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Abstract

ECO is a method for the recursive generation, and thereby also the enumeration
of classes of combinatorial objects. It has already found successful application in
recent literature both to the exhaustive generation and to the uniform random
generation of various objects classified according to several parameters of interest,
as well as to their enumeration.

In this paper we extend this approach to the generation and enumeration of
some classes of convex polyominoes. We begin with a review of the ECO method
and of the closely related notion of a succession rule.

From this background, we develop the following principal findings:

i) ECO constructions for both column-convex and convex polyominoes;

ii) translations of these constructions into succession rules;

iii) the consequent deduction of the generating functions of column-convex and of
convex polyominoes according to their semi-perimeter, first of all analytically by
means of the so-called kernel method, and then in a more novel manner by drawing
on some ideas of Fedou and Garcia;

iv) algorithms for the exhaustive generation of column convex and of convex poly-
ominoes which are based on the ECO constructions of these object and which are
shown to run in constant amortized time.

∗died 1st June, 2003
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1 Introduction

A polyomino is a finite union of cells of the square lattice Z×Z with simply connected
interior. In the half century since Solomon Golomb used the term in his seminal article
[22], the study of polyominoes has proved a fertile topic of research. By this period in the
mid-1950s, it was clearly a timely notion in discrete models, as the increasingly influential
work of Neville Temperley, on problems drawn from statistical mechanics and molecular
dynamics [29], and of John Hammersely, dealing with percolation [23], bear witness. More
recent years have seen the treatment of numerous related problems, such as the problem
of covering a polyomino by rectangles [9] or problems of tiling regions by polyominoes
[5, 12]. But, at the same time, there remain many challenging, open problems, starting
with general enumeration problem. Here, while the number an of polyominoes with n
cells has been determined only for small n (up to n = 94 in [26]), it is known that asymp-
totically there is geometrical growth:

limn {an}1/n = µ, 3.72 < µ < 4.64.

Consequently, in order to probe further, several subclasses of polyominoes have been
introduced on which to hone enumeration techniques. One very natural subclass is that
of convex polyominoes with which we are concerned in this paper. A polyomino is said to
be column-convex [row-convex] when its intersection with any vertical [horizontal] line of
cells in the square lattice is connected (see Fig. 1 (a)), and convex when it is both column
and row-convex (see Fig. 1 (b)). The area of a polyomino is just the number of cells it
contains, while its semi-perimeter is half the number of edges of cells in going around the
boundary. Thus, a convex polyomino has the agreeable property that its semi-perimeter
is the sum of the numbers of its rows and columns. Moreover, any convex polyomino is
contained in a rectangle in the square lattice which has the same semi-perimeter.

(a) (b)

Figure 1: (a) a column-convex (but not convex) polyomino; (b) a convex polyomino.

In fact, the number fn of convex polyominoes with semi-perimeter n + 2 was deter-
mined by Delest and Viennot, in [14]:

fn+2 = (2n + 11)4n − 4(2n + 1)

(
2n

n

)
, n ≥ 0; f0 = 1, f1 = 2. (1)
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This is an instance of sequence A005436 in [28], the first few terms being:

1, 2, 7, 28, 120, 528, 2344, 10416, . . . .

Thus, for example, there are seven convex polyominoes with semi-perimeter 4, as shown
in Figure 2.

Figure 2: The seven convex polyominoes with semi-perimeter 4.

In [14], the enumeration of convex polyominoes is via encoding in context-free lan-
guages generated by non-ambiguous languages (the so-called DSV methodology) coupled
with generating functions in two steps:

1. each polyomino is classified into one of three types and then encoded accordingly
as a word in a corresponding language; and

2. for each of the three languages used, the grammar productions are translated into an
algebraic system of equations from which the generating function can be deduced.

The upshot is to show that the generating function f(x) for convex polyominoes
enumerated by semi-perimeter is given by:

f(x) = x2
∑
n≥0

fnxn = x2

(
1 − 6x + 11x2 − 4x3 − 4x2

√
1 − 4x

(1 − 4x)2

)
, (2)

from which (1) follows.
In the wake of this pioneering effort, (2) has been re-derived by other analytical

means in [10, 24] and, much more recently, through a bijective proof in [7]. Indeed, in
their paper [10], Lin and Chang do rather more, refining the enumeration to give the
generating function for the number of convex polyominoes with k + 1 columns and j + 1
rows (and so semi-perimeter k + j + 2), where k, j ≥ 0. From this result, in turn, Gessel
was able to infer, in a brief note [21], that the number of such polyominoes is

k + j + kj

k + j

(
2k + 2j

2k

)
− 2(k + j)

(
k + j − 1

k

)(
k + j − 1

j

)
. (3)

The enumeration of column-convex polyominoes that form another part of our present
subject matter has an even older history, going back to Temperley’s paper [29] in 1956.
However, the determination of the generating function g(x) for column-convex polyomi-
noes indexed by semi-perimeter was obtained only in the late 1980s by Delest in [13], as
a further application of encoding in context-free languages, together with appeal to the
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computer algebra program MACSYMA. The resulting expression for g(x) is rather more
complicated than that for f(x) in (2):

(1 − x)


1 − 2

√
2(

3
√

2 −
√

1 + x +
√

(x2−6x+1)(1+x)2

(1−x)2

)

 . (4)

The number gn of column-convex polyominoes with semi-perimeter n + 2 is then the
coefficient of xn in g(x); these coefficients are an instance of sequence A005435 in [28],
the first few terms being

1, 2, 7, 28, 122, 558, 2641, 12822, . . . .

As with (2), Lin and Chang also provided a generalization of (4) in their paper [10].
Perhaps because there does not appear to be any closed expression for the coefficients
g(n), (4) continues to exercise interest, an alternative proof being given in [20] by Feretic.
Brak, Enting, and Gutman [8] had shown earlier how to obtain g(x) using Temperley’s
methodology and Mathematica, giving, in default of a closed form for gn, the following
asymptotic expansion:

gn−2 ∼ (3 + 2
√

2)n−1/2 n−3/2

[
c0 +

c1

n
+ O

(
1

n2

)]
, (5)

where c0 = 0, 102834615 . . ., c1 = 0, 038343814 . . ..

In the course of our analysis, it is helpful to be able to call upon results for two further
familiar classes of polyominoes defined by means of proper lattice paths in the square
lattice, namely the directed-convex polyominoes and the parallelogram polyominoes. By a
proper lattice path between two lattice points in the square lattice is meant a path made
up in some combination of unit steps up or to the right along the lines of the lattice.
A polyomino is said to be directed when each of its lattice points can be reached from
its bottom left-hand corner by a proper lattice path. In turn, a polyomino is directed-
convex if it is both directed and convex (so, for example, the polyomino in Fig. 3 (a) is
directed-convex, whereas the convex polyomino already illustrated in Fig. 1 (b) fails to be
directed). The number of directed-convex polyominoes with semi-perimeter n + 2 is the
central binomial coefficient (

2n

n

)
, (6)

giving an instance of sequence A000984 in [28].

A significant subclass of the directed-convex polyominoes that has attracted much
attention arises by requiring that the boundary of a polyomino consists of two proper
lattice paths between two lattice points that otherwise do not intersect. A polyomino
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with such a boundary is called a parallelogram polyomino, the two proper lattice paths
defining its boundary being known as the upper and lower paths, in the obvious sense
that, except at the end-points, one path runs above the other (thus, the polyomino in
Fig. 3 (b) is a parallelogram polyomino, but that in Fig. 3 (a) is not). In this case, it is
well-known that the number of parallelogram polyominoes with semi-perimeter n + 2 is
the (n + 1)-st Catalan number Cn+1, where

Cn =
1

n + 1

(
2n

n

)
; (7)

the sequence of Catalan numbers is A000108 in [28]. A further appealing fact is that the
total number of cells in the parallelogram polyominoes with semi-perimeter n + 2 is 4n,
giving rise to the celebrated problem of the Catalan jigsaw highlighted in [32].

(a) (b)

Figure 3: (a) a directed-convex polyomino; (b) a parallelogram polyomino.

Our aim here is to provide a unifying approach to the generation and enumeration of
certain classes of polyominoes, applicable, for instance, to the directed-convex, the convex,
and the column-convex polyominoes. In this enterprize, we draw for our inspiration on
[6] which proposes

a single method to get, for any ”natural” class of column convex polyominoes, a
functional equation that implicitly defines its generating function,

where, indeed, the generating function takes account of several parameters including area
and semi-perimeter. But our technique of choice is the ECO method, for a survey of
which we refer to [4]. The crux of this method is the recursive generation of classes
of combinatorial objects through local expansions of the objects of one size that yield
every object of the next size once and only once. If this recursive procedure has sufficient
regularity, it can be translated into a formal system known as a succession rule. While the
principles at work here had been employed earlier informally, the definition of a succession
rule seems to have been first formalized in [30, 31]. It was then found to be an apt tool for
the ECO method. A closely associated notion is that of a generating tree, which provides
a handy means of representing succession rules, and this perspective was explored in
[3]. The focus in [3] is on how the form of a succession rule is linked to the resulting
generating function, leading to a classification of succession rules as rational, algebraic, or
transcendental according to the type of generating function that arises. The computation
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of these generating functions is obtained by using the kernel method. We supply an
introductory summary of the ECO method, including succession rules and generating
trees, in the next section. (Since the ECO method is an attempt to capture a natural
and attractive approach to the generation of combinatorial objects, it is no surprise that
similar algorithms have been formulated independently, and, indeed, at about the same
time, for example, under the names reverse search in [1], and canonical construction path
in [25].)

The first part of the paper is devoted to proving (2) by breaking the task into the
following stages that together make for a pleasingly simple result:

1. an ECO construction is developed for the set of convex polyominoes (Section 2);

2. the associated succession rule is then deduced from this construction; its generating
function is just f(x)/x2, the generating function of the sequence {fn}n≥0 (Section
2.1);

3. the generating function of the succession rule is computed by standard analytical
methods as given in [3], especially the kernel method, which involves solving a
system of functional equations (Section 3.1);

4. this result is re-derived in novel fashion, starting from a method proposed by Fédou
and Garcia, in [17], for some algebraic succession rules, and extending it to the
present case on noting that a convex polyomino with semi-perimeter n + 2 has a
representation as a word of length n of a non-commutative formal power series over
an infinite alphabet; this non-commutative power series admits a decomposition in
terms of some auxiliary power series which yields an algebraic system of equations
on taking commutative images; and the solution of this system is then the generating
function f(x) as in (2) (Section 3.2).

It is worth noting here that the approach summarized in Step 4 has wider applicability
in the solution of functional equations arising from the ECO method where the kernel
method may fail.

Similarly, we also derive an ECO construction for column-convex polyominoes, deduce
the associated succession rule, and then apply the methodologies described in Steps 3 and
4 to pass from the succession rule to a system of equations satisfied by the generating
function g(x) (Section 3.3). This system can be solved using MAPLE to give g(x) as in
(4).

In latter part of the paper we examine the exhaustive generation of the classes of
convex and column-convex polyominoes. The aim in studying the exhaustive generation of
combinatorial objects is to describe efficient algorithms to list all the objects. Algorithms
of this sort find application in many areas: hardware and software testing, combinatorial
chemistry and the design of pharmaceutical compounds, coding theory and reliability
theory, and computational biology, to name a few. Moreover, these algorithms can yield
supplementary information about the objects under review.
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The primary measure of performance for the efficiency of an algorithm for generating
combinatorial objects is that the amount of computational time taken should remain
proportional to the number of objects to be generated. Thus, an algorithm for exhaustive
generation is regarded as efficient when it requires only a constant amount of computation
per object, in an amortized sense, algorithms attaining this benchmark being said to have
the Constant Amortized Time or CAT property.

In [2], it is shown that an ECO construction leads to an algorithm for the generation
of the objects being constructed. In Section 4, we use the ECO construction defined in
Section 2 coupled with the strategy proposed in [2], to describe two algorithms, one for
generating convex polyominoes and the other for column-convex polyominoes. We then
confirm that both have the CAT property.

2 An ECO operator for the class of convex polyomi-

noes

ECO (Enumerating Combinatorial Objects) is a method for the enumeration and the
recursive construction of a class of combinatorial objects, O, by means of an operator
ϑ which performs “local expansions” on the objects of O. More precisely, let p be a
parameter on O, such that |On| = |{O ∈ O : p(O) = n}| is finite. An operator ϑ on the
class O is a function from On to 2On+1, where 2On+1 is the power set of On+1.

Proposition 2.1 Let ϑ be an operator on O. If ϑ satisfies the following conditions:

1. for each O′ ∈ On+1, there exists O ∈ On such that O′ ∈ ϑ(O),

2. for each O, O′ ∈ On such that O 6= O′, then ϑ(O) ∩ ϑ(O′) = ∅,

then Fn+1 = {ϑ(O) : O ∈ On} is a partition of On+1.

ECO method was successfully applied to the enumeration of various classes of walks,
permutations, and polyominoes. We refer to [4] for further details, and examples.

The recursive construction determined by ϑ can be suitably described through a gen-
erating tree, i.e. a rooted tree whose vertices are objects of O. The root of the tree is the
object of O having the minimum size (possibly the empty object). The objects having
the same value of the parameter p lie at the same level, and the sons of an object are the
objects it produces through ϑ.

In this section we define an ECO operator for the recursive construction of the set of
convex polyominoes. First, we partition the set of convex polyominoes C into four disjoint
subsets, denoted by Cb, Ca, Cr, and Cg. In order to define the four classes, let us consider
the following conditions on convex polyominoes:
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U1 : the uppermost cell of the rightmost column of the polyomino has the maximal
ordinate among all the cells of the polyomino;

U2 : the lowest cell of the rightmost column of the polyomino has the minimal ordinate
among all the cells of the polyomino.

(b) (a)

Figure 4: A convex polyomino in Cb, on the left, and one polyomino in Ca, on the right.

We are now able to set the following definitions:

i) Cb is the set of convex polyominoes having at least two columns, satisfying conditions
U1 and U2, and such that the uppermost cell of the rightmost column has the same
ordinate as the uppermost cell of the column on its left (Fig. 4 (b)).

(r) (g)

Figure 5: A convex polyomino in Cr, on the left, satisfying U1 but not U2 and one
polyomino in Cg, on the right.

ii) Ca is the set of convex polyominoes not in Cb, and satisfying conditions U1 and U2
(see Fig. 4 (a)).

Let us remark that, according to such definition, all convex polyominoes made only
of one column lie in the class Ca.

iii) Cr is the set of convex polyominoes that satisfy only one of the conditions U1 and
U2 (for example Figure 5 (r), depicts a polyomino that satisfies condition U1 but
not U2).

iv) Cg is the set of remaining convex polyominoes, i.e. those satisfying neither U1 nor
U2 (see Fig. 5 (g)).
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(4)
b

(4)
b b

g
(1)(1)

r (1)
g

(1)
r

(2)
r

(2)
g

(2)
r

(3)
r

(3)
r

(5) (5)
a

Figure 6: The ECO operator applied to a polyomino in the class Cb.

(1) (1) (1)(4) (1)

(2) (2) (2) (3) (3)

(4) (5)

a

ab

r r

r r

r r

g g

g

Figure 7: The ECO operator applied to a polyomino in the class Ca.

The ECO operator we are going to define, namely ϑ, performs local expansions on
the rightmost column of any polyomino of semi-perimeter n + 2, thus producing a set
of polyominoes of semi-perimeter n + 3. More precisely, the operator ϑ performs the
following set of expansions on any convex polyomino P , with semi-perimeter n + 2 and k
cells in the rightmost column:

- for any i = 1, . . . , k the operator ϑ glues a column of length i to the rightmost column
of P ; this can be done in k − i + 1 possible ways.

The previous operation produces k+(k−1)+ . . .+2+1 polyominoes with semi-perimeter
n+3. Moreover, the operator performs some other transformations on convex polyominoes
of classes Cb, Ca, and Cr, according to the belonging class:

- if P ∈ Cb, then the operator ϑ produces two more polyominoes, one by gluing a cell onto
the top of the rightmost column of P , and another by gluing a cell onto the bottom
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r(3) (1) r

r

(1)(1) g g

(2)g (2) (3) r (4) r

Figure 8: The ECO operator applied to a polyomino in the class Cr.

of the rightmost column of P (Figure 6 depicts the whole set of the expansions
performed by ϑ on a polyomino of the class Cb).

- if P ∈ Ca, then the operator ϑ produces one more polyomino by gluing a cell onto the
top of the rightmost column of P (Fig. 7).

- if P ∈ Cr, we have two cases:

if P satisfies the condition U1, then the operator ϑ glues a cell onto the top of the
rightmost column of P ;

else, the operator ϑ glues a cell on the bottom of the rightmost column of P (Fig. 8).

The ECO operator applied to polyominoes in Cg makes no addictive expansions, as it is
graphically explained in Fig. 9.

The reader can easily check that the operator ϑ produces satisfies conditions 1. and
2. of Proposition 2.1.

(1) (1)(3) (1)

(2) (2) (3)

g
g g g

gg g

Figure 9: The ECO operator applied to a polyomino in the class Cg.
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2.1 The succession rule associated with ϑ

The next step consists in translating the previous construction into a set of equations
whose solution is the generating function for convex polyominoes. To achieve this purpose,
we must introduce the second ingredient of our work, the concept of succession rule. Before
turning to a formal definition, we present an illustrative example.

A polyomino in Ci, i ∈ {a, b, g, r} with k cells in the rightmost column can be repre-
sented by a label (k)i. Let us take as an example, the polyomino in Fig. 8, with label
(3)r; according to the figure, the performance of the ECO operator on the polyomino can
be sketched by the production:

(3)r  (1)g (1)g (1)r (2)g (2)r (3)r (4)r,

meaning that the polyomino produces through ϑ two polyominoes with label (1)g, and
polyominoes with labels (1)r, (2)g, (2)r, (3)r, (4)r.

More generally, the performance of the ECO operator on a generic polyomino can be
sketched by the following set of productions:




(k)g  
∏k

j=1(j)
k−j+1
g

(k)r  
∏k−1

j=1(j)
k−j
g

∏k+1
j=1(j)r

(k)a  
∏k−2

j=1(j)
k−j−1
g

∏k−1
j=1(j)

2
r (k)b (k + 1)a

(k)b  
∏k−2

j=1(j)
k−j−1
g

∏k−1
j=1(j)

2
r (k)b (k + 1)a (k + 1)b,

(8)

where k can assume all positive integer values, and the power notation is used to
express repetitions, that is (i)j is short for the repetition of (i) j times.

The system constituted by:

1. the label (1)a (often called the axiom of the rule); it is the label of the polyomino
with semi-perimeter 2;

2. the sets of productions defined in (8),

forms a succession rule, which we call Ω. As an example, for k = 1, 2, 3 we have the
following productions of Ω:

(1)g  (1)g
(2)g  (1)g (1)g (2)g
(3)g  (1)g (1)g (1)g (2)g (2)g (3)g

(1)r  (1)r (2)r
(2)r  (1)g (1)r (2)r (3)r
(3)r  (1)g (1)g (1)r (2)g (2)r (3)r (4)r

(1)a  (1)b (2)a
(2)a  (1)r (1)r (2)b (3)a
(3)a  (1)g (1)r (1)r (2)r (2)r (3)b (4)a

(1)b  (1)b (2)a (2)b
(2)b  (1)r (1)r (2)b (3)a (3)b
(3)b  (1)g (1)r (1)r (2)r (2)r (3)b (4)a (4)b.
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The rule Ω can be graphically represented by means of a generating tree, i.e. a rooted
tree whose vertices are labelled with the labels of the rule. In practice:

1) the root is labelled with the axiom (1)a;

2) each node with label (k)t produces a set of sons whose labels are determined by the
production of (k)t in the rule.

Figure 10, (a), depicts the first levels of the generating tree of the ECO operator ϑ, while
Figure 10, (b), shows the first levels of the generating tree of Ω. The two generating trees
are naturally isomorphic, and then throughout the paper we will treat them as the same
generating tree.

(1)
a

(2)
a

(1)

(1)
a

b

(1)(1)
r r

(2)
b

(3)
a b

(2) (2)
b

Figure 10: The first levels of the two isomorphic generating trees: of the ECO operator
ϑ, on the left, and of the succession rule Ω, on the right.

Remark 1. Each system of the form{
(a)
(k) (e1(k))(e2(k)) . . . (et(k)(k)),

(9)

where a, k, ei(k), t ∈ N
+, is called a succession rule; (k)  (e1(k))(e2(k)) . . . (et(k)(k)) is

a (possibly finite) set of productions, starting from (a) which is the axiom. Succession
rules are familiar in literature [3, 4, 15, 17, 18, 19, 30, 31], and closely related to the ECO
method.

Moreover the concept of generating tree can be naturally defined for any kind of
succession rule: the root of the tree has label (a), and each node with label (k) has
t = t(k) sons with labels (e1(k)), (e2(k)), ..., (et(k)).

In particular, for any given succession rule Γ a non-decreasing sequence {un}n≥0 of
positive integers is then defined, un being the number of nodes at level n in the generating
tree defined by Γ. By convention, the root is at level 0, so u0 = 1. We also consider the
generating function uΓ(x) of the sequence {un}n≥0.

the electronic journal of combinatorics 11 (2004), #R60 12



2

1

5

(1)

(1)

(1) (2)

(2)

(3)(2)(1)

Figure 11: The first levels of the generating tree associated with the succession rule Γ.

For example, let Γ be the following succession rule (studied in various papers, but
first presented in [4]):

Γ

{
(1)
(k) (1)(2) . . . (k + 1),

(10)

defining a generating tree whose first levels are shown in Fig. 11. The reader can check
that the rule defines the sequence of Catalan numbers.

Remark 2. Please note that for the remainder of the paper we will use the following
notation, unless otherwise stated:

- f(x) (resp. g(x)) is the generating function in (2) (resp. (4)) for the class of convex
(resp. column-convex) polyominoes according to the semi-perimeter;

- {fn}n≥0 (resp. {gn}n≥0) is the sequence defined by f(x) (resp. g(x));

- Ω (resp. ∆) is the succession rule associated with the ECO operator for the class of
convex (resp. column-convex) polyominoes.

- fΩ(x) (resp. g∆(x)) is the generating function of the succession rule Ω (resp. ∆); in
practice, the functions f(x) and fΩ(x) are related by the simple relation:

f(x) = x2fΩ(x).

Analogously, g(x) = x2g∆(x).

2.2 An ECO operator and a succession rule for column-convex

polyominoes

In this section we present an ECO operator for the class CC of column-convex poly-
ominoes. Being this construction quite similar to that proposed for convex polyominoes,
we will here outline just the main features.

First we decompose CC into three mutually disjoint subclasses, and to do this we take
into consideration the following conditions:
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Q1 : the ordinate of the highest cell of the rightmost column is greatest than the ordinate
of the highest cell of the column on its left;

Q2 : the ordinate of the highest cell of the rightmost column is equal to the ordinate of
the highest cell of the column on its left;

Q3 : the ordinate of the lowest cell of the rightmost column is minor than or equal to
the ordinate of the lowest cell of the column on its left.

Basing on these three conditions we define the following classes:

i. CCb is the subclass of CC made of those polyominoes that satisfy both conditions Q2
and Q3 (see Fig.12, (b)).

ii. CCg is the subclass of CC made of those polyominoes that do not satisfy any of the
conditions Q1, Q2 and Q3 (see Fig.12, (g)).

iii. CCa contains all polyominoes in CC that satisfy at least one of the conditions Q1,
Q2 and Q3, and do not lie in CCb (Figure 12, (a), depicts three possible cases). In
practice, a polyomino in CCa can satisfy: only condition Q1, only condition Q2,
only Q3, or both conditions Q1 and Q3.

(g)(b) (a) (a) (a)

Figure 12: Column-convex polyominoes of the classes (b), (g), and (a).

Again, a polyomino of the class CCi, i ∈ {a, b, g}, with k cells in the rightmost column
can be represented by the label (k)i.

The operator on column-convex polyominoes, which we call ϑ1, acts differently on
polyominoes belonging to different classes. Its performance is similar to that of ϑ on
convex polyominoes, therefore instead of giving a formal definition we prefer to give a
graphical description, in Fig. 13.

The construction of the operator ϑ1 can be easily be represented by means of the
succession rule ∆:
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(3)
b

b
(3)

b

(1) (1) (1)

(4) (4)

(2) (2)
ga a a a

a

b
(2)

g
(1)

a
(1)

a
(2)

(3)

(3)
b

a a
(1) (1)

g a
(2) (2)

(4)

(1)
a a

a

Figure 13: The performance of ϑ1 on polyominoes of the classes (b), (g), and (a).




(1)a

(k)g  
∏k−2

j=1(j)
k−j−1
g

∏k−1
j=1(j)

2
a (k)b

(k)a  
∏k−2

j=1(j)
k−j−1
g

∏k−1
j=1(j)

2
a (k)b (k + 1)a

(k)b  
∏k−2

j=1(j)
k−j−1
g

∏k−1
j=1(j)

2
a (k)b (k + 1)a (k + 1)b.

(11)

For instance, we have the following productions for k = 3:

(3)g  (1)g(1)a(1)a(2)a(2)a(3)b,

(3)a  (1)g(1)a(1)a(2)a(2)a(3)b(4)a,

(3)b  (1)g(1)a(1)a(2)a(2)a(3)b(4)a(4)b.

Remark 3. The reader can easily verify that directed-convex polyominoes are those in
the class CC\CCb. Therefore, restricting the operator ϑ1 to this class, we easily obtain
an ECO construction (a pictorial description is given in Fig. 14; please notice that paral-
lelogram polyominoes have labels (k)r, while the remaining directed-convex polyominoes
have label (k)g, k ≥ 1).
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(2)g
(2)g

(2) g (2)

gg(1) (1)

r
(1)r (1) r (3)r

Figure 14: The ECO operator ϑ restricted to the class of directed-convex polyominoes.

The succession rule associated with this construction is then:


(1)a

(k)g  
∏k−2

j=1(j)
k−j−1
g

∏k−1
j=1(j)

2
a (k)a

(k)a  
∏k−2

j=1(j)
k−j−1
g

∏k−1
j=1(j)

2
a (k)a (k + 1)a.

(12)

3 Determining the generating function of convex and

column-convex polyominoes

Our next goal is to determine the generating function f(x) of convex polyominoes
according to the semi-perimeter, using the construction given by the ECO operator ϑ,
and the associated succession rule Ω. We first achieve this purpose in Section 3.1 by
applying methods provided in [3] to obtain the generating function of a generic succession
rule. Then, in Section 3.2, we start afresh on a second, novel approach: we represent
the nodes of the generating tree of the rule as terms of a formal power series, and then
determine a recursive decomposition for this series. It is then easy to pass from such a
decomposition to an algebraic system of equations satisfied by the generating function of
the succession rule Ω.

The case of column-convex polyominoes is then treated with the same tools in Sec-
tion 3.3.

3.1 The standard approach

We begin by translating the construction yielded by the operator ϑ into a functional
equation which is satisfied by the generating function of convex polyominoes. Since this
approach uses standard techniques, we will only sketch the main steps.

Let P be a convex polyomino. We denote the semi-perimeter and the number of cells
in the rightmost column of P by p(P ) and r(P ), respectively. The bivariate generating
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function of the class C of convex polyominoes, according to these parameters is:

f(s, x) =
∑
P∈C

sr(P )xp(P ).

The generating functions of the classes Ca, Cb, Cg, Cr are respectively:

A(s, x) =
∑
P∈Ca

sr(P )xp(P ), B(s, x) =
∑
P∈Cb

sr(P )xp(P ),

G(s, x) =
∑
P∈Cg

sr(P )xp(P ), R(s, x) =
∑
P∈Cr

sr(P )xp(P ).

By determining A(s, x), B(s, x), G(s, x) and R(s, x), we get the desired generating
function, f(s, x) = A(s, x) + B(s, x) + G(s, x) + R(s, x). Most of the calculation that
follows has been performed using MAPLE.

We remark that it is possible to refine the following calculation in order to consider
also other parameters, such as the number of rows and columns, and the area.

Translating the construction defined by ϑ onto A(s, x), B(s, x) yields:

A(s, x) = s x2 + s x A(s, x) + s x B(s, x), B(s, x) = xA(s, x) + (1 + s) xB(s, x).

So,

A(s, x) =
x2 (1 − x − s x) s

1 − x − 2 s x + s2 x2
, B(s, x) =

s x3

1 − x − 2 s x + s2 x2
. (13)

Translating the construction onto R(s, x) yields:

R(s, x) =
2 x

1 − s
(s A(1, x) − A(s, x)) + s B(1, x) − B(s, x)) +

s x

1 − s
(R(1, x) − sR(s, x)) .

Using the generating functions (13), we have that:

R(s, x) = 2
(1 − s x + s x2) s x4

(1 − 3 x + x2) (1 − x − 2 s x + s2 x2)
+

s x

1 − s
(R(1, x) − s R(s, x)) ,

and then

R(s, x)(1 − s + s2x) = 2
(1 − s)(1 − s x + s x2) s x4

(1 − 3 x + x2) (1 − x − 2 s x + s2 x2)
+ s x R(1, x). (14)

A solution of this equation can be obtained by plainly applying the kernel method [3];
first we set the coefficient of R(s, x) to be equal to 0,

(1 − s + s2x) = 0,

obtaining the two solutions:
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s1 =
1 −√

1 − 4x

2x
, s2 =

1 +
√

1 − 4x

2x
.

Since only the first one is a well-defined power series, we perform the substitution
s = s1 in the equation (14), and then obtain the solution

R(s, x) = 2
sx4 (3 − 2 s x −√

1 − 4x)√
1 − 4x (1 − 2 s x +

√
1 − 4x) (1 − x − 2 s x + s2 x2)

. (15)

Translating the construction to G(s, x) yields:

x

(1 − s)2

(
A(s, x) + B(s, x) + s R(s, x) + s2 G(s, x)

)
+

s x

(1 − s)

(
∂

∂s
A(s, x)∣∣s=1

+
∂

∂s
B(s, x)∣∣s=1

+ s
∂

∂s
R(s, x))∣∣s=1

+
∂

∂s
G(s, x)∣∣s=1

)
+

s x

(1 − s)2
((s − 2) A(s, x) + (s − 2) B(s, x) − R(1, x) − s G(1, x)) = G(s, x).

Some parts of the previous summation have already been determined, in (13), (15),
so in order to simplify the calculus we introduce the function q(s, x), defined as:

q(s, x) =
x

(1 − s)2
(A(s, x) + B(s, x) + s R(s, x)) +

s x

(1 − s)

(
∂

∂s
A(s, x)∣∣s=1

+
∂

∂s
B(s, x)∣∣s=1

+ s
∂

∂s
R(s, x))∣∣s=1

)
+

s x

(1 − s)2
((s − 2) A(s, x) + (s − 2) B(s, x) − R(1, x)) .

For simplicity we omit the expression of q(s, x). Performing some algebraic manipu-
lations we obtain:

G(s, x) = q(s, x) +
s2 x

(1 − s)2
G(s, x) +

s x

(1 − s)
∂

∂s
G(s, x)∣∣s=1

− s2 x

(1 − s)2
G(1, x). (16)

We remark that in [6], Bousquet-Mélou encountered the same functional equation.
We then write (16) as

G(s, x)
(
(1 − s)2 − s2x

)
= q(s, x)(1 − s)2 + sx(1 − s)

∂

∂s
G(s, x)∣∣s=1

− s2xG(1, x), (17)

and solve the kernel

(1 − s)2 − s2x = 0,

obtaining the two solutions:
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s1 =
1 −√

x

1 − x
, s2 =

1 +
√

x

1 − x
.

We remark that both s1 and s2 are well-defined formal power series. Substituting first
s1 and then s2 in (17), we obtain two equations, where the left side equals zero, and the
unknowns are G(1, x) and ∂

∂s
G(s, x)∣∣s=1

. The solutions are:

∂

∂s
G(s, x)∣∣s=1

=
(−2 + 26 x− 132 x2 + 330 x3 − 421 x4 + 253 x5 − 61 x6) x

1 − 14 x + 75 x2 − 190 x3 + 225 x4 − 104 x5 + 16 x6

−(10 x6 − 182 x3 + 92 x2 − 22 x + 2 + 172 x4 − 70 x5) x(1 −√
4x)

1 − 14 x + 75 x2 − 190 x3 + 225 x4 − 104 x5 + 16 x6
,

G(1, x) = −(4 x4 − 20 x3 + 30 x2 − 14 x + 2)x2
√

1 − 4x

1 − 11 x + 41 x2 − 56 x3 + 16 x4

−(4 x5 − 23 x4 + 59 x3 − 54 x2 + 18 x − 2)x2

1 − 11 x + 41 x2 − 56 x3 + 16 x4
.

At this stage we have determined all the terms needed to compute f(1, x). Finally,

f(1, x) = A(1, x) + B(1, x) + R(1, x) + G(1, x),

where A(1, x), B(1, x), and R(1, x) are easily obtained from (13) and (15):

f(x) = f(1, x) = x2

(
1 − 6 x + 11 x2 − 4 x3 − 4 x2

√
1 − 4 x

)
1 − 8 x + 16 x2

,

which is the desired result.

3.2 A new approach

The approach in Section 3.1, while establishing that the generating function for convex
polyominoes indexed by semi-perimeter is indeed algebraic, still leaves the fact that this
is so something of a mystery. In the present section, our aim is to find the generating
function fΩ(x) of the rule Ω (and therefore f(x)) by a different approach. To this end, we
rely on the idea, introduced by Fédou and Garcia, in [17], of working on succession rules
by means of non-commutative formal power series.

Each convex polyomino is uniquely identified by a node N of the generating tree
of the rule Ω, and this node can be encoded by a word in the infinite alphabet Σ =
{(i)a, (j)b, (h)g, (l)r : i, j, h, l ∈ N

+}. Such a word can be understood in an obvious
sense as the sequence of labels of the nodes in the path starting from the root and end-
ing at N . As an example, the polyomino depicted in Fig. 15 is encoded by the word
(1)a(1)b(2)b(3)a(3)b(4)a(5)a(3)r(2)g(2)g.
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(1) (1) (2)

(3) (3) (4)

(5)(2) (2) (3)

b b

b
a

a a

argg

Figure 15: The ECO construction of a convex polyomino and the corresponding word.

Because of the form of the productions of the rule Ω, some convex polyominoes have
necessarily the same word representation. For example the word (1)a(2)a(1)r represents
two polyominoes of size 4, as the reader can easily check looking at Fig. 10.

The considerations made in the previous lines can be suitably stated in a more formal
way. Let LΩ be the set of words, over Σ, beginning with (1)a and satisfying the productions
of Ω. Each word w of LΩ corresponds to at least one path in the generating tree of Ω.
We denote by SΩ the noncommutative formal power series:

SΩ =
∑

w∈LΩ

m(w)w,

where m(w) is the number of paths corresponding to w in the generating tree of Ω. By
construction, the generating function SΩ(x) of the series SΩ, and f(x) are related by,

f(x) = xSΩ(x).

For example, we have

SΩ = (1)a + (1)a(1)b + (1)a(2)a + (1)a(1)b(1)b + (1)a(1)b(2)a + (1)a(1)b(2)b+

2 · (1)a(2)a(1)r + (1)a(2)a(2)b + (1)a(2)a(3)a + . . .

SΩ(x) = x + 2x2 + 7x3 + 28x4 + 122x5 + 558x6 + . . .

We work on the series SΩ using the standard operations on noncommutative formal
power series; in particular, for any positive integer n, and (i)j ∈ Σ:

nSΩ =
∑

w∈LΩ

(nm(w)) w, (i)jSΩ =
∑

w∈LΩ

m(w)(i)jw.

Using the same notation of [17], we introduce the operation ⊕: for any word of LΩ,

u = (i1)j1(i2)j2 . . . (ik)jk
, we set
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u⊕ = (i1 + 1)j1(i2 + 1)j2 . . . (ik + 1)jk
.

For example ((1)a(2)a(1)r)
⊕ = (2)a(3)a(2)r. Moreover:

L⊕
Ω =

{
w⊕ : w ∈ LΩ

}
, and S⊕

Ω =
∑

w∈LΩ

(m(w))w⊕.

It is a neat consequence that S⊕
Ω and SΩ have the same generating function.

Generally speaking, a noncommutative formal power series SΓ, and its generating
function SΓ(x) can be associated with any succession rule Γ in a completely analogous
way.

Catalan succession rule. To fully understand the heart of the matter, we start pre-
senting an example already given in [17]. Let us consider succession rule defining Catalan
numbers, already presented in Section 2:

Γ

{
(1)
(k) (1)(2) . . . (k + 1),

(18)

Let C = SΓ be the noncommutative formal power series associated with the words
of Γ. In practice:

C = (1) + (1)(1) + (1)(2) + (1)(1)(1) + (1)(1)(2) + (1)(2)(1) + (1)(2)(2) + (1)(2)(3) + . . .

Easily, we prove that:

C = (1) + (1) C + (1) C⊕ + (1) C⊕ C. (19)

In fact, let w be a term of C. If |w| 6= 1, then w = (1)v, with |v| ≥ 1. So we have these
possibilities:

1) v begins with (1). Then w is a term of the series (1)C.

2) v = (2)z, with z = (u1) . . . (uk), and ui > 1, for i ∈ {1, . . . , k}. In this case (2)z is a
term of C⊕, and then w is a term of (1)C⊕.

3) v = (2)(u1) . . . (uk)w2, where ui > 1, for i ∈ {1, . . . , k}, and w2 begins with (1). Then,
w is a term of (1)C⊕C.

The equation (19) provides a recursive decomposition of the series C, from which we
immediately derive a functional equation satisfied by the generating function C(x):

C(x) = x + x C(x) + x C(x) + x C2(x). (20)

The basic idea to deal with the succession rule Ω for convex polyominoes is substan-
tially the same, but it requires some more precautions.
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A succession rule defining central binomial coefficients. In order to ensure that
all the steps in our approach are more readily comprehensible, we present in the following
a detailed description of the calculus of the generating function for the succession rule
previously determined in (12), which is indeed more complex than (10).

Let us recall that the rule (12), that for brevity we will call Ω′, has the same produc-
tions as Ω, but the axiom is (1)r instead of (1)a. In practice:

Ω′




(1)r

(k)g  
∏k

j=1(j)
k−j+1
g

(k)r  
∏k−1

j=1(j)
k−j
g

∏k+1
j=1(j)r.

(21)

In this paragraph our aim is to give a proof that the succession rule Ω′ defines the
sequence of central binomial coefficients,

(
2n
n

)
. We also advise the reader that to determine

the generating function of Ω′, rather than being a mere exercise, will remarkably simplify
the computation of fΩ(x).

As usual, let us denote by LΩ′ the set of the words produced by Ω′, and let R = SΩ′ =∑
w∈LΩ′ m(w)w. The main theorem is preceded by two technical lemmas, easily provable

by induction.

Lemma 3.1 In the succession rule Ω′, the label (k2)j2 is produced by (k1)j1 if and only
if (k2 − 1)j2 is produced by (k1 − 1)j1, with k1, k2 > 1, and j1, j2 ∈ {g, r}.

Using Lemma 3.1 we are able to prove the following.

Lemma 3.2 Let LP = {u : u = (2)r(u2)j2 . . . (uk)jk
, ui > 1 , for i ∈ {2, . . . k}, and

(1)ru ∈ LΩ′}. Then LP = L⊕
Ω′ .

Proof.

(⇒) Let u = (2)r(u2)j2 . . . (uk)jk
∈ LP . By definition of L⊕

Ω′ , u ∈ L⊕
Ω′ if u	 = (1)r(u2 −

1)j2 . . . (uk − 1)jk
∈ LΩ′ . We proceed by induction on the length of u	.

Base: if |u	| = 1 the result immediately follows;

Step n → n + 1: let u = (2)r(u2)j2 . . . (un)jn(un+1)jn+1 ∈ LP . By inductive
hypothesis, the word (1)r(u2 − 1)j2 . . . (un − 1)jn belongs to LΩ′ . By Lemma
3.1, the label (un+1 − 1)jn+1 is produced by the label (un − 1)jn according to
the productions of the rule Ω′. Consequently u	 ∈ LΩ′ .

(⇐) The result can be achieved again by induction.

�

the electronic journal of combinatorics 11 (2004), #R60 22



Theorem 3.1 The noncommutative formal power series R can be decomposed into the
following sum:

R = (1)r + (1)rR + (1)rR
⊕ + (1)rC

⊕R + (1)rP
⊕G + (1)rQ

⊕G, (22)

where
C = (1)r + (1)rC + (1)rC⊕ + (1)rC⊕ C

G = (1)g + (1)gG

P = (1)r + (1)rP + (1)rC⊕P + (1)rP⊕ + (1)rC⊕

Q = (1)rQ + (1)rC⊕Q + 2(1)rP⊕G + 2(1)rQ⊕G +

(1)rQ⊕ + (1)r(R − C)⊕.

(23)

Proof. In order to let the reader have a better comprehension of the role of each term
of the sum in (22), we give in Fig. 16 a rough representation of the generating tree of Ω′.

R
(1) (2) (3)

(2)

(1)

(1)

r

r

r r r

g g r r

G

(1) (1) (2)g r(2) (3) (4)r

Figure 16: The first levels of the generating tree of Ω′.

Let w be a term of the series LΩ′ . The following cases may occur:

-|w| = 1, then w = (1)r.

- |w| > 1 then w = (1)rv, and we distinguish the following cases:

1) v begins with (1)r. The set of words in LΩ′ having the form w = (1)rv is then
equal to (1)rLΩ′ . Consequently∑

w=(1)rv

m(w)w = (1)rR.

For example, the word (1)r(1)r(1)r(2)r(1)r(1)r(2)r(3)r(1)r is a term of (1)rR.
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2) v begins with (2)r. As sketched in Fig. 16, four cases are possible:

a) v ∈ LP = {u : u = (2)r(u2)j2 . . . (uk)jk
, ui > 1 , for i ∈ {2, . . . k} and

(1)ru ∈ LΩ′}.
Since, from Lemma 3.2, LP = L⊕

Ω′ , we have∑
w=(1)rv, v∈LP

m(w)w = (1)r

∑
v∈LP

m(v)v = (1)rR
⊕,

For example, the word (1)r(2)r(3)r(4)r(5)r(3)g(3)g(2)g is a term of (1)rR
⊕.

b) v = (2)r(u2)r . . . (uk)r(1)rw2, with ui > 1 for i ∈ {1, . . . k}, and (1)rw2 ∈
LΩ′ .
The reader can easily check that the language of such words having the
form (2)r(u2)r . . . (uk)r, ui > 1, coincides with L⊕

Γ , i.e. the series that we
have previously named C⊕, associated with Catalan numbers:∑

w

m(w)w = (1)r

∑
v∈L⊕

Γ LΩ′

m(v)v = (1)rC
⊕R.

The word (1)r(2)r(3)r(2)r(1)r(2)r(3)r(2)g(2)g(1)g is a term of (1)rC
⊕R.

c) v = (2)r(u2)r . . . (uk)rg1, where ui > 1, for i ∈ {2, . . . , k}, and g1 is a
sequence of labels (1)g, i.e. an element of

LG = {(1)g, (1)g(1)g, (1)g(1)g(1)g, (1)g(1)g(1)g(1)g, . . .}.
Using considerations similar to those in step b), the sum over all words w
of this type leads to:

∑
w

m(w)w = (1)r
∑

v∈L⊕
Γ LG

m(v)v. (24)

In this case, for any word v, the value m(v) depends on uk, the term
preceding g1; more precisely, according to the productions of Ω′, and letting
uk = j,

m(v) = (j − 1) · m ((2)r(u2)r . . . (j)r) · m(g1). (25)

For i ≥ 1 let us denote by LΓ(i) the set of the words of LΓ ending with
(i)t ∈ Σ, t ∈ {a, b, r, g}. Using equations (24), and (25), the sum over the
words w of such form leads to:

∑
w

m(w)w = (1)r

∑
j≥2


(j − 1) ·

∑
v∈L⊕

Γ(j−1)

m(v)v


 ∑

v∈LG

m(v)v.

Letting

C(j−1) =
∑

v∈LΓ(j−1)

m(v)v and G =
∑
v∈LG

m(v)v,
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equation (24) becomes∑
w

m(w)w = (1)r

∑
j≥2

(j − 1)C⊕
(j−1)G = (1)rP

⊕G,

where we have set P =
∑

j≥2(j − 1)C(j−1).
The word (1)r(2)r(3)r(4)r(2)r(3)r(1)g(1)g(1)g is an example of a term of
(1)rP

⊕G.

d) v = (2)r(u2)j2 . . . (uk)jk
g1, with ui > 1, for i ∈ {2, . . . , k}, jk = g, and

g1 ∈ LG. Considerations analogous to those in step c) suggest that the
sum over all words w of this type leads to (1)rQ

⊕G,
where

Q =
∑
j≥2

j R(j−1)g and R(j−1)g =
∑

v∈LΩ′(j−1)g

m(v)v,

LΩ′(j−1)g being the set of words belonging to LΩ′ and ending with (j − 1)g.
The word (1)r(2)r(3)r(4)r(2)r(3)r(2)g(2)g(1)g(1)g is an example of a term
of (1)rQ

⊕G.

It is easy to verify that the decomposition (23) takes into account all the words that
satisfy the succession rule Ω′, and each one is computed with the exact multiplicity.

To conclude the proof we must verify that the noncommutative formal power series
C, G, P , and Q satisfy the system of equations (23). The statement is obvious for C and
G. Below, we will prove that P satisfies:

P = (1)r + (1)rP + (1)rC⊕P + (1)rP⊕ + (1)rC⊕, (26)

recalling that P =
∑

j≥2(j − 1)C(j−1). From the first equation in (23) we deduce that:

C(i) = (1)r C(i) + (1)r C⊕
(i−1) + (1)r C⊕ C(i) for i > 1,

C(1) = (1)r + (1)r C(1) + (1)r C⊕ C(1).

(27)

Consequently

P = C(1) +
∑

j≥3(j − 1)C(j−1)

= (1)r + (1)r C(1) + (1)r C⊕ C(1) + (1)r
∑

j≥3(j − 1) C(j−1)

+(1)r
∑

j≥3(j − 1) C⊕
(j−2) + (1)r

∑
j≥3(j − 1) C⊕ C(j−1).

By performing simple algebraic manipulations we obtain (26).

A similar argument leads to the decomposition of Q. Let us recall that Q =
∑

j≥2 j R(j−1)g
.

From the equation for R we deduce that:

Rg = (1)rRg + (1)rR⊕
g + (1)rC⊕Rg + (1)rP⊕G + (1)rQ⊕G, (28)
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consequently

R(i)g = (1)r R(i)g + (1)r R⊕
(i−1)g

+ (1)rC
⊕R(i)g for i > 1,

R(1)g = (1)rR(1)g + (1)r C⊕ R(1)g + (1)rP
⊕G + (1)rQ

⊕G.

(29)

Then

Q = 2 R(1)g +
∑

j≥3 j R(j−1)g

= 2(1)rR(1)g + 2(1)r C⊕ R(1)g + 2(1)rP
⊕G + 2(1)rQ

⊕G+

+(1)r

∑
j≥3 j R(j−1)g + (1)r

∑
j≥3 jR⊕

(j−2)g
+ (1)rC

⊕∑
j≥3 jR(j−1)g .

By performing some algebraic manipulations we obtain that

Q = (1)rQ + (1)rC⊕Q + 2(1)rP⊕G + 2(1)rQ⊕G + (1)r
∑

j≥3 jR⊕
(j−2)g

= (1)rQ + (1)rC⊕Q + 2(1)rP⊕G + 2(1)rQ⊕G + (1)r
∑

j≥2 jR⊕
(j−1)g

+ (1)r
∑

j≥2 R⊕
(j−1)g

= (1)rQ + (1)rC⊕Q + 2(1)rP⊕G + 2(1)rQ⊕G + (1)rQ⊕ + (1)r (R − C)⊕. �

From (23) we obtain a system of functional equations,

R(x) = x + x R(x) + x R(x) + x C(x) R(x) + x P (x) G(x)+

x Q(x) G(x)

C(x) = x + x C(x) + x C(x) + x C2(x)

G(x) = x + x G(x)

P (x) = x + x P (x) + x C(x) P (x) + x P (x) + x C(x)

Q(x) = x Q(x) + x C(x) Q(x) + 2x P (x) G(x) + 2x Q(x) G(x) +

xQ(x) + x(R(x) − C(x)).

(30)

Finally, from (30) we derive the generating function of Ω′,

R(x) =
x√

1 − 4x
.

We remark that the decomposition given in (22) is effectively a context-free unam-
biguous grammar generating the class of directed-convex polyominoes.

the electronic journal of combinatorics 11 (2004), #R60 26



3.2.1 The decomposition for the rule Ω

Let A be the noncommutative formal power series associated with the succession rule
Ω for convex polyominoes, i.e.

A = SΩ =
∑

w∈LΩ

m(w)w.

Using the same method applied in the previous case we manage to determine a decom-
position for the series A, and then translate it into a system of equations. Before let us
define some other formal power series:

• Ω′′ is the succession rule having the same productions as Ω and starting with the
axiom (1)b, and

B =
∑

w∈LΩ′′

m(w)w;

• for any non-empty subset χ of {a, b, r, g}, and i ≥ 1, let

LΩ(i)χ
= ∪q∈χLΩ(i)q

LΩ′′ (i)χ
= ∪q∈χLΩ′′ (i)q

,

where LΩ(i)q
(resp. LΩ′′ (i)q

) denotes the set of words of LΩ (resp. LΩ′′) ending with
(i)q, i ≥ 0. Moreover, let A(i)χ (resp. B(i)χ) be the noncommutative formal power
series associated with LΩ(i)χ

(resp. LΩ′′ (i)χ
);

• for any non-empty subset χ of {a, b, r, g}, let LΩχ = ∪q∈χLΩq (resp. LΩ′′χ =
∪q∈χLΩ′′q), where LΩq (resp. LΩ′′ q) denotes the sets of words of LΩ (resp. LΩ′′)
ending with any label of type q; finally Aχ (resp. Bχ) denotes the corresponding
formal power series.

The following technical lemmas are easily provable by observing the productions of Ω
and Ω′′.

Lemma 3.3 Let us consider the succession rules Ω and Ω′′; the label (k2)j2 is produced by
(k1)j1 if and only if (k2−1)j2 is produced by (k1−1)j1, with k1, k2 > 1, j1, j2 ∈ {a, b, g, r}.

Lemma 3.4 Let LQ = {u = (2)a(u2)j2 . . . (uk)jk
| ui > 1 , for i ∈ {2, . . . k}, and (1)au ∈

LΩ}, and LR = {u = (2)b(u2)j2 . . . (uk)jk
| ui > 1 , for i ∈ {2, . . . k}, and (1)bu ∈ LΩ′′}.

We have:

i) LQ = L⊕
Ω;

ii) LR = L⊕
Ω′′ .
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Theorem 3.2 The noncommutative formal power series A can be decomposed into the
following sum:

A = (1)a + (1)a B + (1)a A⊕ + 2(1)a A⊕
a,b R +

(1)a A⊕
r R + (1)a P⊕

A G + (1)a Q⊕
A G + (1)a S⊕

A G,
(31)

where
B = ξ(A) + (1)b B⊕ + 2(1)b B⊕

a,b R + (1)b B⊕
r R +

(1)b P⊕
B G + (1)b Q⊕

BG + (1)b S⊕
BG,

(32)

Aa,b = (1)a + (1)a Ba,b + (1)a A⊕
a,b

Ba,b = ξ(Aa,b) + (1)b B⊕
a,b

Ar = (1)a Br + (1)a A⊕
r + 2(1)a A⊕

a,b C + (1)a A⊕
r C

Br = ξ(Ar) + (1)b B⊕
r + 2(1)b B⊕

a,b C + (1)b B⊕
r C,

Ag = (1)a Bg + (1)a A⊕
g + 2(1)a A⊕

a,b Rg + (1)a A⊕
r Rg +

(1)a P⊕
A G + (1)a Q⊕

A G + (1)a S⊕
A G

Bg = ξ(Ag) + (1)b B⊕
g + 2(1)b B⊕

a,b Rg + (1)b B⊕
r Rg +

(1)b P⊕
B G + (1)b Q⊕

B G + (1)b S⊕
B G,

(33)

PA = (1)a PB + (1)a P⊕
A + (1)a A⊕

a,b

PB = ξ(PA) + (1)b P⊕
B + (1)b B⊕

a,b

QA = (1)a QB + 2(1)a A⊕
a,b P + (1)a A⊕

r P + (1)a Q⊕
A + (1)a A⊕

r

QB = ξ(QA) + 2(1)b B⊕
a,b P + (1)b B⊕

r P + (1)b Q⊕
B + (1)b B⊕

r

SA = (1)a SB + 2(1)a A⊕
a,b Q + (1)a A⊕

r Q + 2(1)a P⊕
A G + 2(1)a Q⊕

A G +

2(1)a S⊕
A G + (1)a S⊕

A + (1)a A⊕
g

SB = ξ(SA) + 2(1)b B⊕
a,b Q + (1)b B⊕

r Q + 2(1)b P⊕
B G + 2(1)b Q⊕

B G +

2(1)b S⊕
B G + (1)b S⊕

B + (1)b B⊕
g ,

(34)
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where R, G, P , Q, and Rg are the formal power series defined and calculated for the
rule Ω′, and, for any formal power series Z on the alphabet Σ, ξ(Z) is defined as the
formal power series obtained from Z by replacing, in each term, the first occurrence of
(1)a with (1)b.

Proof. Our first step is to compute the equations for A and B. Figure 17 shows a
rough decomposition of the generating trees of Ω and Ω′′.

The equation for A. Let w be a word of LΩ. Then we have the following cases:

-|w| = 1, then w = (1)a.

- |w| > 1 then w = (1)av, and we distinguish the following cases:

1) v begins with (1)b. The set of words in LΩ having the form w = (1)av is then
equal to (1)aLΩ′′ . Consequently∑

w∈(1)aLΩ′′

m(w)w = (1)aB.

For example, the word (1)a(1)b(2)a(1)r(2)r(3)r(2)g(2)g(1)g is a term of (1)aB.

2) v begins with (2)a. Six cases are possible:

a) v ∈ LQ, where LQ is defined in Lemma 3.4, and there it is shown that
LQ = L⊕

Ω . Consequently∑
w∈(1)aLΩ

⊕
m(w)w = (1)a

∑
v∈LQ

m(v)v = (1)a A⊕.

The word (1)a(2)a(3)a(3)b(2)r(3)r(2)g is a term of (1)a A⊕.

b) v = (2)a(u2)j2 . . . (uk−1)jk−1
(uk)jk

(1)rw2, with ui > 1 for i ∈ {1, . . . , k} and
jk ∈ {a, b}. The set of words in LΩ having the form (1)a v, is then equal to
(1)a LΩ

⊕
a,b LΩ′ . Consequently, summing over all the words of such a type,

we have: ∑
w

m(w)w = (1)a

∑
v∈LΩ

⊕
a,b LΩ′

m(v)v = 2(1)a A⊕
a,bR.

For example, the word (1)a(2)a(3)a(3)b(3)b(4)a(1)r(2)r(1)g(1)g is a term of
(1)a A⊕

a,bR.

c) v = (2)a(u2)j2 . . . (uk)r(1)rw2, with ui > 1 for i ∈ {1, . . . k}. The set
of words in LΩ having the form (1)a v, is then equal to (1)a LΩ

⊕
r LΩ′ .

Consequently, summing over all the words of such a type, we have:∑
w

m(w)w = (1)a

∑
v∈LΩ

⊕
r LΩ′

m(v)v = (1)a A⊕
r R.

The word (1)a(2)a(3)a(3)b(3)b(2)r(1)r(2)r(1)g(1)g is a term of (1)a A⊕
r R.
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(2)b (3)a (3)b

(1)b

(2)b(2)a

(2)2r (4)b

(1)a

(2)a

(2)b (3)a

(3)b

a)

(3)b (4)a(2)b (3)a

(3)b

G R R

RR

RRGRR

RR
(2)2r

(4)a

b)

Figure 17: The first levels of the generating trees associated with the rules Ω (a), and Ω′′

(b).
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d) v = (2)a(u2)j2 . . . (uk)jk
g1, where ui > 1, for i ∈ {2, . . . , k}, jk ∈ {a, b} and

g1 ∈ LG = {(1)g, (1)g(1)g, (1)g(1)g(1)g, . . .}. Then, summing over all the
words of such a type, we have:∑

w

m(w)w = (1)a

∑
v∈LΩ

⊕
a,b LG

m(v)v.

In this case the value m(v) also depends on the value uk: if uk = j + 1
then, according to the rule Ω,

m(v) = (j − 1) m ((2)a(u2)j2 . . . (j + 1)jk
) m(g1).

Then we have:∑
w

m(w)w = (1)a

∑
j≥2

(j − 1)
∑

v∈LΩ
⊕
(j)a,b

m(v)v
∑
v∈LG

m(v)v,

and consequently ∑
w

m(w)w = (1)a

∑
j≥2

(j − 1) A⊕
(j)a,b

G.

By denoting PA =
∑

j≥2 (j − 1) A(j)a,b
we have∑

w

m(w)w = (1)a P⊕
A G.

For example, the word (1)a(2)a(3)a(3)b(4)b(1)g(1)g is a term of (1)a P⊕
A G.

e) v = (2)a(u2)j2 . . . (uk)rg1, where ui > 1, for i ∈ {2, . . . , k}, and g1 ∈ LG.
Then we have ∑

w

m(w)w = (1)a

∑
v∈LΩ

⊕
r LG

m(v)v.

Also in this case the value m(v) depends on the value uk: if uk = j then,
according to the rule Ω,

m(v) = (j − 1) m ((2)a(u2)j2 . . . (j)r) m(g1).

Then we have:∑
w

m(w)w = (1)a

∑
j≥2

(j − 1)
∑

v∈LΩ
⊕
(j−1)r

m(v)v
∑
v∈LG

m(v)v,

and consequently∑
w

m(w)w = (1)a

∑
j≥2

(j − 1) A⊕
(j−1)r

G.
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By denoting QA =
∑

j≥2(j − 1) A(j−1)r we have

∑
w

m(w)w = (1)a Q⊕
AG.

For instance, the word (1)a(2)a(3)a(3)b(4)b(2)r(1)g is a term of (1)a Q⊕
AG.

f) v = (2)a(u2)j2 . . . (uk)gg1, where ui > 1, for i ∈ {2, . . . , k}, and g1 ∈ LG.
The set of words in LΩ having the form (1)a v, is then equal to (1)a LΩ

⊕
g LG.

Consequently ∑
w

m(w)w = (1)a

∑
v∈LΩ

⊕
g LG

m(v)v.

The value m(v) also depends on the value uk: if uk = j then, according to
the rule Ω,

m(v) = (j) m ((2)a(u2)j2 . . . (j)g) m(g1). (35)

Then we have:∑
w

m(w)w = (1)a

∑
j≥2

(j)
∑

v∈LΩ
⊕
(j−1)g

m(v)v
∑
v∈LG

m(v)v,

and consequently ∑
w

m(w)w = (1)a

∑
j≥2

j A⊕
(j−1)g

G.

By denoting SA =
∑

j≥2 j A(j−1)g we have

∑
w

m(w)w = (1)a S⊕
AG.

The word (1)a(2)a(3)a(3)b(4)b(2)g(1)g(1)g is a term of (1)a S⊕
AG.

The equation for B. In order to determine a decomposition for the series B, we first
need to introduce the auxiliary language LΩ′′′ , constituted by those words in LΩ where
the first occurrence, i.e. the letter (1)a, is replaced by (1)b. In practice,

LΩ′′′ = {(1)bu : (1)au ∈ LΩ} .

Analogously, let ξ(A) be the formal power series obtained from A by replacing, in
each term, the first occurrence of (1)a with (1)b. Then ξ(A) is the formal power series of
the words of LΩ′′′ .

Let w ∈ LΩ′′ . Then w ∈ LΩ′′′ or w = (1)bv, where v begins with (2)b (see Figure 17).
This last one is therefore the only case left to examine. Then six cases are possible:

the electronic journal of combinatorics 11 (2004), #R60 32



a) v ∈ LR, LR being defined in Lemma 3.4. From Lemma 3.4 it holds that LR = L⊕
Ω′′ .

Consequently ∑
w

m(w)w = (1)b

∑
v∈LR

m(v)v = (1)b B⊕.

For example, the word (1)b(2)b(2)b(3)b(4)a(3)r(2)g is a term of (1)b B⊕.

b) v = (2)b(u2)j2 . . . (uk)jk
(1)rw2, with ui > 1 for i ∈ {1, . . . k} and jk ∈ {a, b}. The set of

words in L′′
Ω having the form (1)b v, is then equal to (1)b L⊕

Ω′′
a,b

LΩ′ . Consequently

∑
w

m(w)w = (1)b

∑
v∈LΩ′′⊕a,b LΩ′

m(v)v = 2(1)b B⊕
a,bR.

The word (1)b(2)b(3)b(4)a(3)b(1)r(2)r(1)g is a term of (1)b B⊕
a,bR.

c) v = (2)b(u2)j2 . . . (uk)r(1)rw2, with ui > 1 for i ∈ {1, . . . k}. The set of words in LΩ′′

having the form (1)b v, is then equal to (1)b LΩ′′⊕r LΩ′ . Consequently∑
w

m(w)w = (1)b

∑
v∈LΩ′′⊕r LΩ′

m(v)v = (1)b B⊕
r R.

The word (1)b(2)b(3)b(4)a(3)b(4)a(3)r(1)r(2)r(1)g is a term of (1)b B⊕
r R.

d) v = (2)b(u2)j2 . . . (uk)jk
g1, where ui > 1, for i ∈ {2, . . . , k}, jk ∈ {a, b} and g1 ∈ LG.

By using the same arguments as in the calculus for A we obtain∑
w m(w)w = (1)b

∑
j≥2 (j − 1)

∑
v∈LΩ′′⊕(j)a,b

m(v)v
∑

v∈LG
m(v)v =

(1)b

∑
j≥2(j − 1) B⊕

(j)a,b
G = (1)b P⊕

B G,

where PB =
∑

j≥2 (j − 1) B(j)a,b
. The word (1)b(2)b(3)b(4)a(3)b(1)g(1)g is a term of

(1)b P⊕
B G.

e) v = (2)b(u2)j2 . . . (uk)rg1, where ui > 1, for i ∈ {2, . . . , k}, and g1 ∈ LG. In practice,

∑
w m(w)w = (1)b

∑
j≥2 (j − 1)

∑
v∈LΩ′′⊕(j−1)r

m(v)v
∑

v∈LG
m(v)v =

(1)b

∑
j≥2(j − 1) B⊕

(j−1)r
G = (1)b Q⊕

BG,

where QB denotes the series
∑

j≥2(j − 1) B(j−1)r .

For example, the word (1)b(2)b(3)b(4)a(3)b(4)a(3)r(1)g is a term of (1)b Q⊕
BG.
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f) v = (2)b(u2)j2 . . . (uk)gg1, where ui > 1, for i ∈ {2, . . . , k}, and g1 ∈ LG.

∑
w m(w)w = (1)b

∑
j≥2 (j)

∑
v∈LΩ′′⊕(j−1)g

m(v)v
∑

v∈LG
m(v)v,

(1)b

∑
j≥2 j B⊕

(j−1)g
G = (1)b S⊕

BG,

where SB =
∑

j≥2 j B(j−1)g .

For example, the word (1)b(2)b(3)b(4)a(3)b(4)a(3)r(2)g(1)g(1)g is a term of (1)b S⊕
BG.

To conclude the proof we must verify that the equation in (33) are satisfied by Aa,b,
Ba,b, Ar, Br, Ag, and Bg. In practice, all the equations in (33) can be easily deduced from
the equations (31) and (32) for the series A and B. For instance the equation for Aa,b is
obtained from the equation for A, with the precaution that the terms ending with R and
G do not contribute to Aa,b.

Concerning (34), here we compute the equations for PA, QA, and SA, omitting for
brevity’s sake the calculus of PB, QB, and SB, which is analogous. Let us recall that
PA =

∑
j≥2 (j − 1) A(j)a,b

. From the equation for Aa,b, in (33), we have

A(i)a,b
= (1)a B(i)a,b

+ (1)a A⊕
(i−1)a,b

for i > 1.

Then by substituting the expression for A(j)a,b
we obtain

PA = (1)a

∑
j≥2 (j − 1) B(j)a,b

+ (1)a

∑
j≥2 (j − 1)A⊕

(j−1)a,b

= (1)a PB + (1)a A⊕
(1)a,b

+ (1)a

∑
j≥3 (j − 1)A⊕

(j−1)a,b

= (1)a PB + (1)a A⊕
a,b + (1)a P⊕

A .

Now, we compute QA =
∑

j≥2(j − 1) A(j−1)r . From the equation for Ar, in (33), we
have

A(i)r = (1)a B(i)r + (1)a A⊕
(i−1)r

+ 2(1)a A⊕
a,b C(i) + (1)a A⊕

r C(i) if i > 1,

A(1)r = (1)a B(1)r + +2(1)a A⊕
a,b C(1) + (1)a A⊕

r C(1).
(36)

By substituting A(j−1)r in QA we have

QA = A(1)r + (1)a

∑
j≥3(j − 1) B(j−1)r + (1)a

∑
j≥3(j − 1)A⊕

(j−2)r
+

+2(1)a A⊕
a,b

∑
j≥3(j − 1) C(j−1) + (1)a A⊕

r

∑
j≥3(j − 1) C(j−1).
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Then, by substituting A(1)r we have

QA = (1)a QB + 2(1)a A⊕
a,b P + (1)a A⊕

r P + (1)a

∑
j≥3(j − 1)A⊕

(j−2)r

= (1)a QB + +2(1)a A⊕
a,b P + (1)a A⊕

r P + (1)aQ
⊕
A + (1)a A⊕

r

The previous considerations lead us to finally determine SA. Indeed, from the equation
for Ag in (33) we have

A(i)g = (1)a B(i)g + (1)a A⊕
(i−1)g

+ 2(1)a A⊕
a,b R(i)g + (1)a A⊕

r R(i)g if i > 1,

A(1)g = (1)a B(1)g + 2(1)a A⊕
a,b R(1)g + (1)a A⊕

r R(1)g + (1)a P⊕
A G +

(1)a Q⊕
A G + (1)a S⊕

A G.

(37)

We recall that SA =
∑

j≥2 j A(j−1)g . Then, by substituting A(j−1)g we obtain

SA = 2A(1)g + (1)a

∑
j≥3 j B(j−1)g + (1)a

∑
j≥3 jA⊕

(j−2)g
+

2(1)a A⊕
a,b

∑
j≥3 j R(j−1)g + (1)a A⊕

r

∑
j≥3 j R(j−1)g .

Then, by substituting A(1)g we have

SA = (1)a SB + (1)a

∑
j≥3 jA⊕

(j−2)g
+ 2(1)a A⊕

a,b Q + (1)a A⊕
r Q+

+2(1)a P⊕
A G + 2(1)a Q⊕

A G + 2(1)a S⊕
A G.

= (1)a SB + 2(1)a A⊕
a,b Q + (1)a A⊕

r Q + 2(1)a P⊕
A G+

+2(1)a Q⊕
A G + 2(1)a S⊕

A G + (1)a S⊕
A + (1)a A⊕

g .

�
Finally, by taking the commutative image of the equations of the system obtained in

(31), (32), (33), and (34), we have a system of functional equations and we can compute
the generating function A(x) of the series A. The system that we obtain is the following,
where the expressions for R(x), C(x), P (x), Q(x), and G(x) have already been determined.

A(x) = x + x B(x) + x A(x) + 2x Aa,b(x) R(x) + x Ar(x) R(x) +

x PA(x) G(x) + x QA(x) G(x) + x SA(x) G(x),
(38)

where
B(x) = A(x) + x B(x) + 2x Ba,b(x) R(x) + x Br(x) R(x) +

x PB(x)G(x) + x QB(x)G(x) + x SB(x)G(x),
(39)
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Aa,b(x) = x + x Ba,b(x) + x Aa,b(x)

Ba,b(x) = Aa,b(x) + x Ba,b(x)

Ar(x) = x Br(x) + x Ar(x) + 2x Aa,b(x) C(x) + x Ar(x) C(x)

Br(x) = Ar(x) + x Br(x) + 2x Ba,b(x) C(x) + x Br(x) C(x),

Ag(x) = x Bg(x) + x Ag(x) + 2x Aa,b(x) Rg(x) + x Ar(x) Rg(x) +

x PA(x) G(x) + x QA(x) G(x) + x SA(x) G(x)

Bg(x) = Ag(x) + x Bg(x) + 2x Ba,b(x) Rg(x) + x Br(x) Rg(x) +

x PB(x) G(x) + x QB(x) G(x) + x SB(x) G(x)

Rg(x) = xRg(x) + xRg(x) + xC(x)Rg(x) + xP (x)G(x) + xQ(x)G(x),

(40)

PA(x) = x PB(x) + x PA(x) + x Aa,b(x)

PB(x) = PA(x) + x PB(x) + x Ba,b(x)

QA(x) = x QB(x) + 2x Aa,b(x) P (x) + x Ar(x) P (x) + x QA(x) + x Ar(x)

QB(x) = QA(x) + 2x Ba,b(x) P (x) + x Br(x) P (x) + x QB(x) + x Br(x)

SA(x) = x SB(x) + 2x Aa,b(x) Q(x) + x Ar(x) Q(x) + 2x PA(x) G(x)+

2x QA(x) G(x) + 2x SA(x) G(x) + x SA(x) + x Ag(x)

SB(x) = SA(x) + 2x Ba,b(x) Q(x) + x Br(x) Q(x) + 2x PB(x) G(x)+

2x QB(x) G(x) + 2x SB(x) G(x) + x SB(x) + x Bg(x).

(41)

Many of the terms of the system are already known, and as a consequence the equa-
tions for Aa,b(x), Ba,b(x), Ar(x), and Br(x) are linear. Once these series have been ob-
tained, all the remaining equations are linear. Solving the system we get:

fΩ(x) =
A(x)

x
=
∑
n≥0

fnxn =
1 − 6x + 11x2 − 4x3 − 4x2

√
1 − 4x

(1 − 4x)2
, (42)

then we determine the desired generating function for convex polyominoes,

f(x) = x2fΩ(x).
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3.3 The enumeration of column-convex polyominoes

In the present section, we seek the generating function for the class of column-convex
polyominoes, by appealing to the ECO construction for such a class defined in Section
2.2, and its associated succession rule ∆. In order to realize this aim, we use the same
approach as for convex polyominoes. First, let us introduce the succession rules ∆′ and ∆′′,
having the same productions as ∆, and starting with the axiom (1)b and (1)g, respectively.
By using the same arguments as for Ω (see Lemmas 3.3, 3.4), we are able to prove the
following:

Lemma 3.5 In the succession rules ∆ and ∆′, the label (k2)j2 is produced by (k1)j1 if
and only if (k2 − 1)j2 is produced by (k1 − 1)j1, with k1, k2 > 1.

Lemma 3.6 Let LQ = {u = (2)a(u2)j2 . . . (uk)jk
| ui > 1 , for i ∈ {2, . . . k} , and (1)au ∈

L∆}, and LR = {u = (2)b(u2)j2 . . . (uk)jk
| ui > 1 , for i ∈ {2, . . . k}, and (1)bu ∈ L∆′}.

Then we have:

i) LQ = L⊕
∆;

ii) LR = L⊕
∆′ .

Let us denote by A, B, and G the non commutative formal power series associated
respectively with the succession rules ∆, ∆′, and ∆′′. Then we have the following theorem:

Theorem 3.3 The noncommutative formal power series A can be decomposed into the
following sum:

(1)a + (1)aB + (1)aA
⊕ + 2(1)aA

⊕A + (1)aP
⊕G (43)

where
B = (1)b + (1)bB + (1)bA

⊕ + 2(1)bA
⊕A + (1)bP

⊕G+

(1)bB
⊕ + 2(1)bB

⊕A + (1)bQ
⊕G

G = (1)g + (1)gB

P = (1)aQ + (1)aA
⊕ + (1)aP

⊕ + 2(1)aA
⊕P + (1)aP

⊕(1)gQ

Q = (1)bQ + (1)bA
⊕ + (1)bP

⊕ + 2(1)bA
⊕P + (1)bP

⊕(1)gQ+

2(1)bB
⊕P + (1)bQ

⊕(1)gQ + (1)bB
⊕ + (1)bQ

⊕.

(44)

Proof. The reader will immediately see that the equation for G is trivially verified.
In order to make a simplification, we just verify the equations for A and P . The others
are obtained by using the same technique.
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The equation for A. Let w be a word of L∆, we have the following cases:

-|w| = 1, then w = (1)a.

- |w| > 1 then w = (1)av, and we distinguish the following cases:

1) v begins with (1)b. The set of words in L∆ having the form w = (1)av is then
equal to (1)aL∆′. Consequently w is a term of the formal power series (1)aB.
For example, the word (1)a(1)b(2)a(2)b(3)b(1)g is a term of (1)aB.

2) v begins with (2)a. Three cases are possible:

a) v ∈ LQ, where LQ is defined in Lemma 3.6). Since we have proved that
LQ = L⊕

∆, then w is a term of (1)a

∑
v∈LQ

m(v)v = (1)a A⊕.

For example, the word (1)a(2)a(3)a(3)b(4)a(2)g is a term of (1)a A⊕.

b) v = (2)a(u2)j2 . . . (uk)jk
(1)aw2, with ui > 1 for i ∈ {1, . . . k}. The set of

words in L∆ having the form (1)a v, is then equal to (1)a L⊕
∆L∆.

Consequently w is a term of the series (1)a

∑
v∈L⊕

∆ L∆
m(v)v = 2 (1)a A⊕A,

where the coefficient 2 is explained by the multiplicity of the label (1)a in
the rule ∆. For example, the word (1)a(2)a(3)a(3)b(3)b(1)a(1)b(2)a(2)b is a
term of (1)a A⊕A.

c) v = (2)a(u2)j2 . . . (uk)jk
(1)gw2, where ui > 1, for i ∈ {2, . . . , k}. Then w

is a term of the series (1)a

∑
v∈L⊕

∆ L∆′′ m(v)v. In this expression, m(v) also

depends on the value uk: if uk = j + 1 then, according to the rule ∆,

m(v) = (j − 1) m ((2)a(u2)j2 . . . (j + 1)jk
) m((1)gw2).

Then w is a term of:

(1)a

∑
j≥2 (j − 1)

∑
v∈L⊕

∆j

m(v)v
∑

v∈L∆′′ m(v)v =

(1)a

∑
j≥2(j − 1) A⊕

j G = (1)a P⊕G,

where
P =

∑
j≥2

(j − 1) Aj (45)

The word (1)a(2)a(3)a(3)a(4)a(1)g(1)b is a term of (1)a P⊕G.

The equation for P . Let Q =
∑

j≥2 (j − 1) Aj . By replacing the equation for G in
the equation (43) we deduce the following:

Ai = (1)a Bi + (1)a A⊕
i−1 + 2(1)aA

⊕Ai + (1)aP
⊕(1)gBi for i > 1,

Then, by substituting Aj in the equation for P , we obtain
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P = (1)a

∑
j≥2 (j − 1) Bj + (1)a

∑
j≥2 (j − 1)A⊕

(j−1) + 2(1)aA
⊕∑

j≥2 (j − 1)Aj+

+(1)aP
⊕(1)g

∑
j≥2 (j − 1)Bj

= (1)aQ + (1)aA
⊕
1 + (1)a

∑
j≥3 (j − 1)A⊕

(j−1) + 2(1)aA
⊕P + (1)aP

⊕(1)gQ.

By making some manipulations we obtain that

P = (1)aQ + (1)aA
⊕
1 + (1)a

∑
j≥2(j − 1)A⊕

j + (1)a

∑
j≥2 A⊕

j + 2(1)aA
⊕P + (1)aP

⊕(1)gQ

= (1)aQ + (1)aA
⊕ + (1)aP

⊕ + 2(1)aA
⊕P + (1)aP

⊕(1)gQ. �

From Theorem 3.3 we immediately derive a system of functional equations,

A(x) = x + xB(x) + xA(x) + 2xA2(x) + xP (x)G(x)

B(x) = x + xB(x) + xA(x) + 2xA2(x) + xP (x)G(x)+

xB(x) + 2xB(x)A(x) + xQ(x)G(x)

G(x) = x + xB(x)

P (x) = xQ(x) + xA(x) + xP (x) + 2xA(x)P (x) + x2P (x)Q(x)

Q(x) = xQ(x) + xA(x) + xP (x) + 2xA(x)P (x) + x2P (x)Q(x)+

2xB(x)P (x) + x2Q2(x) + xB(x) + xQ(x).

(46)

This system leads to the solution A(x) = xg∆(x) = g(x)/x, and then finally we
obtain the expression (4) for g(x). We remark that (46) is the first example of a system
of algebraic equations satisfied by the generating function of column-convex polyominoes.

4 Exhaustive generation using the ECO method

The recursive construction defined by the ECO operator ϑ, for the class of convex
polyominoes, suggests a simple generation algorithm for this class. Indeed, in the gener-
ating tree associated with ϑ, each convex polyomino with semi-perimeter n+2 is uniquely
identified by a path from the root to a node at level n (being the root is at level 0; see
also Fig. 10).

Therefore, the generation of a convex polyomino of size n + 2 consists in generating a
path from the root to a node at level n of the generating tree.
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4.1 A CAT algorithm for the generation of convex polyominoes

In this section we develop a CAT algorithm for generating all the convex polyominoes
with given semi-perimeter n + 2. The algorithm performs a prefix traversal in the first
n + 1 levels of the generating tree of the succession rule Ω.

We choose to represent each node (k)x as a pair (k, x) where k ∈ N
+ is the label and

x ∈ {a, b, g, r} is the color. Consequently each sequence of labels having length n + 1 can
be represented by means of a matrix V of dimension 2×(n+1) such that, for 1 ≤ j ≤ n+1,
the entries V [j, 1] and V [j, 2] contain the label and the color of the j-th term of the path,
respectively.

We also remind the reader that, by convention, the sons of a node are ordered accord-
ing to the productions of such a node defined by the succession rule (8).

As an example we list the seven matrices of size 2×3 associated with the set of convex
polyominoes with semi-perimeter 4, and obtained by performing the traversal in the first
3 levels (see Fig. 10).

V1 =

(
1 2 1
a a r

)
V2 =

(
1 2 1
a a r

)
V3 =

(
1 2 2
a a a

)

V4 =

(
1 2 3
a a a

)
V5 =

(
1 1 1
a b b

)
V6 =

(
1 1 2
a b a

)

V7 =

(
1 1 2
a b b

)
.

Algorithm 1 Gen polyominoes(s, m, k, x)

V [1, s − m + 1] = k; V [2, s − m + 1] = x;
if m = 1 then

output V
else

if x = a then
Gen a(m, k)

else if x=b then
Gen b(m, k)

else if x=g then
Gen g(m, k)

else
Gen r(m, k)

end if
end if

end
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Under the assumption that 1 ≤ m ≤ s, the call Gen polyominoes(s, m, k, x), gener-
ates all the paths of length m starting from a node with label (k)x located at level s−m in
the generating tree of Ω. More precisely, Gen polyominoes(s, m, k, x) calls the procedure
Gen x(m, k), which, on its turn, recursively calls Gen polyominoes(s, m − 1, k′, x′) for
each (k′)x′ being produced by (k)x according to (8).
For brevity we describe a pseudo-code only for the Algorithm Gen polyominoes, and for
the Procedure Gen b. The three other procedures Gen a, Gen g, and Gen r are analogous
to Gen b, and follow the productions in the rule (8).

algorithmProcedure

Algorithm 2 Gen b(m, k)

for j = 1 to k − 2 do
for j′ = 1 to k − j − 1 do

Gen polyominoes(s, m − 1, j, g)
end for

end for
for j = 1 to k − 1 do

Gen polyominoes(s, m − 1, j, r); Gen polyominoes(s, m − 1, j, r)
end for
Gen polyominoes(s, m − 1, k, b)
Gen polyominoes(s, m − 1, k + 1, a)
Gen polyominoes(s, m − 1, k + 1, b)

end

Since the root of the associated generating tree is (1)a, we have that:

Lemma 4.1 The call Gen polyominoes(n+1, n+1, 1, a) generates all the fn polyominoes
of semi-perimeter n + 2.

Now, we can prove that:

Proposition 4.1 The algorithm for the generation of convex polyominoes runs in con-
stant amortized time.

Proof. Let Opn denote the number of operations required by the algorithm to generate
all the convex polyominoes with semi-perimeter n + 2.
The algorithm performs a prefix traversal in the first n + 1 levels of the generating tree,
and the visit of each node requires a constant number α of operations (α ≤ 6). Since the
algorithm is recursive, we easily obtain the recurrence relation:

Opn = Opn−1 + αfn,

where, as usual, fn is the expression defined in equation (1). Our statement is proved
showing by induction that:
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Opn

fn

< 2α.

The above inequality clearly holds for n = 0. Let us consider the inductive step:

Opn

fn
=

Opn−1

fn−1

fn−1

fn
+ α.

Since it is not difficult to prove that 2fn−1 < fn, by inductive hypothesis we get:

Opn

fn
< 2α

1

2
+ α = 2α,

which means that, using our algorithm, to generate convex polyominoes with fixed
size requires an average amount of computation that is bounded by a constant. �

4.2 Exhaustive generation of column-convex polyominoes

The ECO operator ϑ1, defined in Section 2.2, describes a recursive construction for
the class of column-convex polyominoes, and the associated succession rule is ∆, in (11).

The same ideas of Section 4.1 can thus be applied in order to determine an algorithm
for the exhaustive generation of this class. What remains to prove is that also in this case
the generation algorithm runs in constant amortized time.

This result can be achieved in a simple way, repeating the same steps of Proposition
4.1. In particular, using (5) we easily obtain that 3gn−1 < gn, with n > 1, and then by
induction we prove that:

Opn

gn

<
3

2
α,

where, as usual, Opn denotes the number of operations required by the algorithm to
generate all the column-convex polyominoes with semi-perimeter n + 2.

5 Supplementary remarks

The enumeration of convex or of column-convex polyominoes is often classed as “dif-
ficult”. Certainly, previously published solutions tend to skirt the issue of why the gen-
erating functions for these classes of polyominoes turn out to be algebraic. In contrast,
the solution presented here proceeds by means of sequence of simple steps resulting in a
system of equations for the generating functions that, ipso facto, indicates that they are
algebraic. Perhaps an analogy can be made here with the comparable way in which the
transfer matrix method works to somewhat the same effect.

As a bonus, our method delivers additional information about convex polyominoes
through their interpretation as terms of an algebraic formal power series. Indeed, since
the series A(x) appearing in the system (31) represents in this way the class of convex
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polyominoes, the other series in this system also represent, in effect, special sub-classes of
convex-polyominoes. To give just one illustration, the series (1)aB(x) represents the class
of of convex polyominoes having at least two cells in the first column. Thus, the system
(31) can be interpreted as an object grammar decomposition for convex polyominoes and
consequently is a store of combinatorial meaning, again not unlike a transfer matrix (for
object grammars, we refer to [16]).

We feel that this approach is promising and intend to try extending it, especially in
other cases where an ECO construction is already known or can be determined, although
we do not envisage the method as being always so appropriate.

We conclude by mentioning some further observations:

1. Our approach relying on the ECO method conjoined with formal power series can be
deployed in the study of several other statistics relating to convex and column-convex
polyominoes. By way of example, the reader might care to verify that, considering
the productions in (8), but using an axiom different from that of the rule Ω as
described below, yields the enumeration of other classes of convex polyominoes,
indexed as usual by semi-perimeter:

(a) if the axiom is chosen to be (k)a, k ≥ 1, the rule gives the enumeration of the
class of convex polyominoes having at least k cells in the first column. With
k = 1 we get Ω;

(b) if the axiom is chosen to be (k)r, then the rule defines the class of directed-
convex polyominoes having at least k cells in the first column, k ≥ 1;

(c) if the axiom is chosen to be (k)g, then the rule defines the class of stack poly-
ominoes or stacks having exactly k cells in the first column, k ≥ 1 (for a further,
separate account of stacks, see [27]).

Not surprisingly, the computation of the generating function for these rules is similar
to that for the rule Ω.

2. Combinatorial structures having an ECO method of construction, of which a varied
selection appear in [4, 19], can be exhaustively generated using an approach similar
to that in Section 4. In addition, as shown in [15], a large class of regular languages
can also be generated in a quasi-automatic way by the ECO method, and each
language in this class then admits a similar algorithm. A general algorithm that
uses ECO systems to derive a generating algorithm has been recently developed in
[2], where some partial criteria to establish whether a given ECO system leads to
an algorithm with the CAT property are also presented. But it remains a challenge
to delineate necessary and sufficient conditions for an ECO system to yield a CAT
algorithm. For that matter, it would be interesting just to have examples of ECO
systems that fail in this regard.
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