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Abstract

Let a1, a2, . . . , an be distinct, positive integers with (a1, a2, . . . , an) = 1, and let
k be an arbitrary field. Let H(a1, . . . , an; z) denote the Hilbert series of the graded
algebra k[ta1 , ta2 , . . . , tan ]. We show that, when n = 3, this rational function has a
simple expression in terms of a1, a2, a3; in particular, the numerator has at most six
terms. By way of contrast, it is known that no such expression exists for any n ≥ 4.

1 Introduction

The algebra k[ta1 , . . . , tan ] is, variously, the semigroup algebra of a subsemigroup of Z+,
and the coordinate ring of a monomial curve. Our point of view will be combinatorial: let
S ⊆ Z be the set of all nonnegative integer linear combinations of {a1, a2, . . . , an}. Then,
by definition,

H(a1, . . . , an; z) =
∑
k∈S

zk.

By assuming the ai’s have no common factor, it is apparent that the coefficient of zk is
1 for sufficiently large k. Finding the the largest k for which the coefficient is zero or,
equivalently, the largest integer k that is not a Z+-linear combination of elements of S, is
known as Frobenius’ problem: references are found in the paper of Székely and Wormald,
[12].

For n = 2, it happens that H(a1, a2; z) = (1 − za1a2)(1 − za1)−1(1 − za2)−1. This
appears in [12, Theorem 1] but apparently was also known to Sylvester, reported in [8].
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When n = 3, a similar formula holds: this is stated here as Theorem 1, the main point of
this note.

Let R = k[x1, x2, . . . , xn] be the polynomial ring graded by deg xi = ai, for 1 ≤ i ≤
n. Let π be the map induced by π(xi) = tai , and let I be the kernel of π, so that
k[ta1 , . . . , tan ] ∼= R/I. If n = 2, then I is principal. If n = 3, Herzog [6] shows that I
has either two or three generators. By contrast, for any fixed integers n ≥ 4 and m ≥ 1,
Bresinsky shows in [4] that there exist choices of a1, . . . , an for which I requires at least
m generators. It follows that, for any n ≥ 4, there is no way to write

H(a1, . . . , an; z) =
f(a1, . . . , an; z)

(1 − za1) · · · (1 − zan)

so that the polynomial f has a bounded number of nonzero terms for all choices of
a1, . . . , an. This is also made explicit in [12, Theorem 3]. That is, the generating function
H(a1, . . . , an; z) changes qualitatively once n exceeds 3.

Nevertheless, Barvinok and Woods show in [3] that, for any fixed n, an expression for
H(a1, . . . , an; z) can be computed in polynomial time. This is a special case of a more
general algorithmic theory, for which one should also read the survey [2].

Theorem 1 is a refinement of [12, Theorem 2], which shows that one can write the
Hilbert series when n = 3 using at most twelve terms in the numerator. Our proof makes
use of a free resolution of R/I, which we note could be deduced in particular as a special
case of a general method due to Peeva and Sturmfels, [10]. The commutative algebra here
is by no means new, then, and our objective is only to draw attention to its combinatorial
consequences, in a way that is semi-expository and self-contained, given a reference such
as [5].

2 Proof of Theorem 1

For all that follows, fix n = 3. We shall regard R/I ∼= k[ta1 , ta2 , ta3 ] as a R-module. Since
pdRR/I = 2, there is a free resolution of the form

0 −→ F2
φ−→ F1 −→ R

π−→ k[ta1 , ta2 , ta3 ] −→ 0, (2.1)

where F1 = Rk and F2 = Rk−1, and k is the number of generators of I. By [6], k may be
taken to be 2 or 3, depending on (a1, a2, a3): for the reader’s convenience, we make this
explicit in the following pair of lemmas.

Definition 2.1 Choose binomials p1, p2 and p3 as follows. Let

p1 = xr11 − xs122 xs133 , p2 = xr22 − xs211 xs233 , p3 = xr33 − xs311 xs322 ,

where each ri is the minimum positive integer for which the equation riai =
∑

j 6=i sijaj
admits a solution in nonnegative integers. Equivalently, ri is the minimum positive integer
for which there exists a pi as above satisfying π(pi) = 0.
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Lemma 2.2 Given a triple (a1, a2, a3), either:

(N) sij 6= 0 for all i 6= j, or

(C) Two of the binomials above are the same up to sign: pi = −pj for some i, j, and the
third binomial pk = xrkk − xski

i x
skj

j has both ski and skj strictly positive.

Proof: Either all sij are nonzero or, without loss of generality, s13 = 0. Then we show
that p2 = −p1 as follows. First, s23 must also be zero: to prove it, suppose not. By the
minimality of the ri’s, r2 ≤ s12. It is not hard to see that s21 > 0, by our assumption that
gcd (a1, a2, a3) = 1. Then one replaces xr22 in p1 with xs211 xs233 to obtain xr11 −xs211 xs12−r22 xs233 ;
then dividing through by the common, nonzero power of x1 gives a binomial p′1 for which
π(p′1) = 0, contradicting the minimality of r1. This means that the first two equations
have the form

p1 = xr11 − xs122 and p2 = xr22 − xs211 .

By the minimality of r1, we have gcd(r1, s12) = 1. Then (s21, r2) is a multiple of (r1, s12);
by minimality again, these pairs must be equal. This completes the proof. �

Remark 2.3 We will say that a triple is either type (C) or (N) according to the cases in
Lemma 2.2. It is shown in [6] that I is a complete intersection iff (a1, a2, a3) is type (C).

Lemma 2.4 ([6]) Let I = ker π as above. Then I is generated by {p1, p2, p3}.
Proof: First observe that I is generated over k by all homogeneous binomials xα1

1 x
α2
2 x

α3
3 −

xβ1

1 x
β2

2 x
β3

3 . (Recall deg xi = ai.) Using multiplication by each xi, one can see that I

is generated as an ideal by homogeneous binomials of the form xαi − ∏
j 6=i

x
βj

j . Now use

induction on the degree of such binomials.
Let J = 〈p1, p2, p3〉. If J 6= I, then choose b = xαi −

∏
j 6=i

x
βj

j of smallest degree in I\J .

By the minimality of ri, we must have α ≥ ri. Without loss of generality assume i = 1,
and use p1 to form the binomial

b′ = xα−r11 xs122 xs133 − xβ2
2 x

β3
3 .

Now b = b′ mod J , so we find b′ ∈ I\J also. Now a contradiction arises if both s12 and
s13 are nonzero: then either b′ = xib

′′ for some binomial b′′ and i = 2 or 3. The degree of
b′′ is less than that of b, so b′′ ∈ J ; therefore b′ would be too.

Consequently, either s12 = β3 = 0 or s13 = β2 = 0. Again, without loss of generality,
assume the latter. This means (a1, a2, a3) is type (C), so b′ = xα−r11 xr22 −xβ3

3 and α−r1 > 0.
By the minimality of r3, we see that β3 ≥ r3, so we can use p3 to form a new binomial b′′ =
xα−r11 xr22 − xβ3−r3

3 xs311 xs322 in I\J . Now both s31 and s32 are strictly positive (Lemma 2.2,
case (C)). Thus one can divide b′′ by one of x1 or x2, again contradicting the minimality
of deg b. �

In type (C), then, I is generated by two of {p1, p2, p3}. We will now state our main
result, proving at first only the first half.
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Theorem 1 If (a1, a2, a3) is type (C), then

H(a1, a2, a3; z) =
(1 − zairi)(1 − zajrj )

(1 − za1)(1 − za2)(1 − za3)
, (2.2)

where i, j are the indices of the generators given by Lemmas 2.2, 2.4. Otherwise,

H(a1, a2, a3; z) =
1 − za1r1 − za2r2 − za3r3 + zm + zn

(1 − za1)(1 − za2)(1 − za3)
, (2.3)

for triples of type (N), where

m = a3s23 + a1r1 = a1s31 + a2r2 = a2s12 + a3r3, and

n = a2s32 + a1r1 = a3s13 + a2r2 = a1s21 + a3r3.

Proof: [Proof of case (C)] Reorder the indices so that i = 1 and j = 2. Let F1 =
R 〈u1, u2〉, a free R-module. By the work above, the complex

F1
ψ−→ R −→ R/I −→ 0 (2.4)

is exact, where ui 7→ pi, the generators of I. It remains to extend (2.4) to the left by
F2 = kerψ. Let v be a generator of F2. The Euler characteristic shows

H(F2, z) −H(F1, z) +H(R, z) −H(R/I, z) = 0.

Then H(R, z) = (1 − za1)(1 − za2)(1 − za3), and since F1 and F2 are free,

H(F1, z) = (zdeg p1 + zdeg p2)H(R, z), and

H(F2, z) = zdeg vH(R, z).

Since deg pi = airi, formula (2.2) follows from checking deg v = deg p1 + deg p2.
To do so, suppose for some r, s ∈ R that ru1 + su2 ∈ ker φ. That is, rp1 + sp2 = 0. By

minimality, p1 and p2 have no common factor, so (s,−r) must be a multiple of (p1, p2).
That is, (−u2, u1) generates ker φ, and it has degree deg u1 + deg u2. �

For triples (a1, a2, a3) of type (N), the resolution is more interesting, and it will help
to describe the map φ as follows.

Lemma 2.5 If (a1, a2, a3) is type (N), then φ : F2 → F1 can be written as a matrix

M =

(
xs233 xs311 xs122

xs322 xs133 xs211

)
.

Proof: The idea is to verify that the 2 × 2 minors of M are p1, p2, and p3. Then, by
the Hilbert-Burch Theorem, the image of a 2× 3 matrix is generated by its 2× 2 minors,
which shows (2.1) is exact.
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The minor obtained by deleting column i above is, up to sign, x
si−1,i+si+1,i

i −∏
j 6=i x

sij

j ,

writing the indices cyclically. Since pi = xrii − ∏
j 6=i x

sij

j , we need only check that ri =
sji + ski, whenever i, j, and k are distinct. Let

N =


 −r1 s12 s13

s21 −r2 s23

s31 s32 −r3


 .

Then N(a1, a2, a3)
t = 0, and the trace of N is maximal with respect to this property, by

construction. By an exercise of linear algebra, the kernel of right-multiplication by N is
generated by (1, 1, 1).

�
We may now complete the proof of Theorem 1.
Proof: [Proof of case (N)] Now let (a1, a2, a3) be of type (N). Write F1 = R 〈u1, u2, u3〉
and F2 = R 〈v1, v2〉, where these bases are chosen so that φ : F2 → F1 is given by
right-multiplication by the matrix M from the lemma above. As before, set ψ(ui) = pi.
We find that deg ui = deg pi = airi, and deg v1 = m, deg v2 = n. Then H(F2, z) =
(zm + zn)H(R, z), and

H(F1, z) = (zdeg p1 + zdeg p2 + zdeg p3)H(R, z).

The Euler characteristic argument, as before, gives (2.3). �

3 Examples

Example 3.1 Consider the triple (6, 7, 8). We find:

p1 = x4
1 − x3

3, p2 = x2
2 − x1x3, and p3 = −p1.

This triple is type (C), so p1 and p2 generate ker π : R → k[t6, t7, t8]. Since deg p1 = 24
and deg p2 = 14, we see F1 is generated in degrees 14 and 24, while F2 is generated in
degree 38, giving by (2.2)

H(6, 7, 8; z) =
(1 − z14)(1 − z24)

(1 − z6)(1 − z7)(1 − z8)
.

Example 3.2 On the other hand, the triple (5, 7, 9) is type (N):

p1 = x5
1 − x2x

2
3, p2 = x2

2 − x1x3, and p3 = x3
3 − x4

1x2,

with degrees 25, 14, and 27, respectively. Then

M =

(
x3 x4

1 x2

x2 x2
3 x1

)
.

We find that m = 9 · 1 + 25 and n = 7 · 1 + 25, so by (2.3),

H(5, 7, 9; z) =
1 − z25 − z14 − z27 + z34 + z32

(1 − z5)(1 − z7)(1 − z9)
.
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4 Another Generating Function

Various authors have considered the associated graded ring of k[ta1 , . . . , tan ] with respect
to filtration by powers of its maximal ideal m = (ta1 , . . . , tan); for references, see [1, 9].
Denote this ring by grmR/I.

Its Hilbert series is the following generating function: let

Sr =

{
k ∈ Z+ : k =

n∑
i=1

λiai, where r =
n∑
i=1

λi, and each λi ∈ Z+.

}
,

for r ≥ 0, and let Tr = Sr\
⋃
i<r Si. Then S =

⋃
r≥0 Tr, and the Hilbert series is

H(grmR/I, z) =
∑
r≥0

|Tr| zr. (4.1)

When n = 3 and the generators of the ideal I given by Lemma 2.2 form a Gröbner
basis, then standard arguments show that the resolution (2.1) passes to grmR/I. In this
case, a formula analogous to that of Theorem 1 holds, (4.2) below.

However, {p1, p2, p3} need not form a Gröbner basis. In [7, Theorem 3.8] Kamoi gives
the following characterization. If (a1, a2, a3) is type (N) and a1 < a2 < a3, then clearly
r1 > s12 + s13 and r3 < s31 + s32. However, {p1, p2, p3} is a Gröbner basis if and only
if r2 ≥ s21 + s23. It follows from the Gröbner basis criteria given in Sengupta [11] that,
in contrast to our previous Hilbert series, (4.1) cannot be written as a quotient with a
bounded number of terms in all cases, even for n = 3.

In summary, if a1 < a2 < a3, then H(grmR/I, z) = f(z)/(1 − z)3, where

f(z) =




(1 − zdeg pi)(1 − zdeg pj ) in case (C);

(1 − zdeg p1 − zdeg p2 − zdeg p3 + zm + zn)
in case (N),
if r2 ≥ s21 + s23;

? otherwise.

(4.2)

where i and j are the indices of generators of I in the first case, m = r1 + max {s32, s21},
and n = r2+max {s31, s12}. Note that, unlike before, degrees are taken with respect to the
standard Z-grading of R, so deg pi = max {ri, sij + sik}, where i, j, and k are distinct.
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[12] L. A. Székely and N. C. Wormald, Generating functions for the Frobenius problem
with 2 and 3 generators, Math. Chronicle 15 (1986), 49–57. MR 88i:05013

the electronic journal of combinatorics 10 (2003), #R36 7


