal lower bounds: R (11,11) ≥ 1597, R (13,13) ≥ 2557,
R (14,14) ≥ 2989, R (15,15) ≥ 5485, and R (16,16) ≥ 5605. Similarly, R (17,17) ≥ 8917,
R (18,18) ≥ 11005 and R (19,19) ≥ 17885 were obtained in [LSL], though the first two of
these bounds follow also from the data in [She3]. The same approach does not improve
on the bound R (12,12) ≥ 1639 [XSR2].

(b) The upper bounds of 88, 99, 110, 121 133, 145, 158 on R (3, k ) for 15 ≤ k ≤ 21, respec-
tively, were obtained in [Les]. The lower bounds marked [XXR], [XXER], [XSR2],
2.3.e and 2.3.h need not be cyclic. Several of the Cayley colorings from [Ex17] are also
non-cyclic. All other lower bounds listed in Table II were obtained by construction of
cyclic graphs.

(c) The graphs establishing lower bounds marked 2.3.g can be constructed by using
appropriately chosen graphs G and H with a common m -vertex induced subgraph, simi-
larly as it was done in several cases in [XXR].

(d) Yu [Yu2] constructed a special class of triangle-free cyclic graphs establishing several
lower bounds for R (3, k ), for k ≥ 61. All of these bounds can be improved by the ine-
qualities in 2.3.c and data from Tables I and II.

(e) Unpublished bound R (4, 22) ≥ 314 [LSLW] improves over 282 given in [SL]. [LSLW]
includes also R (4, 25) ≥ 458. Not yet published bounds R (3, 23) ≥ 139 [XWCS] and
R (4, 17) ≥ 200 [LWXS] improve over 137 and 182 obtained in [WSLX2] and [LSS1],
respectively.

(f) Two special cases which improve on bounds listed in earlier revisions: R (9, 17) ≥ 1411
is given in [XXR] and R (10, 15) ≥ 1265 can be obtained by using 2.3.h.

(g) One can expect that the lower bounds in Table II are weaker than those in Table I, in the
sense that some of them should not be that hard to improve, in contrast to the bounds in
Table I, especially smaller ones.

2.3. General results on R (k , l )

(a) R (k , l ) ≤ R (k −1, l ) + R (k , l −1), with strict inequality when both terms on the right hand
side are even [GG]. There are obvious generalizations of this inequality for avoiding
graphs other than complete.

(b) R (k , k ) ≤ 4R (k , k − 2) + 2 [Walk].

(c) Explicit construction for R (3, 3k + 1) ≥ 4R (3, k + 1) − 3, for all k ≥ 2 [CleDa],
explicit construction for R (3, 4k + 1) ≥ 6R (3, k + 1) − 5, for all k ≥ 1 [ChCD].

(d) Explicit triangle-free graphs with independence k on Ω(k 3/ 2 ) vertices [Alon2, CPR].
For other constructive results in relation to R (3, k ) see [BBH1, BBH2, Fra1, Fra2, FrLo,
Gri, KlaM1, Loc, RK3, RK4, Stat, Yu1]. See also (p) and (q) below.
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(e) The study of bounds for the difference between consecutive Ramsey numbers was ini-
tiated in [BEFS], where the bound R (k , l ) ≥ R (k , l − 1) + 2k − 3 , for k , l ≥ 3, was esta-
blished by a construction. Let ∆ k , l = R (k , l ) − R (k , l − 1). Only easy bounds on ∆ k , l

are known, in particular 3 ≤ ∆ 3, l ≤ l for k = 3. Contrary to some claims about ∆ k , l , it
is not even known whether ∆ k , k + 1 / k → ∞ as k → ∞ , see [XSR2].

(f) By taking a disjoint union of two critical graphs one can easily see that R (k , p ) ≥ s and
R (k , q ) ≥ t imply R (k , p + q −1) ≥ s + t −1. Xu and Xie [XX1] improved this construction
to yield better general lower bounds, in particular R (k , p + q −1) ≥ s + t + k − 3.

(g) For 2 ≤ p ≤ q and 3 ≤ k , if (k , p )-graph G and (k , q )-graph H have a common induced
subgraph on m vertices without Kk −1, then R (k , p + q − 1) > n (G ) + n (H ) + m . In partic-
ular, this implies the bounds R (k , p + q − 1) ≥ R (k , p ) + R (k , q ) + k − 3 and
R (k , p + q − 1) ≥ R (k , p ) + R (k , q ) + p − 2 [XX1, XXR], with further small improve-
ments in some cases, like the term k − 2 instead of k − 3 in the previous bound [XSR2].

(h) R (2k − 1, l ) ≥ 4R (k , l − 1) − 3 for l ≥ 5 and k ≥ 2, and in particular for k = 3 we have
R (5, l ) ≥ 4R (3, l − 1) − 3 [XXER].

(i) If the quadratic residues Paley graph Qp of prime order p = 4t + 1 contains no Kk , then
R (k , k ) ≥ p + 1 and R (k + 1, k + 1) ≥ 2p + 3 [She1, Mat]. Data for larger p was
obtained in [LSL]. See also 3.1.c, and items 6.2.k and 6.2.l for similar multicolor results.

(j) Study of Ramsey numbers for large disjoint unions of graphs [Bu1, Bu9], in particular
R (nKk , nKl ) = n (k + l − 1) + R (Kk −1, Kl −1) − 2, for n large enough [Bu8].

(k) R (k , l ) ≥ L (k , l ) + 1, where L (k , l ) is the maximal order of any cyclic (k , l ) −graph.
A compilation of many best cyclic bounds was presented in [HaKr].

(l) The graphs critical for R (k , l ) are (k − 1) −vertex connected and (2k − 4) −edge con-
nected, for k , l ≥ 3 [BePi]. This was improved to vertex connectivity k for k ≥ 5 and
l ≥ 3 in [XSR2].

(m) All Ramsey-critical (k , l ) −graphs are Hamiltonian for k ≥ l − 1 ≥ 1 and k ≥ 3, except
(k , l ) = (3, 2) [XSR2].

(n) Two color lower bounds can be obtained by using items 6.2.m, 6.2.n and 6.2.o with
r = 2. Some generalizations of these were obtained in [ZLLS].
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In the last seven items of this section we only briefly mention some pointers to the litera-
ture dealing with asymptotics of Ramsey numbers. This survey was designed mostly for small,
finite, and combinatorial results, but still we wish to give the reader some useful and represen-
tative references to more traditional papers looking first of all at the infinite.

(o) In 1947, Erdős gave a simple probabilistic proof that R (k , k ) ≥ c .k 2 k / 2 [Erd1]. Spencer
[Spe1] improved the constant c to √ 2 /e . More probabilistic asymptotic lower bounds
for other Ramsey numbers were obtained in [Spe1, Spe2, AlPu].

(p) The limit of R (k , k ) 1 / k , if it exists, is between √ 2 and 4 [GRS, GrRö, ChGra2].

(q) In a 1995 breakthrough Kim proved that R (3, k ) = Θ(k 2/ log k ) [Kim].

(r) Other asymptotic and general results on triangle-free graphs in relation to R (3, k ) can be
found in [Boh, AlBK, AKS, Alon2, CleDa, ChCD, CPR, Gri, FrLo, Loc, She2].

(s) Explicit constructions yielding lower bounds R (4, k ) ≥ Ω(k 8/ 5), R (5, k ) ≥ Ω(k 5/ 3) and
R (6, k ) ≥ Ω(k 2) [KosPR]. For the same cases classical probabilistic arguments give
Ω(k / log k )5/ 2), Ω(k / log k )3) and Ω(k / log k )7/ 2), respectively [Spe2]. These were further
improved in [Boh, BohK].

(t) Explicit construction of a graph with clique and independence k on 2 c log2 k / log log k ver-
tices by Frankl and Wilson [FraWi]. Further constructions by Chung [Chu3] and Grol-
musz [Grol1, Grol2]. Explicit constructions like these are usually weaker than known
probabilistic results.

(u) In 2010, Conlon [Con1] obtained the best to date upper bound for the diagonal case:

R (k + 1, k + 1) ≤


 k
2k 



k − c log k / log log k

Other asymptotic bounds can be found, for example, in [Chu3, McS, Boh, BohK] (lower
bound) and [Tho] (upper bound), and for many other bounds in the general case of
R (k , l ) consult [Spe2, GRS, GrRö, Chu4, ChGra2, LiRZ1, AlPu, Kriv].
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3. Two Colors: Kn − e , K 3, Km , n

3.1. Dropping one edge from complete graph

This section contains known values and nontrivial bounds for the two color case when the
avoided graphs are complete or have the form Kk − e , but not both are complete.

H K 3 −e K 4 −e K 5 −e K 6 −e K 7 −e K 8 −e K 9 −e K 10 −e K 11 −e
G

K 3 −e 3 5 7 9 11 13 15 17 19

37 42
K 3 5 7 11 17 21 25 31

38 47

29 34 41
K 4 −e 5 10 13 17 28

38

27 37
K 4 7 11 19

34 52 77 105 143 187

31 40
K 5 −e 7 13 22

39 66

30 43
K 5 9 16

34 67 112 186 277 418 586

31 45 59
K 6 −e 9 17

39 70 135

37
K 6 11 21

53 114 205 385 621 1035 1551

40 59
K 7 −e 11 28

66 135 251

28 51
K 7 13

31 84 197 394 768 1339 2355 3766

K 8 15
42 123 306 659 1382 2562 4844 8223

Table III. Two types of Ramsey numbers R (G , H ),
includes all known nontrivial values.

(a) The exact values in Table III involving K 3 − e are obvious, since one can easily see that
R (K 3 − e , Kk ) = R (K 3 − e , Kk +1 − e ) = 2k − 1, for all k ≥ 2.

(b) The bound R (K 3, K 12 − e ) ≥ 46 is given in [MPR]. Wang, Wang and Yan [WWY2]
constructed cyclic graphs showing R (K 3, K 13 − e ) ≥ 54, R (K 3, K 14 − e ) ≥ 59 and
R (K 3, K 15 − e ) ≥ 69. It is known that R (K 4, K 12 − e ) ≥ 128 [Shao] using one color of
the (4,4,4;127)-coloring defined in [HiIr].

(c) If the quadratic residues Paley graph Qp of prime order p = 4t + 1 contains no Kk − e ,
then R (Kk +1 − e , Kk +1 − e ) ≥ 2p + 1. In particular, R (K 14 − e , K 14 − e ) ≥ 2987 [LiShen].
See also item 2.3.i.
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H K 4 −e K 5 −e K 6 −e K 7 −e K 8 −e K 9 −e K 10 −e K 11 −e
G

MPR WWY2
K 3 CH2 Clan FRS1 GH Ra1 Ra1

MPR MPR

Ea1 Ex14 Ex14
K 4 −e CH1 FRS2 McR McR

HZ2

Ex11 Ex14
K 4 CH2 EHM1

B1 HZ2 B1 B1 B1 B1

Ex14 Ex14
K 5 −e FRS2 CEHMS

Ea1 HZ2

Ex6 Ea1
K 5 BH

Ex8 HZ2 HZ2 B1 B1 B1 B1

Ex14 Ex14 Ex14
K 6 −e McR

Ea1 HZ2 HZ2

Ex14
K 6 McN

B1 B1 ShZ2 B1 B1 B1 B1

Ex14 Ex14
K 7 −e McR

HZ2 HZ2 ShZ1

Ea1 Ex14
K 7 B1 B1 B1 B1 B1 B1 B1 B1

K 8 B1 B1 B1 B1 B1 B1 B1 B1

References for Table III. B1 abbreviates Boza1.

(d) More bounds (beyond those shown in Table III) can be obtained by using Table I, an
obvious generalization of the inequality R (k , l ) ≤ R (k −1, l ) + R (k , l −1), and by mono-
tonicity of Ramsey numbers, in this case R (Kk −1, G ) ≤ R (Kk − e , G ) ≤ R (Kk , G ).

(e) All (K 3, Kk − e )-graphs for k ≤ 6 were enumerated in [Ra1], and for k = 7 in [Fid2].

(f) The critical graphs are unique for: R (K 3, Kl − e ) for l = 3 [Tr], 6 and 7 [Ra1],
R (K 4 − e , K 4 − e ) [FRS2], R (K 5 − e , K 5 − e ) [Ra3] and R (K 4 − e , K 7 − e ) [McR].

(g) The number of R (K 3, Kl − e )-critical graphs for l = 4, 5 and 8 is 4, 2 and 9, respectively
[MPR], and there are at least 6 such graphs for R (K 3, K 9 − e ) [Ra1].

(h) All the critical graphs for the cases R (K 4 − e , K 4 ) [EHM1], R (K 4 − e , K 5 ) and
R (K 5 − e , K 4 ) [DzFi1] are known, and there are 5, 13 and 6 of them, respectively.

(i) Full sets of (K 3, Kk − e )-graphs are available [Fid2] for the following parameters:
(K 3, Kk − e ) for k ≤ 7, (K 4, Kk − e ) for k ≤ 5 and (K 5, Kk − e ) for k ≤ 4.

(j) R (Kk − e , Kk − e ) ≤ 4R (Kk −2, Kk − e ) − 2 [LiShen].
For a similar inequality for complete graphs see 2.3.b.

(k) The upper bounds from [ShZ1, ShZ2] are subsumed by a later article [Shi2].

(l) The upper bounds in [HZ2] were obtained by a reasoning generalizing the bounds for
classical numbers in [HZ1]. Several other results from section 2.3 apply, though check-
ing in which situation they do may require looking inside the proofs whether they still
hold for Kn − e .
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3.2. Triangle versus other graphs

(a) R (3, k ) = Θ(k 2/ log k ) [Kim].

(b) Explicit construction for R (3, 3k + 1) ≥ 4R (3, k + 1) − 3, for all k ≥ 2 [CleDa],
explicit construction for R (3, 4k + 1) ≥ 6R (3, k + 1) − 5, for all k ≥ 1 [ChCD].

(c) Explicit triangle-free graphs with independence k on Ω(k 3/2 ) vertices [Alon2, CPR].

(d) R (K 3, K 7 − 2P 2 ) = R (K 3, K 7 − 3P 2 ) = 18 [SchSch2].

(e) R (K 3, K 3 + Km ) = R (K 3, K 3 + Cm ) = 2m + 5 for m ≥ 212 [Zhou1].

(f) R (K 3, K 2 + Tn ) = 2n + 3 for n -vertex trees Tn , for n ≥ 4 [SonGQ].

(g) R (K 3, G ) = 2n (G ) − 1 for any connected G on at least 4 vertices and with at most
(17n (G ) + 1)/15 edges, in particular for G = Pi and G = Ci , for all i ≥ 4 [BEFRS1].

(h) Relations between R (3, k ) and graphs with large χ(G ) [Für],
further detailed study of the relation between R (3, k ) and the chromatic gap [GySeT].

(i) R (K 3, G ) ≤ 2e (G ) + 1 for any graph G without isolated vertices [Sid3, GK].

(j) R (K 3, G ) ≤ n (G ) + e (G ) for all G , a conjecture [Sid2].

(k) R (K 3, G ) for all connected G up to 9 vertices [BBH1, BBH2], see also section 8.1.

(l) For every positive constant c , ∆, and n large enough, there exists graph G with
∆(G ) ≤ ∆ for which R (K 3, G ) > cn [Bra3].

(m) For R (K 3, Kn ) see section 2, and for R (K 3, Kn − e ) see section 3.1.

(n) Formulas for R (nK 3, mG ) for all G of order 4 without isolates [Zeng].

(o) Since B 1 = F 1 = C 3 = W 3 = K 3, other sections apply. See also [Boh, AKS, BBH1,
BBH2, FrLo, Fra1, Fra2, Für, Gri, GySeT, Loc, KlaM1, LiZa1, RK3, RK4, She2, Spe2,
Stat, Yu1].

3.3. Complete bipartite graphs

NOTE: This subsection gathers information on Ramsey numbers where specific bipartite
graphs are avoided in edge colorings of Kn (as everywhere in this survey), in contrast to often
studied bipartite Ramsey numbers (not covered in this survey) where the edges of complete
bipartite graphs Kn , m are colored.

3.3.1. Numbers

The following Tables IVa and IVb gather information mostly from the surveys by Lortz and
Mengersen [LoM3, LoM4]. All cases involving K 1,2 = P 3 are solved by a formula for
R (P 3, G ), holding for all isolate-free graphs G , derived in [CH2]. All star versus star
numbers are given below in the item 3.3.2.a and in section 5.5.
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p , q 1, 2 1, 3 1, 4 1, 5 1, 6 2, 2 2, 3 2, 4 2, 5 3, 3 3, 4

m , n

4 6 7 8 9 6
2, 2

CH2 CH2 Par3 Par3 FRS4 CH1

5 7 9 10 11 8 10
2, 3

CH2 FRS4 Stev FRS4 FRS4 HaMe4 Bu4

6 8 9 11 13 9 12 14
2, 4

CH2 HaMe3 Stev HaMe4 LoM4 HaMe4 ExRe EHM2

7 9 11 13 14 11 13 16 18
2, 5

CH2 HaMe3 Stev Stev LoM4 HaMe4 LoM3 LoM1 EHM2

8 10 11 14 15* 12 14 17 20
2, 6

CH2 HaMe3 Stev Stev Shao HaMe4 LoM3 LoM3 LoM1

7 8 11 12 13 11 13 16 18 18
3, 3

CH2 HaMe3 LoM4 LoM4 LoM4 Lortz HaMe3 LoM4 LoM4 HaMe3

7 9 11 13 14 11 14 17 ≤ 21 ≤ 25 ≤ 30
3, 4

CH2 HaMe3 LoM4 LoM4 LoM4 Lortz LoM4 Sh+ LoM4 LoM2 LoM2

9 10 13 15 14 ≥15* ≥16* ≥21* ≤ 28 ≤ 33
3, 5

CH2 HaMe3 Sh+ Sh+ HaMe4 Shao Shao Shao LoM2 LoM2

Table IVa. Ramsey numbers R (Km , n , Kp , q ) .
(unpublished results are marked with a *, Sh+ abbreviates ShaXBP)

m 2 3 4 5 6 7 8 9 10 11

n

12 14 17 20 21
6

HaMe4 LoM3 LoM3 LoM1 EHM2

14 17 19 21 24 26
7

HaMe4 LoM3 LoM3 LoM3 LoM1 EMH2

15 18 20 22* -23 24-25 28 30
8

HaMe4 LoM3 LoM3 LoM3 LoM3 LoM1 EMH2

16 19 22 25* 27* 29* 32 33
9

HaMe4 LoM3 LoM3 Shao Shao Shao LoM1 EHM2

17 21 24 27 27-29 28-31 32-33 36 38
10

HaMe4 LoM3 LoM3 LoM3 LoM3 LoM3 LoM3 LoM1 EHM2

18 ≤ 35 36-37 40 42
11

HaMe4 LoM3 LoM3 LoM1 EHM2

Table IVb. Known Ramsey numbers R (K 2, n , K 2, m ) , for 6 ≤ n ≤ 11, 2 ≤ m ≤ 11.
(unpublished results are marked with a *)
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(a) The next few easily computed values of R (K 1,n , K 2,2 ), extending data in the first row of
Table IVa, are 13, 14, 21 and 22 for n equal to 9, 10, 16 and 17, respectively. See func-
tion f (n ) in 3.3.2.c of the next subsection below.

(b) Formula for R (K 1, n , Kk 1, k 2, . . . , kt , m ) for m large enough, in particular for t = 1, k 1 = 2

with n ≤ 5, m ≥ 3 and n = 6, m ≥ 11, for example R (K 1,5, K 2,7 ) = 15 [Stev].

(c) The values and bounds for higher cases of R (K 2,2, K 2,n ) are 20, 22, 22/23, 22/24, 25,
26, 27/28, 28/29, 30 and 32 for 12 ≤ n ≤ 21 , respectively. More exact values can be
found for prime powers  √ n  and  √ n  + 1 [HaMe4].

(d) The known values of R (K 2,2, K 3,n ) are 15, 16, 17, 20 and 22 for 6 ≤ n ≤ 10 [Lortz],
and R (K 2,2, K 3,11 ) = 24 [Shao]. See Tables IVa and IVb for the smaller cases, and
[HaMe4] for upper bounds and values for some prime powers  √ n  .

(e) R (K 2,n , K 2,n ) is equal to 46, 50, 54, 57 and 62 for 12 ≤ n ≤ 16, respectively.
The first open diagonal case is 65 ≤ R (K 2,17, K 2,17 ) ≤ 66 [EHM2].
The status of all higher cases for n < 30 is listed in [LoM1].

(f) R (K 1,4, K 4,4 ) = R (K 1,5, K 4,4 ) = 13 [ShaXPB]
R (K 1,4, K 1,2,3 ) = R (K 1,4, K 2,2,2 ) = 11 [GuSL]
R (K 1,7, K 2,3 ) = 13 [Par4, Par6]
R (K 1,15, K 2,2 ) = 20 [La2]
R (K 2,2, K 4,4 ) = 14 [HaMe4]
R (K 2,2, K 4,5 ) = 15 [Shao]
R (K 2,2, K 4,6 ) = 16 [Shao]
R (K 2,2, K 5,5 ) = R (K 2,3, K 3,5 ) = 17 [Shao]
R (K 3,5, K 3,5 ) ≤ 38 [LoM2]
R (K 4,4, K 4,4 ) ≤ 62 [LoM2]

3.3.2. General results

(a) R (K 1,n , K 1,m ) = n + m − ε, where ε =1 if both n and m are even and ε =0 otherwise
[Har1]. It is also a special case of multicolor numbers for stars obtained in [BuRo1].

(b) R (K 1,3, Km , n ) = m + n + 2 for m , n ≥ 1 [HaMe3].

(c) R (K 1,n , K 2,2 ) = f (n ) ≤ n + √ n + 1, with f (q 2 ) = q 2 + q + 1 and f (q 2 + 1 ) = q 2 + q + 2
for every q which is a prime power [Par3]. Furthermore, f (n ) ≥ n + √ n − 6n 11 / 40

[BEFRS4]. For more bounds and values of f (n ) see [Par5, Chen, ChenJ, MoCa].

(d) R (K 1,n + 1, K 2,2 ) ≤ R (K 1,n , K 2,2 ) + 2 [Chen].

(e) R (K 2,λ+1, K 1,v − k +1 ) is either v + 1 or v + 2 if there exists a (v , k , λ)-difference set. This
and other related results are presented in [Par4, Par5]. See also [GoCM, GuLi].

(f) Formulas and bounds on R (K 2,2, K 2,n ), and bounds on R (K 2,2, Km ,n ). In particular,

R (K 2,2, K 2,k ) = n + k √ n + c , for k = 2, 3, 4 and some prime powers  √ n  and  √ n  + 1,
for some − 1 ≤ c ≤ 3 [HaMe4].
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(g) R (K 2,n , K 2,n ) ≤ 4n − 2 for all n ≥ 2 , and the equality holds iff there exists a strongly
regular (4n − 3, 2n − 2, n − 2, n − 1 )-graph [EHM2].

(h) Conjecture that 4n − 3 ≤ R (K 2,n , K 2,n ) ≤ 4n − 2 for all n ≥ 2. Many special cases are
solved and several others are discussed in [LoM1].

(i) R (K 2,n −1, K 2,n ) ≤ 4n − 4 for all n ≥ 3 , with the equality if there exists a symmetric
Hadamard matrix of order 4n − 4. There are only 4 cases in which the equality does not
hold for 3 ≤ n ≤ 58, namely 30, 40, 44 and 48 [LoM1].

(j) R (K 2,n −s , K 2,n ) ≤ 4n − 2s − 3 for s ≥ 2 and n ≥ s + 2 , with the equality in many cases
involving Hadamard matrices or strongly regular graphs. Asymptotics of R (K 2,n , K 2,m )
for m >>n [LoM3].

(k) Some algebraic lower and upper bounds on R (Ks ,n , Kt ,m ) for various combinations of n ,
m and 1 ≤ t , s ≤ 3 [BaiLi, BaLX]. A general lower bound R (Km ,n ) ≥ 2m (n − n 0.525)
for large n [Dong].

(l) Upper bounds for R (K 2,2, Km ,n ) for m , n ≥ 2 , with several cases identified for which the
equality holds. Special focus on the cases for m = 2 [HaMe4].

(m) Bounds for the numbers of the form R (Kk ,n , Kk ,m ), specially for fixed k and close to the
diagonal cases. Asymptotics of R (K 3,n , K 3,m ) for m >>n [LoM2].

(n) R (nK 1,3, mK 1,3 ) = 4n + m − 1 for n ≥ m ≥ 1, n ≥ 2 [BES].

(o) Asymptotics for K 2,m versus Kn [CLRZ]. Upper bound asymptotics for Kk ,m versus Kn

[LiZa1] and for some bipartite graphs Kn [JiSa].

(p) Special two-color cases apply in the study of asymptotics for multicolor Ramsey
numbers for complete bipartite graphs [ChGra1].
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4. Two Colors: Numbers Involving Cycles

4.1. Cycles, cycles versus paths and stars

The paper Ramsey Numbers Involving Cycles [Ra4] is based on the revision #12 of this
survey. It collects and comments on the results involving cycles versus any graphs, in two or
more colors. It contains some more details than this survey, but only until 2009.

Cycles

R (C 3, C 3 ) = 6 [GG, Bush]
R (C 4, C 4 ) = 6 [CH1]

R (C 3, Cn ) = 2n − 1 for n ≥ 4, R (C 4, Cn ) = n + 1 for n ≥ 6,
R (C 5, Cn ) = 2n − 1 for n ≥ 5, and R (C 6, C 6 ) = 8 [ChaS]

Result obtained independently in [Ros1] and [FS1], a new simpler proof in [KáRos]:

R (Cm , Cn ) =







max { n − 1 + m / 2, 2m − 1 }
n − 1 + m / 2
2n − 1

for 4 ≤ m < n , m even and n odd.
for 4 ≤ m ≤ n , m and n even, (m , n ) =/ (4,4),
for 3 ≤ m ≤ n , m odd, (m , n ) =/ (3,3),

R (mC 3, nC 3 ) = 3n + 2m for n ≥ m ≥ 1, n ≥ 2 [BES]

R (mC 4, nC 4 ) = 2n + 4m − 1 for m ≥ n ≥ 1, (n , m ) =/ (1,1) [LiWa1]

Formulas for R (mC 4, nC 5 ) [LiWa2]

Formulas and bounds for R (nCm , nCm ) [Den, Biel1]

Unions of cycles, formulas and bounds for various cases including diagonal, different lengths,
different multiplicities [MiSa, Den], and their relation to 2-local Ramsey numbers [Biel1].

Cycles versus paths

Result obtained by Faudree, Lawrence, Parsons and Schelp in 1974 [FLPS]:

R ( Cm , Pn ) =









m − 1 +  n / 2
max { m − 1 +  n / 2 , 2n − 1 }
n − 1 + m / 2
2n − 1

for 2 ≤ n ≤ m , m even.
for 2 ≤ n ≤ m , m odd,
for 4 ≤ m ≤ n , m even,
for 3 ≤ m ≤ n , m odd,

For all n and m it holds that R ( Pm , Pn ) ≤ R ( Cm , Pn ) ≤ R (Cm , Cn ). Each of the two ine-
qualities can become an equality, and, as derived in [FLPS], all four possible combinations of
< and = hold for an infinite number of pairs (m , n ). For example, if both m and n are

even, and at least one of them is greater than 4, then R ( Pm , Pn ) = R ( Cm , Pn ) = R (Cm , Cn ).
For related generalizations see [BEFRS2].
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Cycles versus stars

Only partial results for Cm versus stars are known. Lawrence [La1] settled the cases for odd
m and for long cycles (see also [Clark, Par6]). The case for short even cycles is open, it is
related in particular to bipartite graphs. Partial results for C 4 = K 2,2 are pointed to in subsec-
tions 3.3.1 and 3.3.2.

R (Cm , K 1, n ) =


 m

2n + 1
for m ≥ 2n.
for odd m ≤ 2n + 1,

4.2. Cycles versus complete graphs

Since 1976, it was conjectured that R (Cn , Km ) = (n − 1)(m − 1) + 1 for all n ≥ m ≥ 3,
except n = m = 3 [FS4, EFRS2]. The parts of this conjecture were proved as follows: for
n ≥ m 2 − 2 [BoEr], for n > 3 = m [ChaS], for n ≥ 4 = m [YHZ1], for n ≥ 5 = m
[BJYHRZ], for n ≥ 6 = m [Schi1], for n ≥ m ≥ 7 with n ≥ m (m − 2) [Schi1], for n ≥ 7 = m
[ChenCZ1], and for n ≥ 4m + 2, m ≥ 3 [Nik]. Open conjectured cases are marked in Table V
by "conj."

C 3 C 4 C 5 C 6 C 7 C 8 C 9 ... Cn for n ≥ m

6 7 9 11 13 15 17 ... 2n −1
K 3 GG-Bush ChaS ... ... ChaS

9 10 13 16 19 22 25 ... 3n −2
K 4 GG CH2 He2/JR4 JR2 YHZ1 ... ... YHZ1

14 14 17 21 25 29 33 ... 4n −3
K 5 GG Clan He2/JR4 JR2 YHZ2 BJYHRZ ... ... BJYHRZ

18 18 21 26 31 36 41 ... 5n −4
K 6 Kéry Ex2-RoJa1 JR5 Schi1 ... ... Schi1

23 22 25 31 37 43 49 ... 6n −5
K 7 Ka2-GrY RT-JR1 Schi2 CheCZN CheCZN JaBa/Ch+ Ch+ ... Ch+

28 26 29-33 36 43 50 57 ... 7n −6
K 8 GR-MZ RT JaAl2 ChenCX ChenCZ1 JaAl1/ZZ3 BatJA ... conj.

36 30-32 65 ... 8n −7
K 9 Ka2-GR RT-XSR1 conj. ... conj.

40-43 34-39 9n −8
K 10 Ex5-RK2 RT-XSR1

...
conj.

Table V. Known Ramsey numbers R (Cn , Km ).
(Ch+ abbreviates ChenCZ1, for comments on joint credits see 4.2.b)
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(a) The first column in Table V gives data from the first row in Table I.

(b) Joint credit [He2/JR4] in Table V refers to two cases in which Hendry [He2] announced
the values without presenting the proofs, which later were given in [JR4]. The special
cases of R (C 6, K 5 ) = 21 [JR2] and R (C 7, K 5 ) = 25 were solved independently in
[YHZ2] and [BJYHRZ]. The double pointer [JaBa/ChenCZ1] refers to two independent
papers, similarly as [JaAl1/ZZ3], except that in the latter case [ZZ3] refers to an unpub-
lished manuscript. For joint credits marked in Table V with "-", the first reference is for
the lower bound and the second for the upper bound.

(c) Erdős et al. [EFRS2] asked what is the minimum value of R (Cn , Km ) for fixed m , and
they suggested that it might be possible that R (Cn , Km ) first decreases monotonically,
then attains a unique minimum, then increases monotonically with n .

(d) There exist constants c 1, c 2 > 0 such that c 1(m / log m )3/ 2 ≤ R (C 4, Km ) ≤ c 2(m / log m )2.
The lower bound was obtained by Spencer [Spe2] using the probabilistic method. The
upper bound is in a paper by Caro, Li, Rousseau and Zhang [CRLZ], who in turn give
the credit to an unpublished work by Szemerédi from 1980.

(e) Erdős, in 1981, in the Ramsey problems section of the paper [Erd2] formulated a chal-
lenge by asking for a proof of R (C 4, Km ) < m 2 − ε , for some ε > 0. No such proof is
known to date.

(f) Lower bound asymptotics [Spe2, FS4, AlRö].

(g) Upper bound asymptotics [BoEr, FS4, EFRS2, CLRZ, Sud1, LiZa2, AlRö, DoLL2].
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4.3. Cycles versus wheels

Note: In this survey the wheel graph Wn = K 1 + Cn −1 has n vertices,
while some authors use the definition Wn = K 1 + Cn with n + 1 vertices.
For the cases involving W 3 = C 3 versus Cm see sections 3.2 and 4.2.

C 3 C 4 C 5 C 6 C 7 C 8 Cm for

9 10 13 16 19 22 3m −2 m ≥ 4
W 4 GG CH2 He2 JR2 YHZ1 ... ... YHZ1

11 9 9 11 13 15 2m −1 m ≥ 5
W 5 Clan Clan He4 JR2 SuBB2 ... ... SuBB2

11 10 13 16 19 22 3m −2 m ≥ 4
W 6 BE3 JR3 ChvS SuBB2 ... ... ... SuBB2

13 9 2m −1 m ≥ 10
W 7 BE3 Tse1 ... ChenCMN

15 11 19* 22* 3m −2* m ≥ 7
W 8 BE3 Tse1 ChenCN ... ... ChenCN

17 12 2m −1 m ≥ 13
W 9 BE3 Tse1 ChenCMN

... cycles

Wn 2n −1 2n −1 2n −1

for n ≥ 6 n ≥ 19 n ≥ 29 large

BE3 Zhou2 Zhou2 wheels

Table VI. Ramsey numbers R (Wn , Cm ), for n ≤ 9, m ≤ 8.
(results from unpublished manuscript are marked with a *)

(a) R (C 3, Wn ) = 2n − 1 for n ≥ 6 [BE3]. All critical graphs have been enumerated.
The critical graphs are unique for n = 3, 5, and for no other n [RaJi].

(b) R (C 4, Wn ) = 13, 14, 16, 17 for n = 10, 11, 12, 13, respectively [Tse1].
R (C 4, Wn ) ≤ n +  (n − 1) / 3 for n ≥ 7 [SuBUB].

(c) R (Wn , Cm ) = 2n − 1 for odd m with n ≥ 5m − 6 [Zhou2].

(d) R (Wn , Cm ) = 3m − 2 for even n ≥ 4 with m ≥ n − 1, m =/ 3, was conjectured by Surahmat
et al. [SuBT1, SuBT2, Sur]. Parts of this conjecture were proved in [SuBT1, ZhaCC1,
Shi5], and the proof was completed in [ChenCN].

(e) Conjecture that R (Wn , Cm ) = 2m − 1 for odd n ≥ 3 and all m ≥ 5 with m > n [Sur].
It was proved for 2m ≥ 5n − 7 [SuBT1], and further for 2m ≥ 3n − 1 [ChenCMN].
See also [Shi5].

(f) Observe apparently four distinct situations with respect to parity of m and n .
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(g) Cycles are Ramsey unsaturated for some wheels [AliSur],
see also comments on [BaLS] in subsection 5.16.

(h) Study of cycles versus generalized wheels Wk ,n [Sur, SuBTB, Shi5].

4.4. Cycles versus books

C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 Cm for

7 7 9 11 13 15 17 19 21 2m −1 m ≥ 4
B 2 RS1 Fal6 Cal Fal8 ... ... Fal8

9 9 10 11 13 15 17 19 21 2m −1 m ≥ 6
B 3 RS1 Fal6 Fal8 JR2 Shi5 Fal8 ... ... Fal8

11 11 11 12 13 15 17 19 21 2m −1 m ≥ 7
B 4 RS1 Fal6 Fal8 Sal1 Sal1 Shi5 Shi5 Fal8 ... ... Fal8

13 12 13 14 15 15 17 19 21 2m −1 m ≥ 8
B 5 RS1 Fal6 Fal8 Sal1 Sal1 Sal2 Sal2 Shi5 Shi5 ... Fal8

15 13 15 16 17 18 18 21 2m −1 m ≥ 11
B 6 RS1 Fal6 Fal8 Sal2 Sal2 Sal2 Sal2 Shi5 ... Shi5

17 16 17 16 19 20 21 2m −1 m ≥ 13
B 7 RS1 Fal6 Fal8 Sal2 Sal2 Sal2 Sal2 Shi5

19 17 19 17 19 22 ≥ 23 2m −1 m ≥ 14
B 8 RS1 Tse1 Fal8 Sal2 Sal2 Sal2 Sal2 Shi5

21 18 21 18 ≥ 25 ≥ 26 2m −1 m ≥ 16
B 9 RS1 Tse1 Fal8 Sal2 Sal2 Sal2 Shi5

23 19 23 19 ≥ 28 2m −1 m ≥ 17
B 10 RS1 Tse1 Fal8 Sal2 Sal2 Shi5

25 20 25 2m −1 m ≥ 19
B 11 RS1 Tse1 Fal8 Shi5

... ... cycles

Bn 2n +3 ∼∼ n 2n +3 2n +3 2n +3 2n +3

for n ≥ 2 some n ≥ 4 n ≥ 15 n ≥ 23 n ≥ 31 large

RS1 (c) Fal8 Fal8 Fal8 Fal8 books

Table VII. Ramsey numbers R (Bn , Cm ) for n , m ≤ 11.
(et al. abbreviations: Fal/FRS, Cal/CRSPS, Sal1/ShaXBP, Sal2/ShaXB)

(a) For the cases of B 1 = K 3 versus Cm see section 4.2.
The exact values for the cases (3,7), (4,8), (4,9), (5,10), (5,11) were obtained indepen-
dently in [Sal1, Sal2]/[ShaXBP, ShaXB] using computer algorithms.

(b) R (C 4, B 12 ) = 21 [Tse1], R (C 4, B 13 ) = 22 , R (C 4, B 14 ) = 24 [Tse2].
R (C 4, B 8 ) = 17 [Tse2] (it was reported incorrectly in [FRS6] to be 16).

(c) q 2 + q + 2 ≤ R (C 4, Bq 2 − q + 1 ) ≤ q 2 + q + 4 for prime power q [FRS6]. Bn is a subgraph
of Bn + 1, hence likely R (C 4, Bn ) = n + O (√ n ) (compare to R (C 4, K 2,n ) in section 3.3).
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(d) R (Bn , Cm ) = 2n + 3 for odd m ≥ 5 with n ≥ 4m − 13 [FRS8].

(e) R (Bn , Cm ) = 2m − 1 for n ≥ 1, m ≥ 2n + 2 [FRS8]. The range of m was extended to
m ≥ 2n − 1 ≥ 7 in [ShaXB], and to m > (6n + 7) / 4 in [Shi5].

(f) R (Bn , Cn ) ≥ 3n − 2 and R (Bn − 1, Cn ) ≥ 3n − 4 for n ≥ 3 [ShaXB].

(g) More theorems on R (Bn , Cm ) in [FRS6, FRS8, NiRo4, Zhou1]

(h) Cycles versus some generalized books [Shi5].

4.5. Cycles versus other graphs

(a) C 4 versus stars [Par3, Par4, Par5, BEFRS4, Chen, ChenJ, GoMC, MoCa]. For several
exact results see K 2,2 in Tables IVa and IVb, and for general results see items 3.3.1.a,
3.3.2.c and 3.3.2.d.

(b) C 4 versus unions of stars [HaABS, Has]

(c) C 4 versus trees [EFRS4, Bu7, BEFRS4, Chen]

(d) C 4 versus all graphs on six vertices [JR3]

(e) C 4 versus various types of complete bipartite graphs, see section 3.3

(f) R (C 4, G ) ≤ 2q + 1 for any isolate-free graph G with q edges [RoJa2]

(g) R (C 4, G ) ≤ p + q − 1 for any connected graph G on p vertices and q edges [RoJa2]

(h) R (C 5, K 6 − e ) = 17 [JR4]

(i) R (C 5, K 4 − e ) = 9 [CRSPS]

(j) C 5 versus all graphs on six vertices [JR4]

(k) R (C 6, K 5 − e ) = 17 [JR2]

(l) C 6 versus all graphs on five vertices [JR2]

(m) R (C 2m +1, G ) = 2n − 1 for sufficiently large sparse graphs G on n vertices, in particular
R (C 2m +1, Tn ) = 2n − 1 for all n > 1512m + 756, for n -vertex trees Tn [BEFRS2].

(n) R (Cn , G ) ≤ 2q +  n / 2  − 1, for 3 ≤ n ≤ 5, for any isolate-free graph G with q > 3 edges.
It is conjectured that it also holds for other n [RoJa2].

(o) Cycles versus trees [BEFRS2, FSS1]

(p) Monotone paths and cycles [Lef]

(q) Cycles versus Kn ,m and multipartite complete graphs [BoEr]

(r) Cycles versus generalized books and wheels [Shi5, Sur, SuBTB], and versus other spe-
cial graphs of the form Kn + G with small n ≤ 3 and sparse G [Shi5].
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5. General Graph Numbers in Two Colors

This section includes data with respect to general graph results. We tried to include all
nontrivial values and identities regarding exact results (or references to them), but only those
out of general bounds and other results which, in our opinion, may have a direct connection to
the evaluation of specific numbers. If some small value cannot be found below, it may be
covered by the cumulative data gathered in section 8, or be a special case of a general result
listed in this section. Note that P 2 = K 2, B 1 = F 1 = C 3 = W 3 = K 3, B 2 = K 4 − e ,
P 3 = K 3 − e , W 4 = K 4 and C 4 = K 2,2 imply other identities not mentioned explicitly.

5.1. Paths

R (Pm , Pn ) = n +  m / 2  − 1 for all n ≥ m ≥ 2 [GeGy]

Stripes mP 2 [CocL1, CocL2, Lor]

Disjoint unions of paths (also called linear forests) [BuRo2, FS2]

5.2. Wheels

Note: In this survey the wheel graph Wn = K 1 + Cn −1 has n vertices,
while some authors use the definition Wn = K 1 + Cn with n + 1 vertices.

n 3 4 5 6 7

m

6 9 11 11 13
3

GG Clan BE3 BE3

18 17 19
4

GG He3 FM

15 17
5

He2 FM

17
6

FM

Table VIII. Ramsey numbers R ( Wm , Wn ), for m ≤ n ≤ 7.

(a) R (W 3, Wn ) = 2n −1 for all n ≥ 6 [BE3]
All critical colorings for R (W 3, Wn ) for all n ≥ 3 [RaJi]

(b) The value R (W 5, W 5 ) = 15 was given in the Hendry’s table [He2] without a proof.
Later the proof was published in [HaMe2].

(c) All critical colorings (2, 1 and 2) for R (Wn , W 6 ) for n = 4, 5, 6 [FM]

(d) R (W 6, W 6 ) = 17, R (4,4) = 18 and χ(W 6 ) = 4 give a counterexample G = W 6
to the Erdős conjecture (see [GRS]) that R (G , G ) ≥ R (K χ(G ), K χ(G ) ).
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5.3. Books

n 1 2 3 4 5 6 7

m

6 7 9 11 13 15 17
1

CH2 Clan RS1 RS1 RS1 RS1

10 11 13 16 17 18
2

CH1 Clan Rou RS1 Rou/BLR BLR

14 15 17
3

RS1 Sh+ RS1

18 ≤ 20 22
4

RS1 RS1 RS1

21
5

RS1

26
6

RS1

Table IX. Ramsey numbers R ( Bm , Bn ), for m , n ≤ 7.
(Sh+ abbreviates ShaXBP)

(a) 254 ≤ R (B 37, B 88 ) ≤ 255 [Par6]

(b) Unpublished result R (B 2, B 3 ) = 17 [Rou] was later confirmed in [BLR].

(c) There are 4 Ramsey-critical graphs for R (B 2, B 3 ), unique graph for R (B 3, B 4 )
[ShaXBP], 3 for R (B 2, B 6 ) and 65 for R (B 2, B 7 ) [BLR].

(d) R (B 1, Bn ) = 2n + 3 for all n >1 [RS1]

(e) R (Bn , Bm ) = 2n + 3 for all n ≥ cm for some c < 106 [NiRo2, NiRo3]

(f) R (Bn , Bn ) = (4 + o (1))n [RS1, NiRS]

(g) In general, R (Bn , Bn ) = 4n + 2 for 4n + 1 a prime power. Several other specific values
(like R (B 62, B 65 ) = 256) and general equalities and bounds for R (Bn , Bm ) can be found
in [RS1, FRS7, Par6, NiRS, LiRZ2].

5.4. Trees and forests

In this subsection Tn and Fn denote n -vertex tree and forest, respectively.

(a) R (Tn , Tn ) ≤ 4n + 1 [EG]

(b) R (Tn , Tn ) ≥  (4n − 1) / 3 [BE2], see also section 5.15

(c) Conjecture that R (Tn , Tn ) ≤ 2n − 2 , note that this is almost the same as asking if
R (Tn , Tn ) ≤ R (K 1,n −1, K 1,n −1 ) [BE2], see also [Bu7, FSS1, ChGra2]. Discussion of the
conjecture that R (Tm , Tn ) ≤ n + m − 2 holds for all trees [FSS1].
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(d) If ∆(Tm ) = m − 2 and ∆(Tn ) = n − 2 then the exact values of R (Tm , Tn ) are known, and
they are between n + m − 5 and n + m − 3 depending on n and m . In particular, for
n = 2k + 1 we have R (T 2k +1, T 2k +1 ) = 2n − 5 [GuoV].

(e) Examples of families Tm and Tn (including Pn ) for which R (Tm , Tn ) = n + m − c ,
c = 3, 4, 5 [SunZ], extending the results in [GuoV].

(f) View tree T as a bipartite graph with parts t 1 and t 2, t 2 ≥ t 1. Define
b (T ) = max{ 2t 1 + t 2 − 1, 2t 2 − 1}. Then the bound R (T , T ) ≥ b (T ) holds always,
R (T , T ) = b (T ) holds for many classes of trees [EFRS3, GeGy], and asymptotically
[HaŁT], but cases for nonequality have been found [GHK].

(g) Comments in [BaLS] about some conjectures on Ramsey saturation of non-star trees,
which would imply that R (Tn , Tn ) ≤ 2n − 2 holds for sufficiently large n .

(h) R (Tm , K 1,n ) ≤ m + n − 1 , with equality for (m − 1) | (n − 1) [Bu1].

(i) R (Tm , K 1,n ) = m + n − 1 for sufficiently large n for almost all trees Tm [Bu1]. Many
cases were identified for which R (Tm , K 1,n ) = m + n − 2 [Coc, ZZ1], see also [Bu1].

(j) R (Tm , K 1,n ) ≤ m + n if Tn is not a star and (m − 1) |/ (n − 1),
some classes of trees and stars for which the equality holds [GuoV].

(k) R (Fn , Fn ) > n + log2n − O (loglog n ) [BE2], forests are tight for this bound [CsKo].

(l) Forests, linear forests (unions of paths) [BuRo2, FS3, CsKo].

(m) Paths versus trees [FSS1], see also other parts of this survey involving special graphs,
in particular sections 5.5, 5.6, 5.10, 5.12 and 5.15.

5.5. Stars, stars versus other graphs

R (K 1,n , K 1,m ) = n + m − ε, where ε =1 for even n and m , and ε =0 otherwise [Har1].
This is also a special case of multicolor numbers for stars 6.6.e obtained in [BuRo1].

R (K 1,n , Km ) = n (m − 1) + 1 by Chvátal’s theorem [Chv].

Stars versus C 4 [Par3, Par4, Par5, BEFRS4, Chen, ChenJ, GoMC, MoCa]
Stars versus K 2,n [Par4, GoMC]
Stars versus Kn , m [Stev, Par3]
Stars versus complete bipartite graphs [Par4, Stev]
See also section 3.3

R (K 1,4, B 4 ) = 11 [RS2]
R (K 1,4, K 1,2,3 ) = R (K 1,4, K 2,2,2 ) = 11 [GuSL]

nK 1,m versus W 5 [BaHA]
Stars versus W 5 and W 6 [SuBa1]
Stars versus W 9 [Zhang2, ZhaCZ1]
Stars versus wheels [HaBA1, ChenZZ2, Kor]
Stars versus paths [Par2, BEFRS2]
Stars versus cycles [La1, Clark], see also [Par6] and section 4.1
Stars versus books [CRSPS, RS2]
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Stars versus trees [Bu1, Cheng, Coc, GuoV, SunZ, ZZ1]
Stars versus stripes mP 2 [CocL1, CocL2, Lor]
Stars versus Kn − tK 2 [Hua1, Hua2]
Stars versus 2K 2 [MeO]
Union of two stars [Gros2]
Unions of stars versus C 4 and W 5 [HaABS, Has]
Unions of stars versus wheels [BaHA, HaBA2, SuBAU1]

5.6. Paths versus other graphs
Note: for cycles versus Pn see section 4.1.

P 3 versus all isolate-free graphs [CH2]
Paths versus stars [Par2, BEFRS2]
Paths versus trees [FS4, FSS1, SunZ]
Paths versus books [RS2]
Paths versus Kn [Par1]
Paths versus 2Kn [SuAM]
Paths versus Kn ,m [Häg]
Paths versus W 5 and W 6 [SuBa1]
Paths versus W 7 and W 8 [Bas]
Paths versus wheels [BaSu, ChenZZ1, SaBr3, Zhang1]
Paths versus beaded wheels [AliBT2]
Paths versus fans [SaBr2]
Paths versus K 1 + Pm [SaBr1, SaBr4]
Paths and cycles versus trees [FSS1]

Unions of paths [BuRo2]
Paths and unions of paths versus Jahangir graphs [AliBas, AliBT1, AliSur]
Paths and unions of paths versus K 2m − mK 2 [AliBB]

Sparse graphs versus paths and cycles [BEFRS2]
Graphs with long tails [Bu2, BG]
Monotone paths and cycles [Lef]

5.7. Fans, fans versus other graphs

R (F 1, Fn ) = R (K 3, Fn ) = 4n + 1 for n ≥ 2 , and bounds for R (Fm , Fn ) [LR2, GGS]

R (F 2, Fn ) = 4n + 1 for n ≥ 2 and R (Fm , Fn ) ≤ 4n + 2m for n ≥ m ≥ 2 [LinLi]

R (K 4, Fn ) = 6n + 1 for n ≥ 3 [SuBB3]

Fans versus paths, formulas for a number of cases including R (P 6, Fn ) [SaBr2].
Missing case R (P 6, F 4 ) = 12 solved in [Shao].

Fans versus cycles [Shi5]
Fans versus Kn [LR2]
Lower bounds on R (F 2, Kn ) from cyclic graphs for n ≤ 9 [Shao]
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5.8. Wheels versus other graphs

Notes: In this survey the wheel graph Wn = K 1 + Cn −1 has n vertices,
while some authors use the definition Wn = K 1 + Cn with n + 1 vertices.
For cycles versus Wn see section 4.3.

R (W 5, K 5 − e ) = 17 [He2][YH]
R (W 5, K 5 ) = 27 [He2][RST]
R (W 5, K 6 ) ≥ 33, R (W 5, K 7 ) ≥ 43 [Shao]
W 5 and W 6 versus stars and paths [SuBa1]
W 5 versus nK 1,m [BaHA]
W 5 versus unions of stars [Has]
W 5 and W 6 versus trees [BSNM]
W 7 and W 8 versus paths [Bas]

W 7 versus trees Tn with ∆(Tn ) ≥ n − 3, other special trees T ,
and for n ≤ 8 [ChenZZ3, ChenZZ5, ChenZZ6]

W 7 and W 8 versus trees [ChenZZ4, ChenZZ5]
W 9 versus stars [Zhang2, ZhaCZ1, ZhaCC2]
W 9 versus trees of high degree [ZhaCZ2]

Wheels versus stars [HaBA1, ChenZZ2, Kor]
Wheels Wn , for even n , versus star-like trees [SuBB1]
Wheels versus paths [BaSu, ChenZZ1, SaBr3, Zhang1]
Wheels versus books [Zhou3]
Wheels versus unions of stars [BaHA, HaBA2, SuBAU1]
Wheels versus linear forests (disjoint unions of paths) [SuBa2]
Generalized wheels versus cycles [Shi5]
Upper bound asymptotics for R (Wn , Km ) [Song5, SonBL]

5.9. Books versus other graphs
Note: for cycles versus Bn see section 4.4.

R (B 3, K 4 ) = 14 [He3]
R (B 3, K 5 ) = 20 [He2][BaRT]
R (B 4, K 1,4 ) = 11 [RS2]

Cyclic lower bounds for R (Bm , Kn ) for m ≤ 7, n ≤ 9
and for R (B 3, Kn − e ) for n ≤ 7 [Shao]

Books versus paths [RS2]
Books versus stars [CRSPS, RS2]
Books versus trees [EFRS7]
Books versus Kn [LR1, Sud2]
Books versus wheels [Zhou3]
Books versus K 2 + Cn [Zhou3]
Books and (K 1 + tree ) versus Kn [LR1]
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Generalized books K 3 + qK 1 versus cycles [Shi5]
Generalized books Kr + qK 1 versus Kn [NiRo1, NiRo4]

5.10. Trees and forests versus other graphs

In this subsection Tn and Fn denote n -vertex tree and forest, respectively.

R (Tn , Km ) = (n − 1)(m − 1) + 1 [Chv]

R (Tn , C 2m +1 ) = 2n − 1 for all n > 1512m + 756 [BEFRS2]

R (Tn , Bm ) = 2n − 1 for all n ≥ 3m − 3 [EFRS7]

R (Fnk , Km ) = (n − 1)(m − 2) + nk for all forests Fnk consisting of k trees with
n vertices each, also exact formula for all other cases of forests versus Km [Stahl]

Exact results for almost all small (n (G ) ≤ 5) connected graphs G versus all trees [FRS4]

Trees versus C 4 [EFRS4, Bu7, BEFRSS5, Chen]
Trees versus paths [FS4, FSS1]
Trees versus cycles [FSS1, EFRS6]
Trees versus stars [Bu1, Cheng, Coc, GuoV, ZZ1]
Trees versus books [EFRS7]
Trees versus W 5 and W 6 [BSNM]
Trees versus W 7 and W 8 [ChenZZ4, ChenZZ5]

Trees Tn with ∆(Tn ) ≥ n − 3, other special trees T ,
and for n ≤ 8 versus W 7 [ChenZZ3, ChenZZ5, ChenZZ6]
Trees Tn with ∆(Tn ) ≥ n − 4 versus W 9 [ZhaCZ2]

Star-like trees versus odd wheels [SuBB1, ChenZZ3]
Trees versus Kn + Km [RS2, FSR]
Trees versus bipartite graphs [BEFRS4, EFRS6]
Trees versus almost complete graphs [GoJa2]
Trees versus multipartite complete graphs [EFRS8, BEFRSGJ]

Linear forests versus 3K 3 and 2K 4 [SuBAU2]
Linear forests versus wheels [SuBa2]
Forests versus almost complete graphs [CGP]
Forests versus complete graphs [BE1, Stahl, BaHA]

Study of graphs G for which all or almost all trees are G -good [BF, BEFRSGJ],
see also section 5.15 and 5.16, item [Bu2], for the definition and more pointers.

See also various parts of this survey for special trees and section 5.4.

5.11. Cases for n (G ), n (H ) ≤ 5

Clancy [Clan], in 1977, presented a table of R (G , H ) for all isolate-free graphs G with
n (G ) = 4 and H with n (H ) = 4, except 5 entries. All five of the open entries have been
solved as follows:

- 27 -



THE ELECTRONIC JOURNAL OF COMBINATORICS (2011), DS1.13

R (B 3, K 4 ) = 14 [He3]
R (K 4 − e , K 5 ) = 16 [BH]
R (W 5, K 4 ) = 17 [He2]
R (K 5 − e , K 4 ) = 19 [EHM1]
R (K 5, K 4 ) = R (4,5) = 25 [MR4]

An interesting case in [Clan] is

R (K 4, K 5 − P 3) = R (K 4, K 4 + e ) = R (4, 4) = 18.

Hendry [He2], in 1989, presented a table of R (G , H ) for all graphs G and H on 5
vertices without isolates, except 7 entries. Five of the open entries have been solved:

R (K 5, K 4 + e ) = R (4, 5) = 25 [Ka1][MR4]
R (K 5, K 5 − P 3 ) = 25 [Ka1][Boza2, CalSR]
R (K 5, B 3 ) = 20 [He2][BaRT]
R (K 5, W 5 ) = 27 [He2][RST]
R (W 5, K 5 − e ) = 17 [He2][YH]

The still open cases for K 5 versus K 5 − e and K 5 are:

30 ≤ R (K 5, K 5 − e ) ≤ 34 [Ex6][Ex8]
43 ≤ R (K 5, K 5 ) ≤ 49 [Ex4][MR5]

All critical colorings for the case R (C 5 + e , K 5 ) = 17 were found in [He5].

5.12. Mixed cases

26 ≤ R (K 2,2,2 , K 2,2,2 ), K 2,2,2 is an octahedron [Ex8]
Unicyclic graphs [Gros1, Köh, KrRod]
K 2,m and C 2m versus Kn [CLRZ]
K 2,n versus any graph [RoJa2]
Union of two stars [Gros2]
Double stars* [GHK, BahS]
Graphs with bridge versus Kn [Li1]
Multipartite complete graphs [BFRS, FRS3, Stev]
Multipartite complete graphs versus sparse graphs [EFRS4]
Multipartite complete graphs versus trees [EFRS8, BEFRSGJ]
Graphs with long tails [Bu2, BG]
Brooms+ [EFRS3]

* double star is a union of two stars with their centers joined by an edge

+ broom is a star with a path attached to its center

- 28 -



THE ELECTRONIC JOURNAL OF COMBINATORICS (2011), DS1.13

5.13. Multiple copies of graphs, disconnected graphs

(a) 2K 2 versus all isolate-free graphs [CH2]

(b) nK 2 versus mK 2, in particular R (nK 2, nK 2 ) = 3n − 1 for n ≥ 1 [CocL1, CocL2, Lor]

(c) nK 3 versus mK 3, in particular R (nK 3, nK 3 ) = 5n for n ≥ 2 [BES], see also section 4.1

(d) nK 3 versus mK 4 [LorMu]

(e) nK 1,m versus W 5 [BaHA]

(f) R (nK 4, nK 4 ) = 7n + 4 for large n [Bu8]

(g) Stripes mP 2 [CocL1, CocL2, Lor]

(h) R (G , H ) for all disconnected isolate-free graphs H on at most 6 vertices versus all G on
at most 5 vertices, except 3 cases [LoM5]. Missing cases were completed in [KroMe].

(i) R (F , G ∪ H ) ≤ max{ R (F , G ) + n (H ), R (F , G ) } [Par6]

(j) R (mG , nH ) ≤ (m − 1)n (G ) + (n − 1)n (H ) + R (G , H ) [BES]
Formulas for R (nK 3, mG ) for all isolate-free graphs G on 4 vertices [Zeng]
Variety of results for numbers R (nG , mH ) [Bu1, BES, HaBA2, SuBAU1]

(k) Disjoint unions of paths (linear forests) [BuRo2, FS2]
Linear forests versus 3K 3 ∪ 2K 4 [SuBAU2]

(l) Forests versus Kn [Stahl, BaHA] and Wn [BaHA]. Generalizations to forests versus
other graphs G in terms of χ(G ) and the chromatic surplus of G [Biel4], and for linear
forests versus 2Kn [SuAM].

(m) Disconnected graphs versus other graphs [BE1, GoJa1]

(n) See section 4.1 for cases involving unions of cycles

(o) See also [Bu9, BE1, LorMu, MiSa, Den, Biel1, Biel2]

5.14. General results for special graphs

[BEFS] R (Km
p , Kn

q) = R (Km , Kn ) for m , n ≥ 3, m + n ≥ 8, p ≤ m /(n − 1) and
q ≤ n /(m − 1), where Ks

t is a Ks with additional vertex connected to it by t
edges. Some applications can be found in [BLR].

[RoJa2] R (K 2,k , G ) ≤ kq + 1, for k ≥ 2, for isolate-free graphs G with q ≥ 2 edges.

[FM] R (W 6, W 6 ) = 17 and χ(W 6 ) = 4. This gives a counterexample G = W 6 to the
Erdős conjecture (see [GRS]) R (G ,G ) ≥ R (K χ(G ), K χ(G ) ), since R (4,4) = 18.

[BE1] R (G + K 1, H ) ≤ R (K 1, R (G , H ), H ).

[LiShen] R (K 2 + G , K 2 + G ) ≤ 4R (G , K 2 + G ) − 2.

[LinLD] Study of R (G + K 1, nH + K 1).

[NiRo1] R (Kp + 1, Bq
r ) = p (q + r − 1) + 1 for generalized books Bq

r = Kr + qK 1, for all
sufficiently large q .
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[LR1] Study of R (T + K 1, Kn ) for trees T . Asymptotic upper bounds for
R (T + K 2, Kn ) [Song7], see also [SonGQ].

[LR3] Bounds on R (H + Kn , Kn ) for general H . Also, for fixed k and m , as n → ∞,
R (Kk + Km , Kn ) ≤ (m + o (1)) n k / (log n )k −1 [LiRZ1].

[LiTZ] Asymptotics of R (H + Kn , Kn ). In particular, the order of magnitude of
R (Km , n , Kn ) is n m +1/ (log n )m .

[HoIs] Study of the largest k such that if the star K 1,k is removed from Kr ,
r = R (G , H ), any edge 2-coloring of the remaining part still contains mono-
chromatic G or H , as for Kr , for various special G and H [HoIs].

[LiRZ2] Let G ′′ be a graph obtained from G by deleting two vertices. Then
R (G , H ) ≤ A + B + 2 + 2 √ ( A 2 + AB + B 2 ) / 3 , where A = R (G ′′ , H ) and
B = R (G , H ′′ ).

5.15. General results for sparse graphs

[Chv] R (Kn , Tm ) = (n −1)(m −1) + 1 for any tree Tm on m vertices.

[BE3] Graphs yielding R (Kn , G ) = (n −1)(n (G ) − 1) + 1, called Ramsey n -good, and
related results (see also [EFRS5]). An extensive survey and further study of
n -goodness appeared in [NiRo4].

[BEFRS2] R (C 2m +1, G ) = 2n − 1 for sufficiently large sparse graphs G on n vertices,
little more complicated formulas for P 2m +1 instead of C 2m +1.

[CRST] R (G ,G ) ≤ cd n (G ) for all G , where constant cd depends only on the max-
imum degree d in G . The constant was improved in [GRR1, FoxSu1]. Tight
lower and upper bounds for bipartite G [GRR2, Con2]. Further improvements
of the constant cd in general were obtained in [ConFS5], and for graphs with
bounded bandwidth in [AllBS].

[BE1] Study of L -sets, which are sets of pairs of graphs whose Ramsey numbers are
linear in the number of vertices. Conjecture that Ramsey numbers grow
linearly for d -degenerate graphs (graph is d -degenerate if all its subgraphs
have minimum degree at most d ). Progress towards this conjecture was
obtained by several authors, including [KoRö1, KoRö2, KoSu, FoxSu1,
FoxSu2].

[ChenS] R (G ,G ) ≤ cd n for all d -arrangeable graphs G on n vertices, in particular
with the same constant for all planar graphs. The constant cd was improved in
[Eaton]. An extension to graphs not containing a subdivision of Kd [RöTh].

[AllBS] Conjecture that R (G ,G ) ≤ 12n (G ) for all planar G , for large n .

[Shi3] Ramsey numbers grow linearly for degenerate graphs versus some sparser
graphs, arrangeable graphs, crowns, graphs with bounded maximum degree,
planar graphs, and graphs without any topological minor of a fixed clique.
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[NeOs] Discussion of various old and new classes of Ramsey linear graphs.

[EFRS9] Study of graphs G , called Ramsey size linear, for which there exists a con-
stant cG such that for all H with no isolates R (G , H ) ≤ cG e (H ). An over-
view and further results were given in [BaSS].

[LRS] R (G , G ) < 6n for all n -vertex graphs G , in which no two vertices of degree
at least 3 are adjacent. This improves the result R (G , G ) ≤ 12n in [Alon1]. In
an early paper [BE1] it was proved that if any two points of degree at least 3
are at distance at least 3 then R (G , G ) ≤ 18n .

[Shi1] R (Qn , Qn ) ≤ 2(3 + √5)n / 2 + o (n ), for the n -dimensional cube Qn with 2n vertices.
This bound can also be derived from a theorem in [KoRö1]. An improvement
was obtained in [Shi4], and a further one to R (Qn , Qn ) ≤ 22n + 5n in [FoxSu1].

[Gros1] Conjecture that R (G ,G ) = 2n (G ) − 1 if G is unicyclic of odd girth. Further
support for the conjecture was given in [Köh, KrRod].

[-] See also earlier subsections 5.* for various specific sparse graphs.

5.16. General results

[CH2] R (G , H ) ≥ ( χ(G ) − 1)(c (H ) − 1) + 1, where χ(G ) is the chromatic number of
G , and c (H ) is the size of the largest connected component of H .

[CH3] R (G , G ) > (s 2 e (G ) − 1) ) 1 / n (G ) , where s is the number of automorphisms of G .
Hence R (Kn ,n , Kn ,n ) > 2 n , see also item 6.7.i.

[BE2] R (G , G ) ≥  (4n (G ) − 1) / 3 for any connected G , and R (G , G ) ≥ 2n − 1 for
any connected nonbipartite G . These bounds can be achieved for all n ≥ 4.

[Bu2] Graphs H yielding R (G , H ) = (χ(G ) − 1)(n (H ) − 1) + s (G ), where s (G ) is a
chromatic surplus of G , defined as the minimum number of vertices in some
color class under all vertex colorings in χ(G ) colors (such H ’s are called G -
good). This idea, initiated in [Bu2], is a basis of a number of exact results for
R (G , H ) for large and sparse graphs H [BG, BEFRS2, BEFRS3, Bu5, FS,
EFRS4, FRS3, BEFSRGJ, BF, LR4, Biel2, SuBAU3, Song6, AllBS]. Surveys
of this area appeared in [FRS5, NiRo4].

[BaLS] Graph G is Ramsey saturated if R (G + e , G + e ) > R (G , G ) for every edge e
in G . This paper contains several theorems involving cycles, cycles with chords
and trees on Ramsey saturated and unsaturated graphs, and also seven conjec-
tures including one stating that almost all graphs are Ramsey unsaturated.
Some classes of graphs were proved to be Ramsey unsaturated [Ho]. Special
cases involving cycles and Jahangir graphs were studied in [AliSur].

[Für] Relations between R (3, k ) and graphs with large χ(G ). Further detailed study
of the relation between R (3, k ) and the chromatic gap [GySeT].

[Bra3] R (G , H )> h (G , d ) n (H ) for all nonbipartite G and almost every d -regular H ,
for some h unbounded in d .

- 31 -



THE ELECTRONIC JOURNAL OF COMBINATORICS (2011), DS1.13

[DoLL1] Lower asymptotics of R (G , H ) depending on the average degree of G and the
size of H . This continues the study initiated in [EFRS5], later much enhanced
for both lower and upper bounds in [Sud3].

[LiZa1] Lower bound asymptotics of R (G , H ) for large dense H .

[AlKS] Discussion of a conjecture by Erdős that there exists a constant c such that
R (G , G ) ≤ 2 c √ e (G ) for all isolate-free graphs G . Proof for bipartite graphs
and progress in other cases. In 2011, Sudakov [Sud4] completed the proof of
this conjecture.

[Kriv] Lower bound on R (G , Kn ) depending on the density of subgraphs of G . This
construction for G = Km produces a bound similar to the best known proba-
bilistic lower bound by Spencer [Spe2]. Further lower and upper bounds on
R (G , Kn ) in terms of n and e (G ) can be found in [Sud3].

[Con3] Upper bounds on R (G , Kn ) for dense graphs G .

[BE1] Relations between the cases of G or G + K 1 versus H or H + K 1.

[HaKr] Study of cyclic graphs yielding lower bounds for Ramsey numbers. Exact for-
mulas for paths and cycles, and values for small complete graphs and for
graphs with up to five vertices.

[Par3] Relations between some Ramsey graphs and block designs. See also [Par4].

[Li2] Relations between the Shannon capacity of noisy communication channels and
graph Ramsey numbers. See also section 6 in [Ros2].

[Bu6] Given integer m and graphs G and H , determining whether R (G , H ) ≤ m
holds is NP − hard. Further complexity results related to Ramsey theory were
presented in [Bu10].

[Scha] Ramsey arrowing is Π 2
p − complete, a rare natural example of a problem higher

than NP in the polynomial hierarchy of computational complexity theory.

[-] Special cases of multicolor results listed in section 6.

[-] See also surveys listed in section 8.
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6. Multicolor Ramsey Numbers

The only known value of a multicolor classical Ramsey number:

R 3(3) = R (3,3,3) = R (3,3,3 ; 2) = 17 [GG]

2 critical colorings (on 16 vertices) [KaSt, LayMa]
2 colorings on 15 vertices [Hein]
115 colorings on 14 vertices [PR1]

6.1. Bounds for classical numbers

General upper bound, implicit in [GG]:

R (k 1, ... , kr ) ≤ 2 − r +
i = 1
Σ
r

R (k 1, ... , ki − 1, ki − 1, ki + 1, ... , kr ) (a)

Inequality in (a) is strict if the right hand side is even, and at least one of the terms in the
summation is even. It is suspected that this upper bound is never tight for r ≥ 3 and ki ≥ 3,
except for r = k 1 = k 2 = k 3 = 3. However, only two cases are known to improve over (a),
namely R 4(3) ≤ 62 [FKR] and R (3,3,4) ≤ 31 [PR1, PR2], for which (a) produces the bounds
of 66 and 34, respectively.

Diagonal Cases

m 3 4 5 6 7 8 9

r

17 128 417 1070 3214 6079 13761
3

GG HiIr Ex17 Mat XuR1 XSR2 XXER

51 634 3049 15202 62017
4

Chu1 XXER Xu XXER XXER

162 3416 26912
5

Ex10 XXER Xu

538
6

FreSw

1682
7

FreSw

Table X. Known nontrivial lower bounds for diagonal multicolor
Ramsey numbers Rr (m ), with references.

The best published bounds corresponding to the entries in Table X marked as personal com-
munications [Ex17] and [Xu] are 415 ≤ R 3(5), 2721 ≤ R 4(5) and 26082 ≤ R 5(5) [XXER].
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The most studied and intriguing open case is

[Chu1] 51 ≤ R 4(3) = R (3,3,3,3) ≤ 62 [FKR]

The construction for 51 ≤ R 4(3) as described in [Chu1] is correct, but be warned of a typo
found by Christopher Frederick in 2003 (there is a triangle (31,7,28) in color 1 in the
displayed matrix). The inequality 6.1.a implies R 4(3) ≤ 66, Folkman [Fol] in 1974 improved
this bound to 65, and Sánchez-Flores [San] in 1995 proved R 4(3) ≤ 64.

The upper bounds in 162 ≤ R 5(3) ≤ 307, 538 ≤ R 6(3) ≤ 1838, 1682 ≤ R 7(3) ≤ 12861,
128 ≤ R 3(4) ≤ 236 and 634 ≤ R 4(4) ≤ 6474 are implied by 6.1.a (we repeat lower bounds
from Table X just to see easily the ranges). All the latter and other upper bounds obtainable
from known smaller bounds and 6.1.a can be computed with the help of a LISP program writ-
ten by Kerber and Rowat [KerRo].

Off-Diagonal Cases

Three colors:

m 4 5 6 7 8 9 10 11 12 13 14

k

30 45 60 81 101 118 142 158 182 212 233
3

Ka2 Ex2 Rob3 Ex16 Ex17 Gerb Gerb Gerb LSS2 LSS2 6.2.f

55 89 117 145 193
4

KLR Ex18 Ex18 Ex18 6.2.f

89 139 181
5

Ex18 Ex18 Ex18

Table XI. Known nontrivial lower bounds for 3-color
Ramsey numbers of the form R (3, k , m ), with references.

In addition, the bounds 303 ≤ R (3,6,6), 609 ≤ R (3,7,7) and 1689 ≤ R (3,9,9) were derived in
[XXER] (used there for building other lower bounds for some diagonal cases).

The other most studied, and perhaps the only open case of a classical multicolor Ramsey
number, for which we can anticipate exact evaluation in the not-too-distance future is

[Ka2] 30 ≤ R (3,3,4) ≤ 31 [PR1, PR2]

In [PR1] it is conjectured that R (3,3,4) = 30, and the results in [PR2] eliminate some
cases which could give R (3,3,4) = 31. The upper bounds in 45 ≤ R (3,3,5) ≤ 57,
55 ≤ R (3,4,4) ≤ 79, and 89 ≤ R (3,4,5) ≤ 160 are implied by 6.1.a (we repeat lower bounds
from the Table XI to show explicitly the current ranges).
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Four colors:

97 ≤ R (3,3,3,4) ≤ 153 [Ex18], 6.1.a
171 ≤ R (3,3,4,4) ≤ 462 [Ex16, XXER], 6.1.a
381 ≤ R (3,4,4,4) ≤ 1619 6.2.j, 6.1.a

162 ≤ R (3,3,3,5) [XXER]
565 ≤ R (3,3,3,11) 6.2.f
681 ≤ R (3,4,5,5) [XXER]

Lower bounds for higher numbers can be obtained by using general constructive results
from section 6.2 below. For example, the bounds 261 ≤ R (3,3,15) and 247 ≤ R (3,3,3,7) were
not published explicitly but are implied by 6.2.f and 6.2.g, respectively.

6.2. General results for complete graphs

(a) R (k 1, ... , kr ) ≤ 2 − r +
i = 1
Σ
r

R (k 1, ... , ki − 1, ki − 1, ki + 1, ... , kr ) [GG]

(b) Rr (3) ≥ 3Rr − 1(3) + Rr − 3(3) − 3 [Chu1]

(c) Rr (m ) ≥ cm (2m − 3)r , and some slight improvements of this bound for small values of m
were described in [AbbH, Gi1, Gi2, Song2]. For m = 3, the best known lower bound is
Rr (3) ≥ (3.199...) r [XXER].

(d) Rr (3) ≤ r !(e − e − 1 + 3 ) / 2 ∼∼ 2.67r ! [Wan], which improves the classical 3r ! [GRS].

(e) The limit L =
r → ∞
lim Rr (3)1/r exists, though it can be infinite [ChGri].

It is known that 3.199 < L , as implied by (c) above. For more related results, mostly on
the asymptotics of Rr (3) , see [AbbH, Fre, Chu2, GRS, GrRö].

(f) R (3, k , l ) ≥ 4R (k , l − 1) − 3 , and in general for r ≥ 2 and ki ≥ 2,

R (3, k 1, ... , kr ) ≥ 4R (k 1 − 1, k 2, ... , kr ) − 3 for k 1 ≥ 5, and

R (k 1, 2k 2 − 1, k 3, ... , kr ) ≥ 4R (k 1 − 1, k 2, ... , kr ) − 3 for k 1 ≥ 5 [XX2, XXER].

(g) R (3, 3, 3, k 1, ... , kr ) ≥ 3R (3, 3, k 1, ... , kr ) + R (k 1, ... , kr ) − 3 [Rob2]

(h) For r + 1 colors, avoiding K 3 in the first r colors and avoiding Km in the last color,
R (3, ... , 3, m ) ≤ r ! m r + 1 [Sár].

(i) R (k 1, ... , kr ) ≥ S (k 1, ... , kr ) + 2, where S (k 1, ... , kr ) is the generalized Schur number
[AbbH, Gi1, Gi2]. In particular, the special case k 1 = ... = kr = 3 has been widely studied
[Fre, FreSw, Ex10, Rob3].

(j) R (k 1, ... , kr ) ≥ L (k 1, ... , kr ) + 1, where L (k 1, ... , kr ) is the maximal order of any cyclic
(k 1, ... , kr )−coloring, which can be considered a special case of Schur partitions defining
(symmetric) Schur numbers. Many lower bounds for Ramsey numbers were established
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by cyclic colorings. The following recurrence can be used to derive lower bounds for
higher parameters. For ki ≥ 3 [Gi2],

L (k 1, ... , kr , kr + 1 ) ≥ (2kr + 1 − 3)L (k 1, ... , kr ) − kr + 1 + 2.

(k) Rr (m ) ≥ p + 1 and Rr (m + 1) ≥ r ( p + 1) + 1 if there exists a Km −free cyclotomic r − class
association scheme of order p [Mat].

(l) If the quadratic residues Paley graph Qp of prime order p = 4t + 1 contains no Kk , then
R (s , k + 1, k + 1) ≥ 4ps − 6p + 3 [XXER].

(m) Rr ( pq + 1) > (Rr ( p + 1) − 1)(Rr (q + 1) − 1) [Abb1]

(n) Rr ( pq + 1) > Rr ( p + 1)(Rr (q + 1) − 1) for p ≥ q [XXER]

(o) R ( p 1q 1+ 1, ... , pr qr + 1) > (R ( p 1+ 1, ... , pr + 1) − 1)(R (q 1+ 1, ... , qr + 1) − 1) [Song3]

(p) Rr + s (m ) > (Rr (m ) − 1)(Rs (m ) − 1) [Song2]

(q) R (k 1, k 2, ... , kr ) > (R (k 1, ... , ki ) − 1)(R (ki +1, ... , kr ) − 1) in [Song1], see [XXER].

(r) R (k 1, k 2, ... , kr ) > (k 1 + 1)(R (k 2 − k 1 + 1, k 3, ... , kr ) − 1) [Rob4]

(s) Further lower bound constructions, though with more complicated assumptions, were
presented in [XX2, XXER].

(t) Grolmusz [Grol1] generalized the classical constructive lower bound by Frankl and Wil-
son [FraWi] (item 2.3.t) to more colors and to hypergraphs [Grol3] (item 7.3.i).

(u) Exact asymptotics of a very special but important case is known, namely
R (3, 3, n ) = Θ(n 3 poly−log n ) [AlRö]. For general upper bounds and more asymptotics
see in particular [Chu4, ChGra2, ChGri, GRS, GrRö].

All lower bounds in (b) through (t) above are constructive. (g) generalizes (b), (o) gen-
eralizes both (m) and (q), and (q) generalizes (p). (n) is stronger than (m). Finally, we note
that the construction in (o) with q 1 = ... = qi = 1 = pi +1 = ... = pr is the same as (q).

6.3. Cycles

The paper Ramsey Numbers Involving Cycles [Ra4] is based on the revision #12 of this
survey. It collects and comments on the results involving cycles versus any graphs, in two or
more colors. It contains some more details than this survey, but only until 2009.

6.3.1. Three colors

(a) One long cycle.

The first larger paper in this area by Erdős, Faudree, Rousseau and Schelp [EFRS1]
appeared in 1976. It gives several formulas and bounds for R (Cm , Cn , Ck ) and
R (Cm , Cn , Ck , Cl ) for large m . For three colors [EFRS1] includes:

R (Cm , C 2p +1, C 2q +1) = 4m − 3 for p ≥ 2, q ≥ 1 ,

R (Cm , C 2p , C 2q +1) = 2(m + p ) − 3 and

R (Cm , C 2p , C 2q ) = m + p + q − 2 for p , q ≥ 1 and large m .
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m n k R (Cm , Cn , Ck ) references general results

3 3 3 17 GG page 33
3 3 4 17 ExRe
3 3 5 21 Sun1+/Tse3 5k −4 for k ≥ 5, m =n =3 [Sun1+]
3 3 6 26 Sun1+
3 3 7 31 Sun1+

3 4 4 12 Schu
3 4 5 13 Sun1+/Rao/Tse3
3 4 6 13 Sun1+/Tse3
3 4 7 15 Sun1+/Tse3

3 5 5 ≥ 17 Tse3
3 5 6 21 Sun1+
3 5 7 25 Sun1+

3 6 6
3 6 7 21 Sun1+
3 7 7

4 4 4 11 BS
4 4 5 12 Sun2+/Tse3
4 4 6 12 Sun2+/Tse3 k +2 for k ≥ 11, m =n =4 [Sun2+]
4 4 7 12 Sun2+/Tse3 values for k =8, 9, 10 are 12, 13, 13 [Sun2+]

4 5 5 13 Tse3
4 5 6 13 Sun1+
4 5 7 15 Sun1+

4 6 6 11 Tse3
4 6 7 13 Sun1+/Tse3
4 7 7

5 5 5 17 YR1
5 5 6 21 Sun1+
5 5 7 25 Sun1+
5 6 6
5 6 7 21 Sun1+
5 7 7

6 6 6 12 YR2 R 3 (C 2q ) ≥ 4q for q ≥ 2 [DzNS]
6 6 7 15 Sun1+ see 6.3.1.a for larger parameters
6 7 7 see 6.3.1.a for larger parameters
7 7 7 25 FSS2 R 3 (C 2q +1 ) = 8q +1 for large q [KoSS]

8 8 8 16 Sun/SunY R 3 (C 2q ) = 4q for large q [BenSk]

Table XII. Ramsey numbers R (Cm , Cn , Ck ) for m , n , k ≤ 7 and m = n = k = 8.
(Sun1+ abbreviates SunYWLX, Sun2+ abbreviates SunYLZ2,

the work in [SunYWLX] and [SunYLZ2] is independent from [Tse3])

(b) Triple even cycles.

R 3 (C 2m ) ≥ 4m for all m ≥ 2 [DzNS], see also 6.3.2.c/d/e.

In 2005, Dzido [Dzi1] conjectured that R 3(C 2m ) = 4m for all m ≥ 3. It is known that
R (Cn , Cn , Cn ) = (2 + o (1)) n for even n [FiŁu1, GyRSS]. Next, the diagonal case was
improved to exactly 2n for large n [BenSk]. The first open case is for R 3(C 10), known
to be at least 20. A more general result holds for slightly off-diagonal cases [FiŁu1]:
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R (C 2  α1n  , C 2  α2n  , C 2  α3n  ) =
( α1 + α2 + α3 + max{α1, α2, α3} + o (1)) n , for all α1, α2, α3 > 0.

(c) Triple odd cycles.

R 3(C 2m +1 ) = 8m + 1 for all sufficiently large m , or equivalently
R (Cn , Cn , Cn ) = 4n − 3 for all sufficiently large odd n [KoSS].

R (Cn , Cn , Cn ) ≤ (4 + o (1)) n , with equality for odd n [Łuc]. In 1981, it was conjectured
by Bondy and Erdős, see [Erd2], that R (Cn , Cn , Cn ) ≤ 4n − 3 for n ≥ 4. If true, then for
all odd n ≥ 5 we have R (Cn , Cn , Cn ) = 4n − 3. The first open case is for R 3(C 9),
known to be at least 33.

(d) R (C 3, C 3, Ck ) = 5k − 4 for k ≥ 5 [SunYWLX], and R (C 4, C 4, Ck ) = k + 2 for k ≥ 11
[SunYLZ2]. All exceptions to these formulas for small k are listed in Table XII.

(e) Asymptotics for triples of cycles of mixed parity similar in form to (b) [FiŁu2].

(f) Almost all of the off-diagonal cases in Table XII required the use of computers.

6.3.2. More colors

For results on Rk (C 3 ) = Rk (K 3 ) see sections 6.1, 6.2.

R 4(C 4 ) = 18 [Ex2] [SunYLZ1]
18 ≤ R 4(C 6 ) [SunYJLS]
27 ≤ R 5(C 4 ) ≤ 29 [LaWo1]

R 5(C 6 ) = 26 [SunYJLS] [SunYW]

24 ≤ R (C 3, C 4, C 4, C 4 ) ≤ 27 [DyDz] [XuR2]
30 ≤ R (C 3, C 3, C 4, C 4 ) ≤ 36 [DyDz] [XuR2]
49 ≤ R (C 3, C 3, C 3, C 4 ) 6.7.e

(a) Formulas for R (Cm , Cn , Ck , Cl ) for large m [EFRS1].

(b) Rk (C 4 ) ≤ k 2 + k + 1 for all k ≥ 1, Rk (C 4 ) ≥ k 2 − k + 2 for all k − 1 which is a prime
power [Ir, Chu2, ChGra1], and Rk (C 4 ) ≥ k 2 + 2 for odd prime power k [LaWo1]. The
latter was extended to any prime power k in [Ling, LaMu].

Bounds in (c) through (g) below cover different situations and each is best in some respect.

(c) Rk (C 2m ) ≥ (k + 1)m for odd k and m ≥ 2, and
Rk (C 2m ) ≥ (k + 1)m − 1 for even k and m ≥ 2 [DzNS].

(d) Rk (C 2m ) ≥ 2(k − 1)(m − 1) + 2 [SunYXL].

(e) Rk (C 2m ) ≥ k 2 + 2m − k for 2m ≥ k + 1 and prime power k [SunYJLS].
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(f) Rk (C 2m ) = Θ(k m /(m − 1)) for fixed m = 2, 3 and 5 [LiLih].

(g) Rk (C 2m ) ≤ 201km for k ≤ 10 m / 201m [EG].

(h) Rk (C 2m ) ≤ 2km + o (m ) for all fixed k ≥ 2 [ŁucSS].

(i) Rk (C 5 ) < √18k k ! /10 [Li4].

(j) 2k m < Rk (C 2m +1 ) ≤ (k + 2)!(2m + 1) [BoEr].

Better upper bound Rk (C 2m +1 ) < 2(k + 2)!m was obtained in [EG].

Much better upper bound Rk (C 2m +1 ) ≤ (c k k !)1/m , for some positive constant c ,
if all Ramsey-critical graphs for C 2m +1 are not far from regular, was obtained in [Li4].

(k) Conjecture that Rk (C 2m +1 ) = 2k m + 1 for all m ≥ 2, was credited by several authors to
Bondy and Erdős [BoEr], though only lower bound not the conjecture is in this paper.

(l) R (Cn , Cl 1
, ... , Clk

) = 2k (n − 1) + 1 for all li ’s odd with li > 2i , and every sufficiently

large n , in particular we have Rk (Cn ) = 2k −1(n − 1) + 1 for large odd n [AllBS].

(m) Rk (C 2m +1 ) ≤ k 2k (2m + 1) + o (m ) for all fixed k ≥ 4 [ŁucSS].

(n) Asymptotic bounds for Rk (Cn ) [Bu1, GRS, ChGra2, Li4, LiLih, ŁucSS].

(o) Survey of multicolor cycle cases [Li3].

6.3.3. Cycles versus other graphs

20 ≤ R (C 4, C 4, K 4 ) ≤ 22 [DyDz] [XSR1]
27 ≤ R (C 3, C 4, K 4 ) ≤ 32 [DyDz] [XSR1]
52 ≤ R (C 4, K 4, K 4 ) ≤ 72 [XSR1]
34 ≤ R (C 4, C 4, C 4, K 4 ) ≤ 50 [DyDz] [XSR1]
43 ≤ R (C 3, C 4, C 4, K 4 ) ≤ 76 [DyDz] [XSR1]
87 ≤ R (C 4, C 4, K 4, K 4 ) ≤ 179 [XSR1]

R (K 1,3, C 4, K 4 ) = 16 [KlaM2]
R (C 4, C 4, K 4 − e ) = 16 [DyDz]
R (C 4, C 4, C 4, T ) = 16 for T = P 4 and T = K 1,3 [ExRe]

(a) Study of R (Cn , K t 1
, ... , K tk

) and R (Cn , K t 1, s 1
, ... , K tk , sk

) for large n [EFRS1].

(b) R (Cn , K t 1
, ... , K tk

) = (n − 1)(r − 1) for n ≥ 4r + 2, where r = R (K t 1
, ... , K tk

) [OmRa2].

(c) Study of asymptotics for R (Cm , ... , Cm , Kn ) , in particular for any fixed number of colors
k ≥ 4 we have R (C 4, C 4, ... , C 4, Kn ) = Θ( n 2 / log2n ) [AlRö].

(d) Study of asymptotics for R (C 2m , C 2m , Kn ) for fixed m [AlRö, ShiuLL], in particular
R (C 4, C 4, Kn ) = Θ( n 2 poly−log n ) [AlRö].

(e) Monotone paths and cycles [Lef].

(f) For combinations of C 3 and Kn see sections 2.2, 3.2, 4.2, 6.1 and 6.2.
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6.4. Paths, paths versus other graphs

In 2007, Gyárfás, Ruszinkó, Sárközy and Szemerédi [GyRSS] established that for all
sufficiently large n we have

R (Pn , Pn , Pn ) = 2n − 2 + n mod 2.

6.4.1. Three color path and path-cycle cases

(a) R (Pm , Pn , Pk ) = m +  n / 2  +  k / 2  − 2 for m ≥ 6( n + k ) 2 [FS2],

the equality holds asymptotically for m ≥ n ≥ k with an extra term o ( m ) [FiŁu1],
extensions of the range of m , n , k for which (a) holds were obtained in [Biel3].

(b) R 3(P 3) = 5 [Ea1], R 3(P 4) = 6 [Ir],
R (Pm , Pn , Pk ) = 5 for other m −n −k combinations with 3 ≤ m , n , k ≤ 4 [AKM],
R 3(P 5) = 9 [YR1], R 3(P 6) = 10 [YR1], and R 3(P 7) = 13 [YY].

(c) R (P 4, P 4, P 2n ) = 2n + 2 for n ≥ 2,
R (P 5, P 5, P 5 ) = R (P 5, P 5, P 6 ) = 9,
R (P 5, P 5, Pn ) = n + 2 for n ≥ 7,
R (P 5, P 6, Pn ) = R (P 4, P 6, Pn ) = n + 3 for n ≥ 6 ,
R (P 6, P 6, P 2n ) = R (P 4, P 8, P 2n ) = 2n + 4 for n ≥ 14 [OmRa1].

(d) R (Pm , Pn , Ck ) = 2n + 2  m / 2  − 3 for large n and odd m ≥ 3 [DzFi2],
improvements on the range of m , n , k [Biel3, Fid1].

(e) R (P 3, P 3, Cm ) = 5, 6, 6, for m = 3, 4 [AKM], 5,
R (P 3, P 3, Cm ) = m for m ≥ 6 [Dzi2].

R (P 3, P 4, Cm ) = 7 for m = 3, 4 [AKM] and 5,
R (P 3, P 4, Cm ) = m + 1 for m ≥ 6 [Dzi2].

R (P 4, P 4, Cm ) = 9, 7, 9 for m = 3, 4 [AKM] and 5 [Dzi2],
R (P 4, P 4, Cm ) = m + 2 for m ≥ 6 [DzKP].

(f) R (P 3, P 5, Cm ) = 9, 7, 9, 7, 9 for m = 3, 4, 5, 6, 7 [Dzi2, DzFi2],
R (P 3, P 5, Cm ) = m + 1 for m ≥ 8 [DzKP].

A table of R (P 3, Pk , Cm ) for all 3 ≤ k ≤ 8 and 3 ≤ m ≤ 9 [DzFi2].

(g) R (P 4, P 5, Cm ) = 11, 7, 11, 11, and m + 2 for m = 3, 4, 5, 7 and m ≥ 23 ,

R (P 4, P 6, Cm ) = 13, 8, 13, 13, and m + 3 for m = 3, 4, 5, 7 and m ≥ 18 [ShaXSP].

(h) R (P 3, Pn , C 4 ) = n + 1 for n ≥ 6 [DzFi2],
R (P 3, Pn , C 6 ) = n + 2 for n ≥ 6 ,
R (P 3, Pn , C 8 ) = n + 3 for n ≥ 7 [Fid1],
R (P 3, Pn , Ck ) = 2n − 1, and
R (P 4, Pn , Ck ) = 2n + 1 for odd k ≥ 3 and n ≥ k [DzFi2].
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(i) R (P 3, P 6, Cm ) = m + 2 for m ≥ 23,
R (P 6, P 6, Cm ) = R (P 4, P 8, Cm ) = m + 4 for m ≥ 27,
R (P 6, P 7, Cm ) = m + 4 for m ≥ 57,

R (P 4, Pn , C 4 ) = R (P 5, Pn , C 4 ) = n + 2 for n ≥ 5 [OmRa1].

(j) R (P 3, C 3, C 3 ) = 11 [BE3], R (P 3, C 4, C 4 ) = 8 [AKM], R (P 3, C 6, C 6 ) = 9 [Dzi2],

R (P 3, Cm , Cm ) = R (Cm , Cm ) = 2m − 1 for odd m ≥ 5 [DzKP] (for m = 5, 7 [Dzi2]),

(k) R (P 3, Cn , Cm ) = R (Cn , Cm ) for n ≥ 7 and odd m , 5 ≤ m ≤ n , and
some values and bounds on R (P 3, Cn , Cm ) in other cases [Fid1].

(l) R (P 3, C 3, C 4 ) = 8 [AKM], R (P 3, C 3, C 5 ) = 9, R (P 3, C 3, C 6 ) = 11,
R (P 3, C 3, C 7 ) = 13, R (P 3, C 4, C 5 ) = 8, R (P 3, C 4, C 6 ) = 8,
R (P 3, C 4, C 7 ) = 8, R (P 3, C 5, C 6 ) = 11, R (P 3, C 5, C 7 ) = 13 and
R (P 3, C 6, C 7 ) = 11 [Dzi2].

(m) Formulas for R ( pP 3, qP 3, rP 3 ) and R ( pP 4, qP 4, rP 4 ) [Scob].

(n) R (P 3, K 4 − e , K 4 − e ) = 11 [Ex7]. All colorings (which can be any color neighborhood
for the open case R 3(K 4 − e ), see section 6.5) were found in [Piw2].

6.4.2. More colors

(a) Rk (P 3 ) = k + 1 + ( k mod 2), Rk (2P 2 ) = k + 3 for all k ≥ 1 [Ir].

(b) Rk (P 4 ) = 2k + ck for all k and some 0 ≤ ck ≤ 2. If k is not divisible by 3 then
ck = 3 − k mod 3 [Ir]. Wallis [Wall] showed R 6(P 4 ) = 13, which already implied
R 3t (P 4 ) = 6t + 1, for all t ≥ 2. Independently, the case Rk (P 4 ) for k =/ 3m was com-
pleted by Lindström in [Lind], and later Bierbrauer proved R 3m (P 4 ) = 2.3m + 1 for all
m > 1. R 3(P 4) = 6 [Ir].

(c) Formula for R (Pn 1
, ... , Pnk

) for large n 1 [FS2], and some extensions [Biel3].

Conjectures about R (Pn 1
, ... , Pnk

) when all or all but one of ni ’s are even [OmRa1].

(d) Formulas for R (Pn 1
, ... , Pnk

, Cm ) for some cases, for large m [OmRa1].

(e) Formula for R (n 1P 2, ... , nk P 2 ), in particular R (nP 2, nP 2, nP 2 ) = 4n − 2 [CocL1].

(f) Cockayne and Lorimer [CocL1] found the exact formula for R (n 1P 2, ... , nk P 2), and later
Lorimer [Lor] extended it to a more general case of R (Km , n 1P 2, ... , nk P 2). More gen-
eral cases of the latter, with multiple copies of the complete graph, stars and forests,
were studied in [Stahl, LorSe, LorSo, GyRSS].

(g) Multicolor cases for one large path or cycle involving small paths, cycles, complete and
complete bipartite graphs [EFRS1].

(h) See section 8.2, especially [AKM], for a number of cases for triples of small graphs.
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6.5. Special cases

R 3(K 3 + e ) = R 3(K 3) [= 17] [YR3, AKM], where K 3 + e = K 4 − P 3
R (K 3 + e , K 3 + e , K 4 − e ) = 17 [ShWR]

If R 4(K 3) = 51 then R 4(K 3 + e ) = 52, and
if R 4(K 3) > 51 then R 4(K 3 + e ) = R 4(K 3) [ShWR]

28 ≤ R 3(K 4 − e ) ≤ 30 [Ex7] [Piw2]
R (P 3, K 4 − e , K 4 − e ) = 11 [Ex7], all colorings [Piw2]
21 ≤ R (K 3, K 4 − e , K 4 − e ) ≤ 27 [ShWR]
33 ≤ R (K 4, K 4 − e , K 4 − e ) ≤ 60 [ShWR]

R (C 4, P 4, K 4 − e ) = 11 [DyDz], correcting an error in [AKM]
R (C 4, C 4, K 4 − e ) = 16 [DyDz]
19 ≤ R (C 4, K 4 − e , K 4 − e ) ≤ 22 [DyDz]

6.6. General results for special graphs

(a) Formulas for Rk (G ), where G is one of the graphs P 3, 2K 2 and K 1,3 for all k , and for
P 4 if k is not divisible by 3 [Ir]. For some details see section 6.4.2.b.

(b) tk 2 + 1 ≤ Rk (K 2, t +1) ≤ tk 2 + k + 2, where the upper bound is general, and the lower bound
holds when both t and k are prime powers [ChGra1, LaMu].

(c) (m − 1)  (k +1) / 2 < Rk (Tm ) ≤ 2km +1 for any tree Tm with m edges [EG], see also
[GRS]. The lower bound can be improved for special large k [EG, GRS]. The upper
bound was improved to Rk (Tm ) < (m − 1)(k + √k (k − 1) ) + 2 in [GyTu].

(d) k (√m − 1) / 2 < Rk (Fm ) < 4km for any forest Fm with m edges [EG], see [GRS]. See
also pointers in items (l) and (m) below.

(e) R (S 1, ... , Sk ) = n + ε, where Si ’s are arbitrary stars, n = n (S 1) + ... + n (Sk ) − 2k , and we
set ε = 1 if n is even and some n (Si ) is odd, and ε = 2 otherwise [BuRo1]. See also
[GauST, Par6].

(f) Formula for R (S 1, ... , Sk , Kn ), where Si ’s are arbitrary stars [Jac]. It was generalized to
a formula for R (S 1, ... , Sk , Kk 1

, ... , Kkr
) expressed in terms of R (k 1, ... , kr ) and star ord-

ers [BoCGR]. A much shorter proof of the latter was presented in [OmRa2].

(g) Formula for R (S 1, ... , Sk , nK 2), where Si ’s are arbitrary stars [CocL2].

(h) Formula for R (S 1, ... , Sk , T ), where Si ’s are stars and T is a tree [ZZ1].

(i) Formulas for R (S 1, ... , Sk ), where each Si ’s is a star or mi K 2 [ZZ2, EG],
formula for the case R (S , mK 2, nK 2) [GySá2].

(j) Bounds on Rk (G ) for unicyclic graphs G of odd girth.
Some exact values for special graphs G , for k = 3 and k = 4 [KrRod].
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(k) Rk (K 3,3 ) = (1 + o (1)) k 3 [AlRóS].

(l) Bounds on Rk (Ks , t ), in particular for K 2,2 = C 4 and K 2, t [ChGra1, AFM]. Asymptotics
of Rk (Ks , t ) for fixed k and s [DoLi, LiTZ]. Upper bounds on Rk (Ks , t ) [SunLi].

(m) Bounds on Rk (G ) for trees, forests, stars and cycles [Bu1].

(n) Bounds for trees Rk (T ) and forests Rk (F ) [EG, GRS, BB, GyTu, Bra1, Bra2, SwPr].

(o) Study of the case R (Km , n 1P 2, ... , nk P 2) [Lor]. More general cases, with multiple
copies of the complete graph, stars and forests, were investigated in [Stahl, LorSe,
LorSo, GyRSS]. See also section 6.4.

(p) See section 8.2, especially [AKM], for a number of cases for other small graphs, similar
to those listed in sections 6.3 and 6.4.

6.7. General results

(a) Szemerédi’s Regularity Lemma [Szem] states that the vertices of every large graph can
be partitioned into similar size parts so that the edges between these parts behave almost
randomly. This lemma in various forms has been used extensively to prove the upper
bounds, including [BenSk, GyRSS, GySS1, HaŁP1+, HaŁP2+, KoSS].

(b) R (m 1G 1, ... , mk Gk ) ≤ R (G 1, ... , Gk ) +
i = 1
Σ
k

n (Gi )(mi − 1), exercise 8.3.28 in [West].

(c) If G is connected and R (Kk , G ) = (k − 1)(n (G ) − 1) + 1, in particular if G is any n -
vertex tree, then R (Kk 1

, ... , Kkr
, G ) = (R (k 1, ... , kr ) − 1)(n − 1) + 1 [BE3]. A generaliza-

tion for connected G 1, ... , Gn in place of G appeared in [Jac].

(d) If F , G , H are connected graphs then R (F , G , H ) ≥ (R (F , G ) − 1)(χ(H ) − 1) +
min{ R (F , G ), s (H ) }, where s (G ) is the chromatic surplus of G (see item [Bu2] in sec-
tion 5.16). This leads to several formulas and bounds for F and G being stars and/or
trees when H = Kn [ShiuLL].

(e) R (Kk 1
, ... , Kkr

, G 1, ... , Gs ) ≥ (R (k 1, ... , kr ) − 1)(R (G 1, ... , Gs ) − 1) + 1 for arbitrary graphs

G 1,... ,Gs [Bev]. This generalizes 6.2.o.

(f) Constructive bound R (G 1, ..., Gt n −1 ) ≥ t n + 1 for decompositions of Kt n [LaWo1, LaWo2].

(g) R (G 1, ... , Gk ) ≤ 32∆ k ∆ n , where n ≥ n (Gi ) and ∆ ≥ ∆(Gi ) for all 1 ≤ i ≤ k [FoxSu1].

(h) R (G 1, ... , Gk ) ≤ k 2 k ∆ q n , where q ≥ χ(Gi ) for all 1 ≤ i ≤ k [FoxSu1].

(i) Rk (G ) > (sk e (G ) − 1) ) 1 / n (G ) , where s is the number of automorphisms of G [CH3].
Other general bounds for Rk (G ) [CH3, Par6].

(j) Study of R (G 1, ... , Gk , G ) for large sparse G [EFRS1, Bu3].

(k) Study of asymptotics for R (Cn , ... , Cn , Km ) [AlRö]. See also sections 6.3.3.b/c.

(l) See surveys listed in section 8.
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7. Hypergraph Numbers

7.1. Values and bounds for numbers

The only known value of a classical Ramsey number for hypergraphs:

R (4,4 ; 3) = 13
more than 200000 critical colorings [MR1]

The computer evaluation of R (4,4 ; 3) in 1991 consisted of an improvement of the upper
bound from 15 to 13. This result followed an extensive theoretical study of this number by
several authors [Gi4, Isb1, Sid1].

(a) 33 ≤ R (4, 5 ; 3) [Ex13]
38 ≤ R (4, 6 ; 3) [HuSo+]
65 ≤ R (5, 5 ; 3) [Ea1]
56 ≤ R (4,4,4 ; 3) [Ex8]
34 ≤ R (5, 5 ; 4) [Ex11]

(b) R (K 4 − t , K 4 − t ; 3) = 7 [Ea2]
R (K 4 − t , K 4 ; 3) = 8 [Sob, Ex1, MR1]
14 ≤ R (K 4 − t , K 5 ; 3) [Ex1]
13 ≤ R (K 4 − t , K 4 − t , K 4 − t ; 3) ≤ 16 [Ex1] [Ea3]

(c) The first bound on R (4, 5 ; 3) ≥ 24 was obtained by Isbell [Isb2]. Shastri [Shas] gave a
weak bound R (5, 5 ; 4) ≥ 19 (now 34 in [Ex11]), nevertheless his lemmas, the stepping-
up lemmas by Erdős and Hajnal (see [GRS, GrRö], also 7.4.a below), and others in
[Ka3, Abb2, GRS, GrRö, HuSo, SonYL] can be used to derive better lower bounds for
higher numbers.

(d) Several lower bound constructions for 3-uniform hypergraphs were presented in [HuSo].
Study of lower bounds on R ( p , q ; 4) can be found in [Song3] and [SonYL, Song4] (the
latter two papers are almost the same in contents). Most of the concrete lower bounds in
these papers can be easily improved by using the same techniques, but starting with
better constructions for small parameters as listed above.

(e) R ( p , q ; 4) ≥ 2R ( p − 1, q ; 4) − 1 for p , q > 4, and
R ( p , q ; 4) ≥ ( p − 1)R ( p − 1, q ; 4) − p + 2 for p ≥ 5, q ≥ 7 [SonYL].
Lower bound asymptotics for R ( p , q ; 4) [SonLi].
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7.2. Cycles and paths

Definitions. A loose 3-uniform (r = 3) cycle Cn on [n ] is the set of triples {123, 345, 567,
... , (n −1)n 1}. Note that n must be even. In 3-uniform tight cycles and tight paths consecu-
tive edges share two points. A 3-uniform Berge cycle is formed by n distinct vertices, such
that all consecutive pairs (t = 2) of vertices are in an edge of the cycle, and all of the cycle
edges are distinct. Berge cycles are not determined uniquely. These definitions can be gen-
eralized to t -tight cycles and r -uniform hypergraphs.

(a) Tetrahedron, or four triples on the set of four points, can be seen as a tight 3-uniform
cycle C 4. The corresponding Ramsey number is R (4, 4 ; 3) = 13 [MR1].

(b) For loose cycles, R (C 3, C 3 ; 3) = 7, R (C 4, C 4 ; 3) = 9, and in general for r -uniform case
R (C 3, C 3 ; r ) = 3r − 2 and R (C 4, C 4 ; r ) = 4r − 3, for r ≥ 3. Results and discussion of
several related cases involving paths were presented in [GyRa].

(c) For 3-uniform Berge cycles and two colors, R (Cn , Cn ; 3) = n for n ≥ 5 [GyLSS].

(d) For loose cycles, R (C 4k , C 4k ; 3) > 5k − 2 and R (C 4k +2, C 4k +2; 3) > 5k + 1, and asymp-
totically these lower bounds are tight [HaŁP1+]. Generalizations to r -uniform hyper-
graphs and graphs other than cycles appeared in [GySS1].

(e) For loose cycles, R (C 3, C 3, C 3 ; 3) = 8, and in general for k ≥ 4 colors Gyárfás and
Raeisi established the bounds k + 5 ≤ Rk (C 3 ; 3) ≤ 3k [GyRa].

(f) For tight cycles, R (C 3k , C 3k ; 3) ∼∼ 4k and R (C 3k + i , C 3k + i ; 3) ∼∼ 6k for i = 1 or 2, and
for tight paths R (Pk , Pk ; 3) ∼∼ 4k / 3 [HaŁP2+]. Some related results are discussed in
[PoRRS].

(g) For 3-uniform Berge cycles, R 3(Cn ; 3) = (1 + o (1))5n /4 [GySá1].

(h) Gyárfás, Sárközy and Szemerédi proved that, for sufficiently large n , every 2-coloring of
the edges of the complete 4-uniform hypergraph Kn contains a monochromatic 3-tight
Berge cycle Cn [GySS2]. Special multicolor cases for r -uniform hypergraphs were stu-
died in [GyLSS].

7.3. General results for 3-uniform hypergraphs

(a) 2cn 2
< R ( n , n ; 3) < 22n

is credited to Erdős, Hajnal and Rado (see [ChGra2] p. 30).

(b) For some a , b the numbers R ( m , a , b ; 3) are at least exponential in m [AbbS].

(c) Improved lower and upper asymptotics for R (s , n ; 3) for fixed s and large n , proof of
related Erdős and Hajnal conjecture on the growth of R (4, n ; 3), and the lower bound
2n c ln n

< R (n , n , n ; 3) [ConFS2].

(d) R (G , G ; 3) ≤ c .n (H ) for some constant c depending only on the maximum degree of a
3-uniform hypergraph H [CooFKO1, NaORS]. Similar results were proved for r -
uniform hypergraphs in [KüCFO, Ishi, CooFKO2, ConFS1], see also item 7.4.f.
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(e) Upper bounds on Rk (H ; 3) for complete multipartite 3-uniform hypergraphs H , a 4-color
case, and some other general and special cases [ConFS1, ConFS2, ConFS3].

7.4. General results

(a) If R ( n , n ; r ) > m then R (2n + r − 4, 2n + r − 4 ; r + 1) > 2m , for n > r ≥ 3 (see [GRS]
p. 106). This is the so-called stepping-up lemma, usually credited to Erdős and Hajnal.
An improvement of the stepping-up lemma implying better lower bounds for a few types
of hypergraph Ramsey numbers were obtained by Conlon, Fox and Sudakov [ConFS4].

(b) Lower bounds on Rk ( n ; r ) are discussed in [AbbW, DLR].

(c) General lower bounds for large number of colors were given in an early paper by
Hirschfeld [Hir], and some of them were later improved in [AbbL].

(d) Lower and upper asymptotics of R (s , n ; k ) for fixed s [ConFS2].

(e) Exact results for large 2-loose cycles (generalizing 7.2.d above) and 2- and 3-color cases
for all r -uniform diamond matchings [GySS1].

(f) R (H , H ; r ) ≤ c .n (H )1+ ε , for some constant c = c (∆, r , ε ) depending only on the max-
imum degree of H , r and ε > 0 [KoRö3]. The proofs of the linear bound c .n (H ) were
obtained independently in [KüCFO] and [Ishi], the latter including the multicolor case,
and then without regularity lemma in [ConFS1]. More discussion of lower and upper
bounds for various cases can be found in [ConFS1, ConFS2, ConFS3, CooFKO2].

(g) Let Tr be an r -uniform hypergraph with r edges containing a fixed (r − 1)-vertex set S
and the (r + 1)-st edge intersecting all former edges in one vertex outside S . Then
R (Tr , Kt ; r ) = O (t r / log t ) [KosMV].

(h) Let H r (s , t ) be the complete r -partite r -uniform hypergraph with r − 2 parts of size 1,
one part of size s , and one part of size t (for example, for r = 2 it is the same as Ks , t ).
For the multicolor numbers, Lazebnik and Mubayi [LaMu] proved that

tk 2 − k + 1 ≤ Rk (H r (2, t +1) ; r ) ≤ tk 2 + k + r ,

where the lower bound holds when both t and k are prime powers. For the general case
of H r (s , t ), more bounds are presented in [LaMu].

(i) Grolmusz [Grol1] generalized the classical constructive lower bound by Frankl and Wil-
son [FraWi] (section 2.3.t) to more colors and to hypergraphs [Grol3].

(j) Lower and upper asymptotics, and other theoretical results on hypergraph numbers are
gathered in [GrRö, GRS, ConFS1, ConFS2, ConFS3].
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8. Cumulative Data and Surveys

8.1. Cumulative data for two colors

[CH1] R (G , G ) for all graphs G without isolates on at most 4 vertices.

[CH2] R (G , H ) for all graphs G and H without isolates on at most 4 vertices.

[Clan] R (G , H ) for all graphs G on at most 4 vertices and H on 5 vertices, except
five entries (now all solved, see section 5.11). All critical colorings for the
isolate-free graphs G and H studied in [Clan] were found in [He4].

[Bu4] R (G , G ) for all graphs G without isolates and with at most 6 edges.

[He1] R (G , G ) for all graphs G without isolates and with at most 7 edges.

[HaMe2] R (G , G ) for all graphs G on 5 vertices and with 7 or 8 edges.

[He2] R (G , H ) for all graphs G and H on 5 vertices without isolates, except 7
entries (2 still open, see 5.11 and the paragraph at the end of this section).

[LoM5] R (G , H ) for all disconnected isolate-free graphs H on at most 6 vertices
versus all G on at most 5 vertices, except 3 cases. Missing cases were com-
pleted in [KroMe].

[HoMe] R (G , H ) for G = K 1,3 + e and G = K 4 − e versus all connected graphs H on 6
vertices, except R (K 4 − e , K 6 ). The result R (K 4 − e , K 6 ) = 21 was claimed by
McNamara [McN, unpublished].

[FRS4] R (G , T ) for all connected graphs G with n (G ) ≤ 5, and almost all trees T .

[FRS1] R (K 3, G ) for all connected graphs G on 6 vertices.

[Jin] R (K 3, G ) for all connected graphs G on 7 vertices.
Some errors in [Jin] were found [SchSch1].

[Zeng] Formulas for R (nK 3, mG ) for all G of order 4 without isolates.

[Brin] R (K 3, G ) for all connected graphs G on at most 8 vertices. The numbers for
K 3 versus sets of graphs with fixed number of edges, on at most 8 vertices,
were presented in [KlaM1].

[BBH1] R (K 3, G ) for all connected graphs G on 9 vertices. See also [BBH2].

[JR3] R (C 4, G ) for all graphs G on at most 6 vertices.

[JR4] R (C 5, G ) for all graphs G on at most 6 vertices.

[JR2] R (C 6, G ) for all graphs G on at most 5 vertices.

[LoM3] R (K 2,n , K 2,m ) for all 2 ≤ n , m ≤ 10 except 8 cases, for which lower and upper
bounds are given. Further data for other complete bipartite graphs are gath-
ered in section 3.3 and [LoMe4].

[HaKr] All best lower bounds up to 102 from cyclic graphs. Formulas for best cyclic
lower bounds for paths and cycles, and values for small complete graphs and
for graphs with up to five vertices.
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Chvátal and Harary [CH1, CH2] formulated several simple but very useful observations how
to discover values of some numbers. All five missing entries in the tables of Clancy [Clan]
have been solved (section 5.11). Out of 7 open cases in [He2] 5 have been solved, including
R (4, 5) = R (G 19, G 23 ) = 25 and other cases listed in section 5.11. The still open 2 cases are
for K 5 versus K 5 (section 2.1) and K 5 versus K 5 − e (section 3.1).

8.2. Cumulative data for three colors

[YR3] R 3(G ) for all graphs G with at most 4 edges and no isolates.

[YR1] R 3(G ) for all graphs G with 5 edges and no isolates, except K 4 − e .
The case of R 3(K 4 − e ) remains open (see section 6.5).

[YY] R 3(G ) for all graphs G with 6 edges and no isolates, except 10 cases.

[AKM] R (F , G , H ) for most triples of isolate-free graphs with at most 4 vertices.
Some of the missing cases completed in [KlaM2].

[DzFi2] R (P 3, Pk , Cm ) for all 3 ≤ k ≤ 8 and 3 ≤ m ≤ 9.

8.3. Surveys

[Bu1] A general survey of results in Ramsey graph theory by S. A. Burr (1974)

[Par6] A general survey of results in Ramsey graph theory by T. D. Parsons (1978)

[BuRo3] Survey of results and new problems on multiplicities and Ramsey multiplicities
by S. A. Burr and V. Rosta (1980)

[Har2] Summary of progress by Frank Harary (1981)

[ChGri] A general survey of bounds and values by F. R. K. Chung and C. M. Grin-
stead (1983)

[JGT] Special volume of the Journal of Graph Theory (1983)

[Rob1] A review of Ramsey graph theory for newcomers by F. S. Roberts (1984)

[Bu7] What can we hope to accomplish in generalized Ramsey Theory? (1987)

[GrRö] Survey of asymptotic problems by R. L. Graham and V. Rödl (1987)

[GRS] An excellent book by R. L. Graham, B. L. Rothschild and J. H. Spencer,
second edition (1990)

[FRS5] Survey by Faudree, Rousseau and Schelp of graph goodness results, i.e. condi-
tions for the formula R (G , H ) = ( χ(G ) − 1 ) ( n (H ) − 1 ) + s (G ) (1991)

[Nes̆] A chapter in Handbook of Combinatorics by J. Nes̆etr̆il (1996)

[Caro] Survey of zero-sum Ramsey theory by Y. Caro (1996)
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[Chu4] Among 114 open problems and conjectures of Paul Erdős, presented and com-
mented by F. R. K. Chung, 31 are concerned directly with Ramsey numbers.
216 references are given (1997). An extended version of this work was
prepared jointly with R. L. Graham [ChGra2]. (1998)

[West] An extensive chapter on Ramsey theory in a widely used student textbook and
researcher’s guide of graph theory (2001)

[GrNe] Ramsey Theory and Paul Erdős (2002)

[CoPC] Special issue of Combinatorics, Probability and Computing (2003)

[Ros2] Dynamic survey of Ramsey theory applications by V. Rosta (2004). A website
maintained by W. Gasarch [Gas] gathers over 50 pointers to literature on
applications of Ramsey theory in computer science. (2009)

[Soi1] History, results and people of Ramsey theory. The mathematical coloring book,
mathematics of coloring and the colorful life of its creators. (2009)

[Soi2] Ramsey Theory. Yesterday, Today and Tomorrow, a special volume in the
series Progress in Mathematics. A survey of Ramsey numbers involving cycles
by the author is included in this volume [Ra4]. (2011)

The surveys by S. A. Burr [Bu1] and T. D. Parsons [Par6] contain extensive chapters on
general exact results in graph Ramsey theory. F. Harary presented the state of the theory in
1981 in [Har2], where he also gathered many references including seven to other early sur-
veys of this area. More than two decades ago, Chung and Grinstead in their survey paper
[ChGri] gave less data than in this work, but included a broad discussion of different
methods used in Ramsey computations in the classical case. S. A. Burr, one of the most
experienced researchers in Ramsey graph theory, formulated in [Bu7] seven conjectures on
Ramsey numbers for sufficiently large and sparse graphs, and reviewed the evidence for them
found in the literature. Three of them have been refuted in [Bra3].

For newer extensive presentations see [GRS, GrRö, FRS5, Nes̆, Chu4, ChGra2], though
these focus on asymptotic theory not on the numbers themselves. A very welcome addition is
the 2004 compilation of applications of Ramsey theory by V. Rosta [Ros2]. This survey could
not be complete without recommending special volumes of the Journal of Graph Theory
[JGT, 1983] and Combinatorics, Probability and Computing [CoPC, 2003], which, besides a
number of research papers, include historical notes and present to us Frank P. Ramsey (1903-
1930) as a person. Finally, read a colorful book by A. Soifer [Soi1, 2009] on history and
results in Ramsey theory, followed by a collection of essays and technical papers based on
presentations from the 2009 Ramsey theory workshop at DIMACS [Soi2, 2011].

The historical perspective and, in particular, the timeline of progress on prior best
bounds, can be obtained by checking all the previous versions of this survey since 1994 at
http://www.cs.rit.edu/~spr/ElJC/eline.html.
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9. Concluding Remarks

This compilation does not include information on numerous variations of Ramsey
numbers, nor related topics, like size Ramsey numbers, zero-sum Ramsey numbers, irredun-
dant Ramsey numbers, induced Ramsey numbers, local Ramsey numbers, connected Ramsey
numbers, chromatic Ramsey numbers, avoiding sets of graphs in some colors, coloring graphs
other than complete, or the so called Ramsey multiplicities. Interested readers can find such
information in the surveys listed in section 8 here.

Ramsey@Home [RaHo] is a distributed computing project at the University of
Wisconsin-Oshkosh designed to find new lower bounds for various Ramsey numbers. Join and
help! Readers may be interested in knowing that the US patent 6965854 B2 issued on
November 15, 2005 claims a method of using Ramsey numbers in "Methods, Systems and
Computer Program Products for Screening Simulated Traffic for Randomness". Check the ori-
ginal document at http://www.uspto.gov/patft if you wish to find out whether your usage of Ram-
sey numbers is covered by this patent.
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