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Abstract. An elementary probabilistic argument is presented which shows that for every
forest F other than a matching, and every graph G containing a cycle, there exists an infinite
number of graphs J such that J → (F,G) but if we delete from J any edge e the graph J − e
obtained in this way does not have this property.

Introduction. All graphs in this note are undirected graphs, without loops and mul-
tiple edges, containing no isolated points. We use the arrow notation of Rado, writing
J → (G,H) whenever each colouring of edges of J with two colours, say, black and white,
leads to either black copy of G or white copy of H. We say that J is critical for a pair
(G,H) if J → (G,H) but for every edge e of J we have J−e 6→ (G,H). The pair (G,H) is
called Ramsey-infinite or Ramsey-finite according to whether the class of all graphs critical
for (G,H) is a finite or infinite set.

The problem of characterizing Ramsey-infinite pairs of graphs has been addressed in
numerous papers (see [1–7, 9] and [8] for a brief survey of most important facts). In
particular, basically all Ramsey-finite pairs consisting of two forests are specified in a
theorem of Faudree [7] and a recent result of Rödl and Ruciński [10, Corollary 2] implies
that if G contains a cycle then the pair (G,G) is Ramsey-infinite. The main result of
this note states that each pair which consists of a non-trivial forest and a non-forest is
Ramsey-infinite.

Theorem 1. If F is a forest other than a matching and G is a graph containing at least
one cycle then the pair (F,G) is Ramsey-infinite.

Since, as we have already mentioned, minimal Ramsey properties for pairs consisting of
two forests have been well studied, Theorem 1 has two immediate consequences.

Corollary 2. Let F be a forest which does not consist solely of stars. Then (F,G) is
Ramsey-finite if and only if G is a matching.

Corollary 3. Let K1,2m denote a star with 2m rays. Then (K1,2m, G) is Ramsey-finite
if and only if G is a matching.

Proof of Theorem 1. We shall deduce Theorem 1 from the following lemma, a prob-
abilistic proof of which we postpone until the next section. Here and below, we denote by
V (G) and E(G) sets of vertices and edges of a graph G, respectively, and set v(G) = |V (G)|
and e(G) = |E(G)|.
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Lemma 4. Let G be a graph with at least one cycle and m, r be natural numbers. Then
there exists a subgraph H of G containing a cycle, and a graph J = J(m, r,G) on n
vertices, such that:

(a) J contains at least 3mn edge-disjoint copies of G,
(b) every subgraph of J with s vertices, where s ≤ r, contains at most

(s− 1)e(H)/(v(H)− 1) edges.

Proof of Theorem 1. Let F be any forest on m vertices, other than a matching, and
let G be a graph containing at least one cycle. We shall show that for every r there exists
a graph with more than r vertices which is critical for (F,G). Thus, let J = J(m, r,G) be
the graph whose existence is guaranteed by Lemma 4, and J̃ be a graph spanned in J by
some 3mn edge-disjoint copies of G. Colour edges of J̃ black and white. If there are at
least 2mn edges coloured black, then J̃ contains a black copy of F , since Turán’s number
for the forest on m vertices is smaller than 2mv(J̃) ≤ 2mn. On the other hand, if the
colouring contains less than 2mn black edges, they miss at least mn copies of G, i.e. at
least one copy of G is coloured white. Thus, J̃ → (F,G).

Furthermore, for any subgraph K of J̃ on s vertices, s ≤ r, we have K 6→ (F,G). More
specifically, we shall show that there is a black and white colouring of edges of K such that
black edges form a matching and every proper copy of H , i.e. a copy which is contained
in some copy of G, has at least one edge coloured black. Indeed, observe first that the
upper bound for the density of subgraphs of J implies that each copy of H in G is induced
and each two proper copies have at most one vertex in common (note that since all copies
of G are edge-disjoint, proper copies of H can not share an edge). Thus, let H1 ⊆ K be a
proper copy of H . Then, either no other proper copy of H shares with H1 a vertex, and
then we may colour one edge of H1 black and all other edges of K incident to vertices
of H1 white, or K contains another proper copy of H , say H2, which has with H1 a vertex
in common. But then the upper bound given by (b) implies that a subgraph spanned in K
by V (H1)∪ V (H2) contains no other edges but those which belong to E(H1)∪E(H2). In
such a way one can find a sequence of proper copies of H, say, H1,H2, . . . ,Ht, such that

(i) Hi share only one vertex, say vi, with
⋃i−1
j=1 V (Hj), for every i = 2, 3, . . . , t,

(ii) all edges of the subgraph spanned by
⋃t
j=1 V (Hj) are those from

⋃t
j=1E(Hj),

(iii) for each proper copy H ′ of H contained in K we have V (H′) ∩
⋃t
j=1 V (Hj) = ∅.

Now, pick as e1 any edge of H1 and for i = 2, 3, . . . , t, choose one edge ei of Hi which
does not contain vertex vi (since H contains a cycle, such an edge always exists). Clearly,
edges ei, i = 1, 2, . . . , t, form a matching. Colour them black and all other edges adjacent
to
⋃i−1
j=1 V (Hj) colour white. Obviously, in such a way we can colour each ‘cluster’ of

proper copies of H contained in K, destroying all white copies of G and creating no black
copies of F , so K 6→ (F,G).

Thus, we have shown that J̃ → (F,G) but for every subgraph K of J̃ with at most r
vertices we have K 6→ (F,G). Consequently, any subgraph contained in J̃ critical for
(F,G) must contain more than r vertices and the assertion follows.

Proof of Lemma 4. Let G be a graph with at least one cycle and

m(G) = max
{ e(H)
v(H)− 1

: H ⊆ G, v(H) ≥ 2
}
.
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Call a subgraph H of G extremal if m(G) = e(H)/(v(H)− 1). Note that since G contains
a cycle, each extremal subgraph of G must contain a cycle as well. Furthermore, denote
by G(n, p) a standard binomial model of a random graph on n vertices, in which each pair
of vertices appears as an edge independently with probability p.

Lemma 5. Let G be a graph, r be a natural number and p = p(n) = n−1/m(G) logn.
Then, with probability tending to 1 as n→∞, G(n, p) has the following two properties:

(a) G(n, p) contains at least n(logn)2 edge-disjoint copies of G,
(b) G(n, p) contains less than n/ logn subgraphs on s vertices, s ≤ r, with more than

(s− 1)m(G) edges.

Proof. Let F be a random family of copies of G in G(n, p) such that the probability
that a given copy of G in G(n, p) belongs to F is equal to

ρ = 4v(G)!
n(logn)2

nv(G)pe(G)
,

independently for each copy. Furthermore, denote by X the size of F. Then, for the
expectation of X, we have

3n(logn)2 ≤
(

n

v(G)

)
pe(G)ρ ≤ EX ≤ nv(G)pe(G)ρ = O(n(logn)2) ,

where here and below we assume all inequalities to hold only for n large enough. The
second factorial moment of X can be decomposed into two parts: E′2 X, which counts
the expected number of pairs of edge-disjoint copies from F , and E′′2 X related to those
pairs of copies which share at least one edge. E′2 X can be easily shown to be equal to
(EX)2(1 +O(1/n)), whereas for the upper bound for E′′2 X we get

(∗)

E′′2 X ≤
∑
J⊆G

nv(J)pe(J)n2(v(G)−v(J))p2(e(G)−e(J))ρ2 ≤ O(n2(logn)2)
∑
J⊆G

n−v(J)p−e(J)

≤ O
( n

logn

)∑
J⊆G

ne(J)(1/m(G)−(v(J)−1)/e(J)) = O
( n

logn

)
.

Thus,

VarX = E2 X + EX − (EX)2 = E′2X + E′′2 X + EX − (EX)2 = O(EX(logn)2) ,

and, from Chebyshev’s inequality, X ≥ 2 EX/3 ≥ 2n(logn)2 with probability tending to 1
as n → ∞. Furthermore, note that (∗) implies that the expected number of copies of G
in F which share an edge with another member of F is O(n/ log n), so, from Markov’s
inequality, with probability at least 1 − O(1/ logn), the number of such copies in F is
smaller than n. Thus, with probability tending to 1 as n→∞, family F contains at least
n(log n)2 edge-disjoint copies of G and the first part of the assertion follows.

In order to verify (b) let Y denote the number of subgraphs of G(n, p) of size s, s ≤ r,
with more than (s− 1)m(G) edges, and define ε > 0 as

ε = min{b(s− 1)m(G)c+ 1− (s− 1)m(G) : 1 ≤ s ≤ r
}
.
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Then

EY ≤
r∑
s=1

(s2)∑
t=b(s−1)m(G)c+1

ns2(s2)pt ≤ O
(
n1−ε/m(G)(logn)(

r
2)
)

= O(n/(log n)2) .

Hence, from Markov’s inequality, with probability tending to 1 as n →∞ the number of
such subgraphs is smaller than n/ logn.

Proof of Lemma 4. From Lemma 5 it follows that for every graph G which is not a
forest, and for every natural number r, one can find N such that for each n ≥ N there
exists a graph Ĵn on n vertices such that Ĵn contains at least n(logn)2 disjoint copies of G
and the number of subgraphs of Ĵn with s vertices, s ≤ r, and more than (s − 1)m(G)
edges, is smaller than n/ logn. Let n = max{N, er2 , e2m}. Then, Ĵn contains at least
4m2n edge-disjoint copies of G and not more than r2n/ logn ≤ n edges which belong to
‘dense’ small subgraphs. Thus, removing these edges from Ĵn results in a graph J(m, r,G)
without dense small subgraphs which contains at least 4m2n − n ≥ 3mn edge-disjoint
copies of G.
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