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Abstract

We notice two symmetric q-identities, which are special cases of the transfor-
mations of 2φ1 series in Gasper and Rahman’s book (Basic Hypergeometric Series,
Cambridge University Press, 1990, p. 241). In this paper, we give combinatorial
proofs of these two identities and the q-binomial theorem by using conjugation of
2-modular diagrams.

1 Introduction

We follow the notation and terminology in [7], and we always assume that 0 ≤ |q| < 1.
The q-shifted factorial is defined by

(a; q)0 = 1, (a; q)n =

n−1∏
k=0

(1 − aqk), n ∈ N, (a; q)∞ =

∞∏
k=0

(1 − aqk).

The following theorem is usually called the q-binomial theorem. It was found by Rothe,
and was rediscovered by Cauchy (see [1, p. 5]).

Theorem 1.1 If |z| < 1, then

∞∑
n=0

(a; q)n

(q; q)n
zn =

(az; q)∞
(z; q)∞

. (1.1)

Various proofs (1.1) are known. For simple proofs of (1.1), see Andrews [3, Section
2.2] and Gasper [6], and for combinatorial proofs, see Alladi [2] and Pak [8].

The following two theorems are special cases of the transformations of 2φ1 series in
Gasper and Rahman [7, p. 241].
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Theorem 1.2 For |a| < 1 and |b| < 1, we have

∞∑
n=0

(az; q)n

(a; q)n+1
bn =

∞∑
n=0

(bz; q)n

(b; q)n+1
an. (1.2)

Theorem 1.3 We have

n∑
k=0

(q/z; q)k(z; q)n−k

(q; q)k(q; q)n−k
qmkzk =

m∑
k=0

(q/z; q)k(z; q)m−k

(q; q)k(q; q)m−k
qnkzk. (1.3)

Clearly, the left-hand side of (1.2) may be written as

1

(1 − a)
2φ1(az, q; qa; q, b). (1.4)

By the Heine’s transformation (III.1) in Gasper and Rahman [7, p. 241], (1.4) is equal to

1

(1 − a)

(q, abz; q)∞
(qa, b; q)∞

2φ1(a, b; abz; q, q),

which is symmetric in a and b. Note that the special case z = 0 of (1.2) has also appeared
in the literature (see Stockhofe [9] and Pak [8, 2.2.4]).

Rewrite the left-hand side of (1.3) as

(z; q)n

(q; q)n
2φ1(q

−n, q/z; q1−n/z; q, qm+1).

Applying the transformation (III.6) in [7, p. 241], we get

qmn
3φ2(q

−n, q−m, z; q, 0; q, q),

which is symmetric in m and n.
The purpose of this paper is to give combinatorial proofs of (1.1), (1.2), and (1.3) by

using conjugation of 2-modular diagrams.
As usual, a partition λ is defined as a finite sequence of nonnegative integers (λ1, λ2, . . . ,

λm) in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λm. A nonzero λi is called a part of λ. The
numbers of odd parts and even parts of λ are denoted by odd(λ) and even(λ), respectively.
Define `(λ) = odd(λ) + even(λ), called the length of λ. Write |λ| =

∑m
i=1 λi, called the

weight of λ.
The set of all partitions into even parts is denoted by Peven. The set of all partitions

into distinct odd parts is denoted by Dodd. Let P1 (respectively, P2) denote the set of
partitions with no repeated odd (respectively, even) parts.

For partitions λ and µ, we define λ ∪ µ to be the partition obtained by putting all
parts of λ and µ together in decreasing order.
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2 A Theorem on Partitions

The following theorem is crucial to prove Theorems 1.1–1.3 combinatorially.

Theorem 2.1 Given m ≥ 1, the number of partitions of n into at most m parts with no
repeated odd parts is equal to the number of partitions of n with the largest part at most
2m and with no repeated odd parts.

Theorem 2.1 was established by Chapman [5] in his proof of the q-identity

∞∑
n=1

n
−q2n−1 + q2n

1 − q2n

n−1∏
j=1

1 − q2j−1

1 − q2j
=

∞∏
j=1

1 − q2j−1

1 − q2j

∞∑
d=1

(−1)d qd

1 − qd
,

which is due to Andrews, Jiménez-Urroz, and Ono [4]. Here we describe Chapman’s proof.

Proof of Theorem 2.1. We shall construct an involution σ on P1 such that σ preserves |λ|
while interchanging `(λ) and dλ1/2e.

We construct a diagram for each λ ∈ P1. Each part λi will yield a row of length
dλi/2e. An even part 2k will give a row of k 2’s, while an odd part 2k + 1 will give a row
of k 2’s followed by a 1. Such a diagram is called a 2-modular diagram. As an example,
let λ = (10, 9, 7, 4, 4, 4, 3, 2, 2, 1). Then, λ gives the 2-modular diagram

2 2 2 2 2

2 2 2 2 1

2 2 2 1

2 2

2 2

2 2

2 1

2

2

1

Since no odd part of λ is repeated, the 1’s can only occur at the bottom of columns.
We identify elements of P1 with their diagrams, and then define σ to be conjugation of
diagrams. For the above λ, σ(λ) gives the 2-modular diagram

2 2 2 2 2 2 2 2 2 1

2 2 2 2 2 2 1

2 2 2

2 2 1

2 1
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Namely, σ(λ) = (19, 13, 6, 5, 3). Clearly, the number of rows in the diagram of λ is
`(λ), while the number of columns is dλ1/2e. Thus, σ has the required properties and
Theorem 2.1 is proved.

Note that the above involution σ on P1 also preserves odd(λ).

3 Combinatorial Proofs of Theorems 1.1, 1.2, and 1.3

In this section, we give combinatorial proofs of the q-binomial theorem and Theorems 1.2
and 1.3. Our combinatorial proof of the q-binomial theorem is based on Theorem 2.1,
and is essentially the same as that of Alladi [2] or Pak [8].

Proof of Theorem 1.1. Replacing q and a by q2 and −aq, respectively, (1.3) becomes

∞∑
n=0

(−aq; q2)n

(q2; q2)n

zn =
(−aqz; q2)∞

(z; q2)∞
. (3.1)

It is easy to see that the coefficient of zn on the left-hand side of (3.1) is equal to∑
µ∈P1
µ1≤2n

q|µ|aodd(µ),

while the coefficient of zn on the right-hand side is equal to∑
µ∈P1

`(µ)≤n

q|µ|aodd(µ).

The proof then follows from the involution σ in the proof of Theorem 2.1.

Proof of Theorem 1.2. Replacing q and z by q2 and −zq, respectively, (1.2) becomes

∞∑
n=0

(−azq; q2)n

(a; q2)n+1

bn =
∞∑

n=0

(−bzq; q2)n

(b; q2)n+1

an. (3.2)

It is easy to see that the coefficient of ambn on the left-hand side of (3.2) is equal to∑
µ∈P1

`(µ)≤m
µ1≤2n

q|µ|zodd(µ),

while the coefficient of ambn on the right-hand side is equal to∑
µ∈P1

`(µ)≤n
µ1≤2m

q|µ|zodd(µ).

the electronic journal of combinatorics 10 (2003), #R34 4



By the involution σ in the proof of Theorem 2.1, we have∑
µ∈P1

`(µ)≤n
µ1≤2m

q|µ|zodd(µ) =
∑
µ∈P1

`(µ)≤m
µ1≤2n

q|µ|zodd(µ). (3.3)

This completes the proof.

Replacing q and z by q2 and −zq, respectively, (1.3) may be written as

n∑
k=0

(−1)k (−q/z; q2)k(−zq; q2)n−k

(q2; q2)k(q2; q2)n−k
q(2m+1)kzk

=
m∑

k=0

(−1)k (−q/z; q2)k(−zq; q2)m−k

(q2; q2)k(q2; q2)m−k

q(2n+1)kzk. (3.4)

We will prove (3.4) combinatorially by first establishing the following two lemmas.

Lemma 3.1 For m ≥ 0 and n ≥ 1, we have

n∑
k=0

(−1)k (−q/z; q2)k(−zq; q2)n−k

(q2; q2)k(q2; q2)n−k

q(2m+1)kzk

=
∑

(λ, µ)∈P2×P1

`(λ)+`(µ)≤n
λ`(λ)≥2m+1

(−1)`(λ)q|λ|+|µ|zodd(λ)+odd(µ). (3.5)

Proof. It is easy to see that

(−q/z; q2)k

(q2; q2)k
zk =

∑
λ∈Dodd

λ1≤2k−1

q|λ|zk−`(λ)
∑

µ∈Peven
µ1≤2k

q|µ|

=
∑
τ∈P1
τ1≤2k

q|τ |zk−odd(τ),

where τ = λ ∪ µ.
By the involution σ in the proof of Theorem 2.1, we have∑

τ∈P1
τ1≤2k

q|τ |zk−odd(τ) =
∑
τ∈P1

`(τ)≤k

q|τ |zk−odd(τ),
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Hence,

(−q/z; q2)k

(q2; q2)k

q(2m+1)kzk =
∑
τ∈P1

`(τ)≤k

q|τ |+(2m+1)kzk−odd(τ)

=
∑

λ=(λ1,...,λk)∈P2

λk≥2m+1

q|λ|zk−even(λ)

=
∑

λ=(λ1,...,λk)∈P2

λk≥2m+1

q|λ|zodd(λ),

where λi = τi + 2m + 1 (1 ≤ i ≤ k).
Similarly, we have

(−zq; q2)n−k

(q2; q2)n−k
=

∑
µ∈P1

`(µ)≤n−k

q|µ|zodd(µ).

Therefore, the left-hand side of (3.5) is equal to

n∑
k=0

(−1)k
∑

λ=(λ1,...,λk)∈P2

λk≥2m+1

q|λ|zodd(λ)
∑
µ∈P1

`(µ)≤n−k

q|µ|zodd(µ)

=
∑

(λ, µ)∈P2×P1

`(λ)+`(µ)≤n
λ`(λ)≥2m+1

(−1)`(λ)q|λ|+|µ|zodd(λ)+odd(µ), (3.6)

as desired.

Lemma 3.2 For m ≥ 0 and n ≥ 1, we have∑
(λ, µ)∈P2×P1

`(λ)+`(µ)≤n
λ`(λ)≥2m+1

(−1)`(λ)q|λ|+|µ|zodd(λ)+odd(µ) =
∑
µ∈P1

`(µ)≤n
µ1≤2m

q|µ|zodd(µ). (3.7)

Proof. Let

B := {(λ, µ) ∈ P2 ×P1 : `(λ) + `(µ) ≤ n and λ`(λ) ≥ 2m + 1}.

We will construct an involution φ on the subset

Bm := {(λ, µ) ∈ B : λ 6= 0 or µ1 ≥ 2m + 1}
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of B, with the properties that φ preserves |λ|+|µ| and odd(λ)+odd(µ) while sign-reversing
(−1)`(λ).

For any (λ, µ) ∈ Bm, note that no even part of λ is repeated while no odd part of µ
is repeated. Define

φ((λ, µ)) =

{
((µ1, λ1, λ2, . . .), (µ2, µ3, . . .)), if λ1 < µ1 or λ1 = µ1 = 2s + 1,

((λ2, λ3, . . .), (λ1, µ1, µ2, . . .)), if λ1 > µ1 or λ1 = µ1 = 2s.

It is straightforward to verify that φ is an involution on Bm with the required properties.
This proves that ∑

(λ, µ)∈Bm

(−1)`(λ)q|λ|+|µ|zodd(λ)+odd(µ) = 0,

which implies (3.7).

Proof of Theorem 1.3. Combining Lemmas 3.1 and 3.2, we obtain

n∑
k=0

(−1)k (−q/z; q2)k(−zq; q2)n−k

(q2; q2)k(q2; q2)n−k
q(2m+1)kzk =

∑
µ∈P1

`(µ)≤n
µ1≤2m

q|µ|zodd(µ).

By symmetry, we have

m∑
k=0

(−1)k (−q/z; q2)k(−zq; q2)m−k

(q2; q2)k(q2; q2)m−k

q(2n+1)kzk =
∑
µ∈P1

`(µ)≤m
µ1≤2n

q|µ|zodd(µ).

The proof then follows from (3.3).
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