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Abstract

We discuss several well known results about Schur functions that can be proved
using cancellations in alternating summations; notably we shall discuss the Pieri and
Murnaghan-Nakayama rules, the Jacobi-Trudi identity and its dual (Von Nägelsbach-
Kostka) identity, their proofs using the correspondence with lattice paths of Gessel
and Viennot, and finally the Littlewood-Richardson rule. Our our goal is to show that
the mentioned statements are closely related, and can be proved using variations of
the same basic technique. We also want to emphasise the central part that is played
by matrices over {0, 1} and over N; we show that the Littlewood-Richardson rule as
generalised by Zelevinsky has elegant formulations using either type of matrix, and
that in both cases it can be obtained by two successive reductions from a large signed
enumeration of such matrices, where the sign depends only on the row and column
sums of the matrix.
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0 Introduction

§0. Introduction.
Many of the more interesting combinatorial results and correspondences in the basic
theory of symmetric functions involve Schur functions, or more or less equivalently the
notions of semistandard tableaux or horizontal strips. Yet the introduction of these
notions, in any of the many possible ways, is not very natural when considering only
symmetric functions, cf. [Stan, 7.10]. One way the importance of Schur functions can be
motivated is by representation theory: interpreting symmetric functions in the repre-
sentation theory either of the symmetric groups or the general linear groups, the Schur
functions correspond to the irreducible representations. However, there is another way
of motivating it: if one broadens the scope slightly from symmetric functions to alternat-
ing polynomials, then Schur functions do arise quite naturally as quotients of alternants.
It is this point of view, which could also be reached from representation theory if use is
made only of Weyl’s character formula, that we shall take in this paper; from this per-
spective it is not so surprising that proofs of basic identities involving Schur functions
should involve alternating summations and cancellations.

The main point we would like to make in this paper is that the use of the definition
of Schur functions as quotients of alternants can be limited to the deduction of a single
simple formula (lemma 2.2), which describes the multiplication by an arbitrary symmet-
ric function in the basis of Schur functions; after this, alternating polynomials need not
be considered any more. In general the formula produces an alternating sum of Schur
functions; in various particular cases, one can obtain classical results from it (the Pieri
and Murnaghan-Nakayama rules, Jacobi and Von Nägelsbach-Kostka identities, and the
Littlewood-Richardson rule) by judiciously applying combinatorially defined cancella-
tions. Our presentation is nearly self-contained, but we do use an enumerative identity
that follows from the RSK-correspondence; we shall omit its well known elementary
combinatorial proof, which is not directly related to the theme of this paper.

Our paper is structured as follows. In §1 we give the basic definitions concerning
symmetric functions, alternating polynomials and (skew) Schur functions. In §2 we
introduce our basic lemma, and its most elementary applications giving the Pieri and
Murnaghan-Nakayama rules. In §3 we first establish the duality of the bases of com-
plete and minimal symmetric functions (this is where the RSK-correspondence is used).
This allows us to interpret (skew) Schur functions as generating series of semistandard
tableaux (which elsewhere is often used as their definition), and to deduce the Cauchy,
Jacobi and Von Nägelsbach-Kostka identities. In §4 we discuss cancellations defined for
intersecting families of lattice paths, in the style of Gessel and Viennot, and relate them
to identities derived from the Pieri rules. These considerations lead to natural encodings
of families of lattice paths, and of the semistandard tableaux that correspond to non-
intersecting families of paths, by matrices with entries in N or in {0, 1}; these encodings
are also important in the sequel. In §5 we give a final application of our basic lemma
to derive the Littlewood-Richardson rule. Formulating (Zelevinsky’s generalisation of)
that rule in terms of binary or integral matrices reveals in both cases an unexpected
symmetry. We also exhibit an equally symmetrical doubly alternating expressions for
the same numbers, in which no tableaux appear at all. We close by raising a question
inspired by these expressions, which will be taken up in a sequel to this paper.
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1 Preliminaries and definitions

§1. Preliminaries and definitions.

Studying symmetric functions involves the use of various combinatorial objects; we start
with some general considerations concerning those. We shall make much use of sequences
(vectors) and matrices, of which the entries will almost always be natural numbers. In
some cases the entries are restricted to be either 0 or 1, in which case we shall refer to the
objects as “binary”. While all objects we shall encounter can be specified using finite
information, we shall consider vectors and matrices as associations of entries to indices,
without restricting those indices to a finite set (just like for polynomials one usually
does not give an a priori bound for the degrees of their monomials). Thus vectors and
matrices are “finitely supported”, in that the entries are zero outside a finite range of
indices; finite vectors and matrices are identified with infinite ones obtained by extension
with null entries. This convention notably allows addition of vectors or matrices without
concern about their sizes.

When displaying matrices we shall as usual let the first index increase downwards
and the second to the right, and the same convention will be used whenever subsets
of N × N are displayed, such as Young diagrams (in the sequel to this paper we shall
in fact encounter Young diagrams in the role of subsets of indices in matrices). Some
objects, notably tableaux, are defined as sequences of vectors; in this case the indices
for the sequence are written as parenthesised superscripts to avoid confusion with the
subscripts indexing individual vectors.

We always start indexing at 0, in particular this applies to sequences, rows and
columns of matrices and tableaux, and entries of tableaux. Hence in the situation
where a sequence of objects is determined by the intervals between members of an-
other sequence (such as horizontal strips in a semistandard tableau, which are given
by successive members of a sequence of shapes), the index used for an interval is the
same as that of the first of the members bounding it. Our standard n-element set is
[n] = { i ∈ N | i < n }. For the set theoretic difference S \ T we shall write S − T when
it is known that T ⊆ S.

We shall frequently use the “Iverson symbol”: for any Boolean expression condition
one puts

[ condition ] =
{ 1 if condition is satisfied,

0 otherwise.

This notation, proposed in [GKP, p. 24], and taken from the programming language APL

by K. Iverson, generalises the Kronecker delta symbol: instead of δi,j one can write [ i =
j ] . Among other uses, this notation allows us to avoid putting complicated conditions
below summations to restrict their range: it suffices to multiply their summands by one
or more instances of [ condition ] . By convention, in a product containing such a factor,
the factors to its right are evaluated only if the condition holds; if it fails, the product
is considered to be 0 even if some remaining factor should be undefined.

1.1. Compositions and partitions.

The most basic combinatorial objects we shall use are finitely supported sequences
of natural numbers α = (αi)i∈N. The entries αi are called the parts of α, and the

the electronic journal of combinatorics 11(2) (2006), #A5 3



1.1 Compositions and partitions

main statistic on such sequences is the sum of the parts, written |α| =
∑

i∈N αi. The
systematic name for such sequences α with |α| = d would be infinite weak compositions
of d, but we shall simply call them just compositions of d. The set of compositions
of d will be denoted by Cd (this set is infinite when d > 0), and C =

⋃
d∈N Cd denotes

the set of all compositions. In order to denote specific compositions, we shall specify
an initial sequence of their parts, which are implicitly extended by zeroes. When the
parts of a composition are restricted to lie in {0, 1} = [2], it will be called a binary
composition; we define C[2]

d = {α ∈ Cd | ∀i ∈ N: αi ∈ [2] } and C[2] =
⋃

d∈N C[2]

d . Binary
compositions of d correspond to d-element subsets of N, while arbitrary compositions
of d correspond to multisets of size d on N. Among other uses, compositions parametrise
monomials; if XN = {Xi | i ∈ N } is a countable set of commuting indeterminates, then
the monomial

∏
i∈N Xαi

i will be denoted by Xα.
We shall consider permutations of indeterminates, and correspondingly of the parts

of compositions. The group that acts is the group S∞ of permutations of N that
fix all but finitely many numbers. The permutation σ ∈ S∞ acts by simultaneously
substituting Xi := Xσ(i) for all indeterminates, and therefore operates on compositions
by permuting their parts: σ(α) = (ασ−1(i))i∈N. Obviously |σ(α)| = |α|, and the orbit
of α contains a unique composition whose parts are weakly decreasing, which will be
denoted by α+; for instance for α = (0, 5, 2, 0, 0, 1, 7, 0, 2) one has α+ = (7, 5, 2, 2, 1).
For d ∈ N we define the finite set Pd = {λ ∈ Cd | ∀i ∈ N: λi ≥ λi+1 }, whose elements
are called partitions of d; then α+ ∈ Pd for any α ∈ Cd. We also put P =

⋃
d∈N Pd. All

binary compositions of d form a single orbit under permutations of their parts, so there
is just a single binary partition of d: it is the partition [ i ∈ [d] ] i∈N whose d initial parts
are 1 and the rest 0, and we shall denote it by 1(d).

We shall usually denote compositions by Greek letters α, β, . . ., but for partitions
we use Greek letters further on in the alphabet: λ, µ, ν, and sometimes κ. Apart from
listing its nonzero parts, a partition λ ∈ P can also be specified by drawing its diagram
[λ] = { (i, j) ∈ N2 | j ∈ [λi] }. Elements of the diagram are drawn (and usually referred
to) as squares, so that for instance the diagram of λ = (7, 5, 2, 2, 1) would be drawn as

.

The transpose partition of λ ∈ P, which will be denoted by λt, is the one whose parts
give the lengths of the columns of [λ], so that [λt] is the transpose diagram [λ]t; one has
λt

j = #{ i ∈ N | j ∈ [λi] }.
We shall be considering several relations defined between partitions; we collect

their definitions here. The most fundamental relation is the partial ordering ‘⊆’ defined
by inclusion of diagrams: µ ⊆ λ means that [µ] ⊆ [λ] or equivalently that µi ≤ λi

for all i ∈ N. Note that if µ ⊆ λ then λ − µ and λt − µt are compositions. The
relation ‘⊆’ will be used mostly implicitly via the notion of a skew shape λ/µ, which
denotes the interval from µ to λ in the poset (P,⊆); the corresponding skew diagram
is [λ/µ] = [λ] − [µ], and we define |λ/µ| = |λ| − |µ|. Several relations refining ‘⊆’ will
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1.1 Compositions and partitions

be used; for the ones in the following definition it will be convenient to define them on
the set of all compositions, although they will never hold unless both arguments are
actually partitions.

1.1.1. Definition. The relations ‘↼’ and ‘↽’ on C are defined as follows. To have
either µ ↼ λ or µ ↽ λ, it is necessary that λ/µ be a skew shape (in other words λ, µ ∈ P,
and µ ⊆ λ). If this is the case, then µ ↼ λ holds if and only if λ − µ ∈ C[2], in which
case λ/µ is called a vertical strip; similarly µ ↽ λ holds if and only if λi+1 ≤ µi ≤ λi

for all i ∈ N, in which case λ/µ is called a horizontal strip.

Note that the final condition for µ ↽ λ already implies that λ/µ is a skew shape;
in addition it means that [λ/µ] has at most one square in any column. Similarly, for a
skew shape λ/µ, the condition µ ↼ λ means that [λ/µ] has at most one square in any
row. Therefore µ ↽ λ is equivalent to µt ↼ λt when λ, µ ∈ P. To denote the opposite
relations we shall rotate rather than reflect the symbol, so λ ⇀ µ means the same as
µ ↽ λ, while λ ⇁ µ means the same as µ ↼ λ.

We illustrate concrete instances of these relations graphically by superimposing the
contours of the diagrams of the two partitions involved:

(7, 5, 2, 2, 1) ↼ (8, 6, 3, 3, 1, 1, 1): ;

(7, 5, 2, 2, 1) ↽ (11, 6, 4, 2, 1, 1): .

For the following definition we use the partitioning of N × N into diagonals Dd,
for d ∈ Z:

Dd = { (i, j) ∈ N2 | j − i = d } for d ∈ Z. (1)
1.1.2. Definition. For k > 0, a relation ‘≺r(k)’ on P is defined as follows: µ ≺r(k) λ
means that λ/µ is a skew shape with |λ/µ| = k, for which the k squares of [λ/µ] lie
on k consecutive diagonals. In this case we call the shape λ/µ a k-ribbon. The height
ht(λ/µ) of a k-ribbon λ/µ is the difference between the initial (row) coordinates of the
squares of [λ/µ] on the first and the last of those k diagonals.

Again we give a graphic illustration in the same style as before, for λ/µ =
(7, 6, 6, 3, 3, 2)/(7, 5, 2, 2, 1):

(7, 5, 2, 2, 1) ≺r(10) (7, 6, 6, 3, 3, 2): .

One has [λ/µ] = {(5, 0), (5, 1), (4, 1), (4, 2), (3, 2), (2, 2), (2, 3), (2, 4), (2, 5), (1, 5)}, which
diagram has its squares on the 10 consecutive diagonals Dd for −5 ≤ d < 5; moreover,
we see that ht(λ/µ) = 5 − 1 = 4.

Finally we shall need the dominance partial ordering on each set Pd separately.
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1.2 Matrices and tableaux

1.1.3. Definition. For any fixed d ∈ N a relation ‘≤’ on Pd, called the dominance
ordering, is defined by µ ≤ λ if and only if for every k ∈ N one has

∑
i∈[k] µi ≤

∑
i∈[k] λi.

1.2. Matrices and tableaux.

We shall use the two-dimensional counterparts of compositions: finitely supported ma-
trices with entries in N. Like for compositions the binary case, where entries are re-
stricted to [2] = {0, 1}, will be of special interest. The statistic given by the sum of all
entries can be refined by taking sums separately either of rows or of columns; in either
case the result is a composition.

1.2.1. Definition. Let M denote the set of matrices (Mi,j)i,j∈N with entries Mi,j

in N, of which only finitely many are nonzero, and let M[2] denote its subset of binary
matrices, those of which all entries lie in {0, 1}. Let row:M → C be the map M 7→
(
∑

j∈N Mi,j)i∈N that takes row sums, and col:M → C the map M 7→ (
∑

i∈N Mi,j)j∈N

that takes column sums; put Mα,β = {M ∈ M | row(M) = α, col(M) = β } and
M[2]

α,β = Mα,β ∩M[2] for α, β ∈ C.

These matrices can be used to record sequences of (binary) compositions with finite
support, either by rows or by columns. We shall denote row i of M by Mi, and column j
by M t

j . We shall also need sequences of partitions, but these will be subject to the
condition that adjacent terms differ by horizontal or vertical strips, and the condition
of finite support is replaced by the sequence becoming ultimately stationary. This gives
rise to the notion of semistandard tableau, and some variants of it.

1.2.2. Definition. Let λ/µ be a skew shape, and α ∈ C. A semistandard tableau of
shape λ/µ and weight α is a sequence of partitions (λ(i))i∈N with λ(i) ↽ λ(i+1) and
|λ(i+1)/λ(i)| = αi for all i ∈ N, λ(0) = µ, and λ(N) = λ for any N that is so large
that αi = 0 for all i ≥ N . The weight of a tableau T is denoted by wt(T ), and the
set of all semistandard tableaux of shape λ/µ by SST(λ/µ); we also put SST(λ/µ, α) =
{T ∈ SST(λ/µ) | wt(T ) = α }. A transpose semistandard tableau of shape λ/µ and
weight α is a sequence of partitions defined similarly, with λ(i) ↼ λ(i+1) replacing
λ(i) ↽ λ(i+1).

We shall reserve the qualification “Young tableau” to the case µ = (0), in which
case λ/µ will be abbreviated to λ in the notations just introduced. There are maps
from semistandard tableaux to transpose semistandard tableau and vice versa, defined
by transposing each partition in the sequence; under these maps the shape of the tableau
is transposed while the weight is preserved. Another variation on the notion of semi-
standard tableau is to replace the relations λ(i) ↽ λ(i+1) or λ(i) ↼ λ(i+1) by their
opposite relations λ(i) ⇀ λ(i+1) respectively λ(i) ⇁ λ(i+1). This gives the notions of
reverse (transpose) semistandard tableaux, which will occur in the sequel to this pa-
per; their shape λ/µ and weight α are such that the sequence starts at λ = λ(0) and
ultimately becomes µ, while |λ(i)/λ(i+1)| = αi for all i ∈ N.

The traditional way to display a semistandard tableau is to draw the diagram of
its shape filled with numbers, which identify for each square the horizontal strip to
which it belongs. We shall label with an entry i the squares of [λ(i+1)/λ(i)]. The entries
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1.2 Matrices and tableaux

will then increase weakly along rows, and increase strictly down columns, and for this
reason semistandard tableaux are also called column-strict tableaux (and transpose
semistandard tableaux are then called row-strict tableaux). Thus the semistandard
tableau T =

(
(4, 1) ↽ (5, 2) ↽ (5, 3, 2) ↽ (6, 3, 3, 1) ↽ (6, 4, 3, 2) ↽ (7, 5, 4, 3) ↽

(9, 5, 5, 3, 1) ↽ (9, 8, 5, 5, 3) ↽ (9, 8, 5, 5, 3) ↽ · · ·), which is of shape (9, 8, 5, 5, 3)/(4, 1)
and weight (2, 3, 3, 2, 4, 4, 7), will be displayed as

T =

0 2 4 5 5
0 1 3 4 6 6 6

1 1 2 4 5
2 3 4 6 6
5 6 6

. (2)

More important in our paper than this display will be two ways of representing tableaux
by matrices. Simply recording the partitions forming a tableau T in the rows or columns
of a matrix does not give a finitely supported matrix, but we can obtain one by recording
the differences between successive partitions. We shall call the matrix so obtained an en-
coding of T , but one should realise that decoding the matrix to reconstruct T requires
knowledge of at least one of the partitions forming the (skew) shape of T . Various ways
are possible to record horizontal strips λ(i+1)/λ(i): one may either record the differences
λ(i+1)−λ(i) ∈ C or the differences between the transpose shapes (λ(i+1))t−(λ(i))t ∈ C[2],
and one may record these compositions either in the rows or the columns of the matrix.
From the four possible combinations we choose the two for which one has a correspon-
dence either between the rows of the tableau and the rows of the matrix, or between
the columns of the tableau and the columns of the matrix.

1.2.3. Definition. Let T = (λ(i))i∈N be a semistandard tableau. The integral en-
coding of T is the matrix M ∈ M defined by Mi,j = (λ(j+1) − λ(j))i, and the binary
encoding of T is the matrix M ′ ∈ M[2] defined by M ′

i,j = ((λ(i+1))t − (λ(i))t)j . The
sets of integral and binary encodings of semistandard tableaux T ∈ SST(λ/µ) will be
denoted by Tabl(λ/ν) and Tabl[2](λ/µ), respectively.

For instance for the tableau T of (2), one finds the integral and binary encodings

M =




1 0 1 0 1 2 0
1 1 0 1 1 0 3
0 2 1 0 1 1 0
0 0 1 1 1 0 2
0 0 0 0 0 1 2


 and M ′ =




0 1 0 0 1 0 0 0 0
1 1 1 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 1 1 0 1 0 0
1 0 0 0 1 0 0 1 1
0 1 1 1 1 1 1 1 0




, (3)

which finite matrices must be thought of as extended indefinitely by zeroes. To recon-
struct from either of these matrices the tableau T or the other matrix, one must in
addition know at least that µ = (4, 1) or that λ = (9, 8, 5, 5, 3) for the shape λ/µ of T .
Each entry Mi,j counts the number of entries j in row i of the displayed form of T ,
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1.3 Symmetric functions

while entry M ′
i,j counts the number (at most one) of entries i in column j. Therefore

the row Mi records the weight of row i of the display of T , while the column (M ′)t
j

records the weight of its column j. One has row(M) = λ − µ, col(M ′) = λt − µt, and
col(M) = row(M ′) = wt(T ).

1.3. Symmetric functions.

There are several equivalent ways to define the ring Λ of symmetric functions. Following
[Stan], we shall realise Λ as a subring of the ring Z[[XN]] of power series in infinitely
many indeterminates. The elements f of this subring are characterised by the fact that
the coefficients in f of monomials Xα, Xβ are the same whenever α+ = β+ (so f is stable
under the action of S∞), and that the degree of monomials with nonzero coefficients
in f is bounded. Elements f ∈ Λ are called symmetric functions. Since the indicated
subring of Z[[XN]] is just one realisation of Λ, we make a notational distinction between
occurrences of a symmetric function f that are independent of any realisation of Λ (for
instance in identities internal to Λ), and occurrences where the realisation inside Z[[XN]]
is essential (because indeterminates Xi occur explicitly in the same equation); in the
latter case we shall write f [XN] instead of f . If the nonzero coefficients of f [XN] only
occur for monomials of degree d, then f is called homogeneous of degree d; due to the
required degree bound, this makes Λ into a graded ring.

Another realisation of Λ is via its images in polynomial rings in finite sets of inde-
terminates. This is for instance the point of view taken in [Macd]; for us this realisation
is important in order to be able to consider alternating expressions, which is hard to do
for infinitely many indeterminates. For any n ∈ N, let X[n] = {Xi | i ∈ [n] } be the set
of the first n indeterminates. There is a ring morphism Z[[XN]] → Z[[X[n]]] defined by
setting Xi := 0 for all i ≥ n, and the image of the subring Λ under this morphism is the
subring of the symmetric polynomials in Z[X[n]], those invariant under all permutations
of the indeterminates; we shall denote this image by Λ[n]. For f ∈ Λ, the image in Λ[n]

of f [XN] ∈ Z[[XN]] will be denoted by f [X[n]]. Thus each f ∈ Λ gives rise to a family
(f [X[n]])n∈N of elements f [X[n]] ∈ Λ[n] of bounded degree, which family is coherent
with respect to the projections Λ[n+1] → Λ[n] defined by the substitution Xn := 0. We
shall write this final property as f [X[n+1]][Xn := 0] = f [X[n]] for all n ∈ N. Conversely
each family (fn)n∈N with fn ∈ Λ[n] for all n ∈ N that satisfies fn+1[Xn := 0] = fn

for all n, and for which deg fn is bounded, forms the set of images of a unique element
f ∈ Λ. In other words, one can realise Λ as the inverse limit in the category of graded
rings of the system (Λ[n])n∈N relative to the given projections Λ[n+1] → Λ[n].

For any α ∈ Pd, the sum mα[XN] =
∑

β∈Cd
[α+ = β+ ]Xβ of all distinct monomials

in the permutation orbit of Xα is a symmetric function. Since no nonempty proper
subset of its nonzero terms defines a symmetric function, we shall call mα a minimal
symmetric function (we avoid the more traditional term “monomial” symmetric function
since the set of all mα is not closed under multiplication). The set {mλ | λ ∈ Pd } is a
basis of the additive group of homogeneous symmetric functions of degree d.

The elementary symmetric functions ed for d ∈ N are instances of minimal sym-
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1.3 Symmetric functions

metric functions: they are defined as ed = m1(d) . One can write more explicitly

ed[XN] =
∑

α∈C[2]
d

Xα =
∑

i1,...,id∈N

[ i1 < · · · < id ]Xi1 · · ·Xid
. (4)

The complete (homogeneous) symmetric functions hd for d ∈ N are defined by
hd =

∑
λ∈Pd

mλ. Like the elementary symmetric functions, they can be written more
explicitly

hd[XN] =
∑

α∈Cd

Xα =
∑

i1,...,id∈N

[ i1 ≤ · · · ≤ id ]Xi1 · · ·Xid
. (5)

The power sum symmetric functions pd for d > 0 are defined by pd = m(d), so pd[XN] =∑
i∈N Xd

i . These families of symmetric functions have the following generating series,
expressed in Z[[XN, T ]].

∑
d∈N

ed[XN]T d =
∏
i∈N

(1 + XiT ), (6)

∑
d∈N

hd[XN]T d =
∏
i∈N

(∑
k∈N

(XiT )k

)
=
∏
i∈N

1
1 − XiT

, (7)

∑
k>0

pk[XN]T k =
∑
i∈N

(∑
k>0

(XiT )k

)
=
∑
i∈N

XiT

1 − XiT
. (8)

For any α ∈ C we define eα =
∏

i∈N eαi
and hα =

∏
i∈N hαi

; since e0 = h0 = 1
the infinite products converge, and it is clear by commutativity that eα = eα+ and
hα = hα+ . The products eα and hα can be expanded into monomials combinatorially,
in terms of binary respectively integral matrices: by multiplying together copies of the
first equality in (4) respectively in (5), one finds

eβ [XN] =
∑
α∈C

#M[2]

α,βXα (9)

hβ [XN] =
∑
α∈C

#Mα,βXα (10)

We can obtain generating series in Z[[XN, YN]] in which all eβ or all hβ appear, either
from the preceding equations, or by substituting T := Yj into copies of (6) or (7) for
j ∈ N and multiplying them, giving

∑
β∈C

eβ [XN]Y β =
∑

M∈M[2]

Xrow(M)Y col(M) =
∏

i,j∈N

(1 + XiYj) (11)

∑
β∈C

hβ [XN]Y β =
∑

M∈M
Xrow(M)Y col(M) =

∏
i,j∈N

1
1 − XiYj

. (12)
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1.4 Alternating polynomials and Schur functions

1.4. Alternating polynomials and Schur functions.

Now fix n ∈ N, and let A[n] denote the additive subgroup of Z[X[n]] of alternating poly-
nomials, i.e., of polynomials p such that for all permutations σ ∈ Sn the permutation
of indeterminates given by σ operates on p as multiplication be the sign ε(σ). Multi-
plying an alternating polynomial by a symmetric polynomial gives another alternating
polynomial, so if we view Z[X[n]] as a module over its subring Λ[n], then it contains
A[n] as a submodule. Like for symmetric polynomials, the condition of being an al-
ternating polynomial can be expressed by comparing coefficients of monomials in the
same permutation orbit: a polynomial

∑
α∈Nn cαXα is alternating if and only if for

every α ∈ Nn and σ ∈ Sn one has cσ·α = ε(σ)cα. In particular this implies that cα = 0
whenever α is fixed by any odd permutation, which happens as soon as αi = αj for some
pair i 6= j. In the contrary case, α is not fixed by any non-identity permutation, and
the alternating orbit sum aα[X[n]] =

∑
σ∈Sn

ε(σ)Xσ·α is an alternating polynomial that
is minimal in the sense that its nonzero coefficients are all ±1 and no nonempty proper
subset of its nonzero terms defines an alternating polynomial. The element aα[X[n]] is
called an alternant, and can be written as a determinant

aα[X[n]] = det
(
X

αj

j

)
i,j∈[n]

=

∣∣∣∣∣∣∣∣
Xα0

0 Xα1
0 · · · X

αn−1
0

Xα0
1 Xα1

1 · · · X
αn−1
1

...
...

. . .
...

Xα0
n−1 Xα1

n−1 · · · X
αn−1
n−1

∣∣∣∣∣∣∣∣
; (13)

we define aα[X[n]] by the same expression even when α is fixed by some transposition,
but in that case it is 0. The set of alternants generates A[n] as an additive group, but
to obtain a Z-basis one must remove the null alternants, and for all other orbits of com-
positions choose one of the two opposite alternants associated to it. Thus one finds the
Z-basis { aα[X[n]] | α ∈ Nn; α0 > · · · > αn−1 } of A[n]. Our convention of interpreting
finite vectors by extension with zeroes as finitely supported ones, allows us to view Nn

as a subset of C. Then putting δn = (n− 1, n− 2, . . . , 1, 0) ∈ Nn the above basis of A[n]

can be written as { aδn+λ[X[n]] | λ ∈ P ∩Nn }.
Put ∆n = aδn

[X[n]]; in other words, ∆n ∈ A[n] is the Vandermonde determinant,
which evaluates to

∏
0≤i<j<n(Xi−Xj). Alternating polynomials are all divisible by each

factor Xi−Xj , and therefore by ∆n. So viewing A[n] as an Λ[n]-module, it is cyclic with
generator ∆n. The map Λ[n] → A[n] of multiplication by ∆n is a Z-linear bijection, so
one can apply its inverse to the basis of A[n] consisting of elements aδn+λ[X[n]]. Thus
defining

sλ[X[n]] =
aδn+λ[X[n]]

∆n
∈ Λ[n] (14)

for λ ∈ P with λn = 0, the set { sλ[X[n]] | λ ∈ P; λn = 0 } forms a Z-basis of Λ[n]. It
is useful to define sα[X[n]] for arbitrary α ∈ Nn by the same formula. Doing so does
not introduce any new symmetric functions, since one has sα[X[n]] = 0 unless the n
components of δn + α are all distinct, and in that case one has sα[X[n]] = εsλ[X[n]],
where λ ∈ P with λn = 0 is determined by the condition (δn + α)+ = δn + λ, and ε is
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1.4 Alternating polynomials and Schur functions

the sign of the (unique) permutation σ ∈ Sn such that σ(δn + α) = δn + λ. Finally
we extend this definition to any (infinite) composition α ∈ C, by defining sα[X[n]] = 0
whenever α /∈ Nn.

Here are some examples illustrating these definitions. One has

s(3,1)[X[2]] =
a(4,1)[X[2]]

∆2
=

X4
0X1 − X0X

4
1

X0 − X1
= X3

0X1 + X2
0X2

1 + X0X
3
1

= m(3,1)[X[2]] + m(2,2)[X[2]]

s(1,2)[X[2]] =
a(2,2)[X[2]]

∆2
= 0

s(0,4)[X[2]] =
a(1,4)[X[2]]

∆2
=

X0X
4
1 − X4

0X1

X0 − X1
= −s(3,1)[X[2]]

s(3,1)[X[3]] =
a(5,2,0)[X[3]]

∆3
=

X5
0X2

1 − X2
0X5

1 − X5
0X2

2 + X5
1X2

2 + X2
0X5

2 − X2
1X5

2

(X0 − X1)(X0 − X1)(X1 − X2)
= X3

0X1 + X3
0X2 + X2

0X2
1 + 2X2

0X1X2 + X2
0X2

2

+ X0X
3
1 + 2X0X

2
1X2 + 2X0X1X

2
2 + X0X

3
2 + X3

1X2 + X2
1X2

2 + X1X
3
2

= m(3,1)[X[3]] + m(2,2)[X[3]] + 2m(2,1,1)[X[3]]

1.4.1. Proposition. For all n ∈ N and all α ∈ C one has sα[X[n+1]][Xn := 0] =
sα[X[n]].

For instance one sees in the example above that s(3,1)[X[3]][X2 := 0] = s(3,1)[X[2]]:
from the definition one has mα[X[n+1]][Xn := 0] = mα[X[n]] for all α ∈ C, while
mα[X[n]] = 0 unless α ∈ Nn ⊂ C, so in particular m(2,1,1)[X[2]] = 0.

Proof. The value sα[X[n+1]][Xn := 0] can be computed by applying the substitution
Xn := 0 separately to the numerator aδn+1+α[X[n+1]] and the denominator ∆n+1 in the
definition of sα[X[n+1]], provided that the latter substitution yields a nonzero value;
this is the case since ∆n+1[Xn := 0] = X0 · · ·Xn−1∆n. We may assume that α ∈ Nn+1

holds, since otherwise both sα[X[n+1]] and sα[X[n]] are zero by definition. Now put
β = δn+1 + α = (n + α0, . . . , 1 + αn−1, αn) ∈ Nn+1, so that the mentioned numerator
is aβ[X[n+1]]. If one has α /∈ Nn, so that sα[X[n]] = 0 by definition, then αn 6= 0,
and all of the (first n + 1) components of β are nonzero; in this case the substitution
Xn := 0 kills all terms of the numerator, so that sα[X[n+1]][Xn := 0] = 0. On the
other hand if α ∈ Nn then also β ∈ Nn, and in this case aβ[X[n+1]][Xn := 0] =
aβ[X[n]] = X0 · · ·Xn−1aδn+α[X[n]]; after simplification of the substituted numerator and
denominator by X0 · · ·Xn−1, one obtains sα[X[n+1]][Xn := 0] = sα[X[n]] as desired.

Thus for fixed α ∈ C, the families (sα[X[n]])n∈N of symmetric polynomials are
coherent with respect to the projections Λ[n+1] → Λ[n] defined by the substitution
Xn := 0. This property allows the following definition, which we already anticipated in
our notation.

1.4.2. Definition. For α ∈ C, the symmetric function sα is the unique element of Λ
whose image in Λ[n] under the substitutions Xi := 0 for all i ≥ n is sα[X[n]] = [α ∈
Nn ] aδn+α[X[n]]

aδn [X[n]]
, for all n ∈ N.
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1.4 Alternating polynomials and Schur functions

The set { sλ | λ ∈ P } forms a Z-basis of Λ, whose elements are called Schur func-
tions. They are the central subject of this paper, and we shall now introduce several
notations to facilitate their study. Firstly we shall denote by

〈 · ∣∣ · 〉 the scalar product
on Λ for which the basis of Schur functions is orthonormal. Thus one has

f =
∑
λ∈P

〈
f
∣∣ sλ

〉
sλ for any f ∈ Λ. (15)

The operation of multiplication by a fixed Schur function sµ has an adjoint operation
s∗µ for this scalar product, i.e., which satisfies

〈
s∗µ(f)

∣∣ g 〉 =
〈
f
∣∣ sµg

〉
for all f, g ∈ Λ;

in terms of this the skew Schur functions are defined by

sλ/µ = s∗µ(sλ). (16)

They typically arise when one expresses the multiplication by a fixed symmetric function
in the basis of Schur functions, as skew Schur functions are characterised by〈

sµf
∣∣ sλ

〉
=
〈
f
∣∣ sλ/µ

〉
for all λ, µ ∈ P and f ∈ Λ. (17)

For f = hα and f = eα these scalar products are of particular interest, and are called
Kostka numbers.

1.4.3. Definition. For µ, λ ∈ P and α ∈ C, we set Kλ/µ,α =
〈
hα

∣∣ sλ/µ

〉
and

K ′
λ/µ,α =

〈
eα

∣∣ sλ/µ

〉
.

When µ = (0), we abbreviate Kλ/µ,α to Kλ,α and K ′
λ/µ,α to K ′

λ,α. Then as a
special case of (15) one has

hα =
∑
λ∈P

Kλ,αsλ and eα =
∑
λ∈P

K ′
λ,αsλ. (18)

We shall later give combinatorial descriptions of the Kostka numbers (corollary 2.6),
from which it will become clear that they are non-negative (this also follows from rep-
resentation theoretic considerations), and are related by K ′

λ/µ,α = Kλt/µt,α.

Computing scalar products
〈
f
∣∣ sλ

〉
directly from the definition is usually quite

hard. But if f = sα with α ∈ C, then f can be considered as slightly generalised Schur
function: either f = 0, or f = ±sλ for some λ ∈ P. Setting

ε(α, λ) =
〈
sα

∣∣ sλ

〉
for α ∈ C and λ ∈ P , (19)

one has ε(α, λ) ∈ {−1, 0, 1}, and given α there is at most one λ with ε(α, λ) 6= 0; this
symbol will be used as a signed variant of the Iverson symbol. Any expression in terms
of such sα can be converted to one in terms of Schur functions using

sα =
∑
λ∈P

ε(α, λ)sλ, (20)

which removes null terms, and replaces the remaining terms sα by the appropriate ±sλ

with λ ∈ P. This process, which is the main source of alternating sums in this paper,
will be called normalisation.
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1.5 Diagram boundaries

1.5. Diagram boundaries.

The partition λ with ε(α, λ) 6= 0, if any, is characterised by the condition δn + λ =
(δn + α)+, where n is so large that α ∈ Nn, and ε(α, λ) is the sign of the permutation σ ∈
Sn such that δn + λ = σ(δn + α). The given condition gives rise to an equivalent one
when n is increased, and the permutation involved does not change either, if each Sn is
considered as a subgroup of S∞. Nonetheless, it is convenient to have a description that
does not involve n at all. If we subtract n from each of the n entries of δn + α = (n −
1− i+αi)i∈[n], then coefficient i becomes αi−1− i, and therefore independent of n > i;
moreover this transformation is compatible with the action of Sn by permutation of
the coefficients. Now increasing n allows to associate with α a unique infinite sequence
of numbers; note however that it will contain negative entries, and will no longer be
finitely supported. We shall denote this sequence by α[ ] = (α[i])i∈N, where

α[i] = αi − 1 − i for α ∈ C and i ∈ N. (21)

Thus if ε(α, λ) is nonzero, it is the sign of the unique permutation σ ∈ S∞, that
transforms α[ ] into λ[ ].

Instead of using sequences α[ ], one could understand ε(α, λ) using an alternative
way for the group S∞ to act on finitely supported sequences of integers: defining σ ·
α =

(
ασ−1(i) + i − σ−1(i)

)
i∈N

, one may interpret ε(α, λ) as the sign of the unique
permutation σ ∈ S∞, if any, such that σ · α = λ. However, considering sequences
α[ ] has the advantage that they can be interpreted directly in a graphical manner, in
particular when α is a partition. Each part λi of a partition λ corresponds to a row of
its diagram [λ], and therefore to a unique vertical segment of the bottom right boundary
of [λ], namely the segment that delimits row i of [λ] to the right. In case λi = 0, row i
of [λ] is empty, but we can still consider it as delimited to the right by the segment on
the vertical axis that crosses row i. Now, whereas the sequence λ records the horizontal
coordinates of these vertical segments (taken from top to bottom), the sequence λ[ ]
records their “diagonal coordinates”, where a segment has diagonal coordinate d if it
connects points on diagonals d and d + 1. For instance, for λ = (7, 5, 2, 2, 1) the shape
of the boundary can be drawn as

,

and the sequence of the diagonal coordinates of its vertical segments, taken from top
to bottom, is (6, 3,−1,−2,−4,−6,−7, . . .) = λ[ ]. For general compositions α one could
define a “diagram” in the same way as for partitions (although we did not), and while
their boundaries are more ragged, reading off the diagonal coordinates of the vertical
segments from top to bottom still gives the sequence α[ ].

Let us make more precise some terms that were used above. Both squares and points
are formally elements of N × N, but we shall treat them as different types of objects.
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1.5 Diagram boundaries

The square (i, j) has four corners, which are the points in the set {i, i + 1} × {j, j + 1},
so the square has the same coordinates as (and is formally speaking identified with)
its top left corner; this is in keeping with our convention to index by i the interval
from i to i + 1. Here we shall treat the diagonals Dd (which were defined in (1))
as sets of points, which should not be too confusing since a square “lies on the same
diagonal” as its top left corner. The boundary associated to λ ∈ P consists of a set
of points, one on each diagonal Dd, which are connected by edges between the point
on Dd and the point on Dd+1 for each d ∈ Z. Using the fact that each diagonal is
totally ordered under the coordinate-wise partial ordering of points, the point on Dd

can be characterised as the minimal element of the difference set Dd \ [λ], in other words
the top-leftmost point on Dd that is not the top-left corner of any square of [λ]. The
edges of this boundary are also indexed by numbers d ∈ Z (their diagonal coordinate),
as described above. Thus the vertical edge associated to the part λi of λ is the one
between the points (i, λi) and (i + 1, λi), which has as diagonal coordinate the index
λi − (i +1) = λ[i] of the diagonal containing the latter point. In the example above the
vertical segments are (0, 7)–(1, 7), (1, 5)–(2, 5), (2, 2)–(3, 2), (3, 2)–(4, 2), (4, 1)–(5, 1),
(5, 0)–(6, 0), (6, 0)–(7, 0), . . .

We did not use the horizontal segments of the boundary associated to λ ∈ P. How-
ever, since the sequence λ[ ] is strictly decreasing, it is entirely determined by the set
{λ[i] | i ∈ N } ⊂ Z, and the set of diagonal coordinates of the horizontal segments
of the boundary forms the complement of that set in Z, which can be written as
{−1 − λt[j] | j ∈ N }. It is often useful to think of λ as represented by the charac-
teristic function of the set {λ[i] | i ∈ N }, i.e., the function Z → {0, 1} that takes the
value 1 at d if d is the diagonal coordinate of a vertical segment of the boundary, and
the value 0 if d is the diagonal coordinate of a horizontal segment. In turn that function
can be thought of as a doubly infinite sequence of bits (the edge sequence of λ), which
describes the form of the boundary, traversed from bottom left to top right. The rela-
tions µ ↼ λ, µ ↽ λ and µ ≺r(k) λ can be easily understood in terms of transpositions of
bits in edge sequences; notably µ ≺r(k) λ means that the edge sequence of λ is obtained
from that of µ by transposing a single bit 1 with a bit 0 that is k places to its right. This
is graphically obvious if we draw the diagram of the k by superimposing the boundaries
associated to the partitions involved:

(7, 5, 2, 2, 1) ≺r(10) (7, 6, 6, 3, 3, 2): ;

the transposition involves the underlined bits in · · · 1111010110001001000 · · ·. Moreover
ht(λ/µ) is the sum of the bits that are being “jumped over” during the transposition,
which is 4 in the example.

1.5.1. Proposition. For k > 0 and µ, λ ∈ P, the relation µ ≺r(k) λ holds if and only
if there exist indices i0, i1 ∈ Z such that {µ[i] | i ∈ N− {i0} } = {λ[i] | i ∈ N − {i1} }
and µ[i0] + k = λ[i1]. In this case one has moreover ht(λ/µ) = i0 − i1.

the electronic journal of combinatorics 11(2) (2006), #A5 14



2 The Pieri and Murnaghan-Nakayama rules

Proof. By definition, µ ≺r(k) λ means that k consecutive points on the boundary
associated to µ must be moved one place down their diagonal to reach the boundary
associated to λ. This means that only the two segments that link a point of this
subset of k points and a point of its complement change orientation, and their diagonal
coordinates differ by k. In terms of the set {µ[i] | i ∈ N }, this means that one element
µ[i0] is replaced by µ[i0] + k = λ[i1], and since i0 and i1 are the row numbers of the
vertical boundary segments with diagonal coordinates µ[i0] and λ[i1], respectively, one
has ht(λ/µ) = i0 − i1.

§2. The Pieri and Murnaghan-Nakayama rules.
In this section we shall compute the product of Schur polynomials by respectively el-
ementary, power-sum and complete symmetric functions, expressing the result in the
basis of Schur functions. These lead to nice combinatorial formulae known as the Pieri
and Murnaghan-Nakayama rules, in which one encounters the notions of vertical and
horizontal strips, and of ribbons.

Before starting our computations, we consider the validity of summations involving
the values sα for all α ∈ Cn at once. Although each of these is either zero or up to a sign
equal to one of the finitely many Schur functions sλ with λ ∈ Pn, this does not prove
that only finitely many sα are nonzero, and such summations therefore well defined.
The following proposition shows that this is nevertheless the case.

2.1. Proposition. If sα 6= 0 for some α ∈ Cn, then α ∈ Nn, where Nn is considered
as subset of C.

Proof. If sα 6= 0, then there exists λ ∈ Pn ⊆ Nn with ε(α, λ) 6= 0. Now the sequence
α[ ] is a permutation of λ[ ], and therefore in particular it contains all values −1 − i
for i ≥ n as entries. If α had any part αi > 0 with i ≥ n, then for the largest
such i, the value −1 − i would not occur in the sequence α[ ], which would give a
contradiction. Therefore one must have α ∈ Nn.

The starting point of our approach is a very simple formula describing the multi-
plication between a Schur function and an arbitrary symmetric function.

2.2. Lemma. Let f ∈ Λ, and write f [XN] as a sum of monomials f [XN] =∑
α∈C cαXα, then

fsβ =
∑
α∈C

cαsα+β for all β ∈ C.

Proof. First, we must assure that the summation is effectively finite (or stated more
fancily: that it converges in Λ for the discrete topology), so that the right hand side
is well defined. For this it suffices to observe that in order to have cα 6= 0 one must
have |α| ≤ deg f , and that in order to have sα+β 6= 0, one must have α + β ∈ N|α|+|β|

by proposition 2.1, and therefore certainly α ∈ N|α|+|β|, which leaves only finitely
many possibilities for α. With this point settled, it will suffice to prove that the image
f [X[n]]sβ[X[n]] =

∑
α∈Nn cαsα+β [X[n]] of the identity in Λ[n] holds for all n ∈ N. We

may assume β ∈ Nn; it is then obvious that f [X[n]]Xδn+β =
∑

α∈Nn cαXδn+α+β . To
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2 The Pieri and Murnaghan-Nakayama rules

this equation we apply every σ ∈ Sn, acting by permutation of the indeterminates,
and take the alternating sum by ε(σ) of the resulting equations. Since f [X[n]]
is invariant under such permutations, we obtain the equation f [X[n]]aδn+β [X[n]] =∑

α∈Nn cαaδn+α+β[X[n]] in A[n]. Now division by ∆n gives the desired identity.

This lemma can be paraphrased as follows: when multiplying symmetric functions
by Schur functions, one may behave as if Xαsβ were equal to sα+β (although of course
it is not). This lemma will be our main tool for this paper. It allows formulae for
products of symmetric functions by Schur functions to be obtained very easily, but
the resulting expression on the right hand side is not normalised, even when β ∈ P.
After normalisation one gets an alternating summation with possibly many internal
cancellations; the remaining task is to perform such cancellations explicitly, and describe
the surviving terms in a combinatorial way. This often involves a certain amount of
arbitrariness: in general an alternating sum neither uniquely determines the set of terms
that will survive the cancellation, nor the way in which the other terms are paired up so
as to cancel (in so far as they are not already null initially). In our applications however,
a set of candidates for survival that are already normalised will usually present itself,
and the arbitrariness is limited to the way in which the remaining terms cancel.

Here is a concrete example of a computation using lemma 2.2, namely that of the
decomposition of the product m(3,1)s(2,1) into Schur functions. We traverse the S∞-
orbit of (3, 1) in decreasing lexicographic order ((3, 1), (3, 0, 1), (3, 0, 0, 1), . . . , (1, 3),
(1, 0, 3), . . . , (0, 3, 1), . . . , (0, 1, 3), . . . , (0, 0, 3, 1), . . . ), but omit those elements α for
which ((2, 1) + α)[ ] has repeated entries. After normalisation there are no cancellations,
but in two cases a pair of terms is combined into one:

m(3,1)s(2,1) =
∑

α∈S∞·(3,1)

s(2,1)+α

= s(5,2) + s(5,1,1) + s(3,1,3) + s(3,1,0,0,3) + s(2,4,1)

+ s(2,2,0,3) + s(2,2,0,0,3) + s(2,1,3,1) + s(2,1,1,0,0,3) + s(2,1,0,0,3,1)

= s(5,2) + s(5,1,1) − s(3,2,2) + s(3,1,1,1,1) − s(3,3,1)

− 2s(2,2,2,1) + s(2,2,1,1,1) + 2s(2,1,1,1,1,1).

In the remainder of this section we shall apply the lemma three times, in each case
for a symmetric function f all of whose nonzero coefficients cα are equal to 1. The
first and easiest application will be for f = ed, where the monomials Xα with nonzero
coefficients are those for binary compositions α of d.

2.3. Proposition. For d ∈ N and µ ∈ Pn one has edsµ =
∑

λ∈Pn+d
[µ ↼ λ ] sλ.

Proof. Applying lemma 2.2 gives edsµ =
∑

α∈C[2]
d

sµ+α. Now µ + α can only fail
to be a partition if for some index i one has µi = µi+1 while (αi, αi+1) = (0, 1); in
that case one has sµ+α = 0 since (µ + α)[i] = (µ + α)[i + 1]. The remaining terms
are already normalised, and the corresponding values of µ + α run through the set
{λ ∈ Pn+d | µ ↼ λ } by the definition (1.1.1) of the relation ‘↼’.
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As a first consequence of this proposition one finds for µ = (0) that s1(d) = ed, since
s(0) = 1 and {λ ∈ Pd | 0 ↼ λ } = Pd ∩C[2] = {1(d)}; this fact can also be easily deduced
directly from the definition of Schur functions. Another instance of the proposition
gives e1sµ =

∑
λ∈Pn+1

[µ ⊆ λ ] sλ for µ ∈ Pn.
In this first application of lemma 2.2, it sufficed to discard the null terms in the

resulting summation. Our second application, which will be for f = pk, is slightly more
complicated: it still suffices to discard the null terms (there are no cancellations of pairs
of terms), but the remaining terms are not all normalised, and in normalising them some
signs do remain (for k ≥ 2). This will in fact be the only case in our paper where we
obtain a result that is not a positive sum of Schur functions. The monomials occurring
in pk are just the powers Xk

i , which are the monomials Xα where α is a permutation
of the composition (k), in other words a composition of k with just one nonzero part
αi = k for some i ∈ N.

2.4. Proposition. For k > 0 and µ ∈ Pn one has pksµ =
∑

λ∈Pn+k
[µ ≺r(k)

λ ] (−1)ht(λ/µ)sλ.

Proof. Applying lemma 2.2 gives pksµ =
∑

i∈N sµ+α(i) where α(i) = ([ i = j ] k)j∈N

is the composition of k with a unique nonzero part at position i. If for any j < i
one has µ[i] + k = µ[j], then the corresponding term sµ+α(i) vanishes, because the
sequence (µ + α(i))[ ] has equal entries at positions i and j. We discard such terms,
and henceforth suppose that no such j exists. Then the sequence (µ + α(i))[ ] can be
transformed into a strictly decreasing sequence by successively transposing the entry
(µ + α(i))[i] = µ[i] + k with its preceding entry some number of times (possibly zero),
and the resulting sequence is of the form λ[ ] for some λ ∈ Pn+k. If j ≤ i is the final
position of the term µ[i] + k, so that µ[i] + k = λ[j], then the sign of the permutation
that has been applied is (−1)i−j = ε(µ + α(i), λ). Now by proposition 1.5.1 one has
µ ≺r(k) λ and ht(λ/µ) = i − j, and the proposition follows.

One obtains for instance, for µ = (0), an expression of pk as an alternating sum
of “hook shape” Schur functions: pk =

∑
i∈[k](−1)isν(i) where ν(i) = (k − i, 1(i)) is the

partition whose nonzero parts consist of one part k − i followed by i parts 1; a concrete
example is p4 = s(4) − s(3,1) + s(2,1,1) − s(1,1,1,1).

Using (15), one sees that this proposition is equivalent to the statement that for
λ ∈ Pn, k > 0, and f ∈ Λ of degree n − k, one has

〈
pkf

∣∣ sλ

〉
=

∑
µ∈Pn−k

[µ ≺r(k) λ ] (−1)ht(λ/µ)
〈
f
∣∣ sµ

〉
. (22)

Since it is known that a scalar product of the form
〈
pk1 · · · pkl

∣∣ sλ

〉
can be interpreted

as the value of the symmetric group character parametrised by λ on the class of permu-
tations with cycles of lengths k1, . . . , kl, this gives a recurrence relation for symmetric
group characters. For instance, the value of the S17-character parametrised by λ =
(7, 5, 2, 2, 1) on a permutation of cycle type (4, 3, 3, 2, 2, 1, 1, 1) is

〈
p4 p2

3 p2
2 p3

1

∣∣ sλ

〉
,

which can be computed either as −〈 p2
3 p2

2 p3
1

∣∣ s(4,4,2,2,1)

〉
+
〈
p2
3 p2

2 p3
1

∣∣ s(7,5,1)

〉
using
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2 The Pieri and Murnaghan-Nakayama rules

the recurrence relation for k = 4, or as
〈
p4 p3 p2

2 p3
1

∣∣ s(7,2,2,2,1)

〉− 〈 p4 p3 p2
2 p3

1

∣∣ s(7,5,2)

〉
using the recurrence relation for k = 3 (one could also use k = 2 or k = 1, but
that gives expressions with 3 and 4 terms, respectively); if the character tables for
S13 or S14 have been previously determined, this can be evaluated to give the value
−3+−2 = −4−1 = −5. This recurrence relation is known as the Murnaghan-Nakayama
rule, and appears in [Mur] and [Nak]. That name is also given to the combinatorial
expression for

〈
pk1 · · · pkl

∣∣ sλ

〉
in terms of chains of partitions related by ‘≺r(k)’ for

varying k, that can be obtained by expanding the recurrence relation recursively; how-
ever, in that form, which can already be found in [LiRi], the rule is rather less practical
for computations, due to the large number of terms it often gives (which in addition
depends heavily on the order in which the factors pki

are extracted).
Our third application of lemma 2.2 will be for f = hd; here the coefficients cα are

nonzero for all compositions α ∈ Cd. Thus the summation obtained from the lemma
gives many more terms than in the previous applications, and we must perform some real
cancellations. Yet, surprisingly, the resulting linear combination of Schur functions will
be quite similar to the one obtained in proposition 2.3, notably all nonzero coefficients
are equal to 1. In fact the only difference is the replacement of vertical strips by
horizontal strips. That proposition and the following one are known as the Pieri rules
(or Pieri formulae).

2.5. Proposition. For d ∈ N and µ ∈ Pn one has hdsµ =
∑

λ∈Pn+d
[µ ↽ λ ] sλ.

Proof. Application of lemma 2.2 gives hdsµ =
∑

α∈Cd
sµ+α. In this summation we must

cancel all the terms with µ 6↽ µ+α, in other words those terms with (µ+α)i+1 > µi for
some index i ∈ N. That inequality is equivalent to (µ + α)[i + 1] ≥ µ[i], which means
that (µ + α)[i + 1] lies outside the “safe interval” Ii+1 = { j ∈ Z | µ[i + 1] ≤ j < µ[i] }.
Setting in addition to this I0 = { j ∈ Z | µ[0] ≤ j }, the intervals Ii form a partition
of Z, so α determines a unique map f :N → N such that (µ + α)[i] ∈ If(i) for all i.
Moreover, one clearly has f(i) ≤ i for all i, so if f is injective, it must be the identity,
which is equivalent to µ ↽ µ + α. We must then cancel the terms for those α for
which f is not injective. Indeed these terms can be cancelled, since if f(i0) = f(i1)
for i0 6= i1, then the transposition of entries i0 and i1 of the sequence (µ + α)[ ] gives
a sequence of the form (µ + α′)[ ], with α′ ∈ Cd and sµ+α + sµ+α′ = 0; either these
are two distinct terms that cancel each other, or if α = α′ they are twice the same
term, which is then null already. It remains to show that cancelling terms can be
paired up effectively, in other words that a concrete pair of indices (i0, i1) can be
chosen for each α ∈ Cd with µ 6↽ µ + α, in such a way that for the resulting α′

the same pair (i0, i1) will be chosen. This is easy: since the function f is the same
for any α′ that would cancel with α, any choice that depends only on f will do;
for instance one can take the minimal possible pair (i0, i1) in lexicographic order.

Similarly to what we saw for proposition 2.3, a first consequence of proposition 2.5
is that s(d) = hd, which is not quite as easy to obtain directly from definition 1.4.2 as
s1(d) = ed is. As an illustration we choose a rather modest example, since the number of
terms in the summation tends to grow rather rapidly: one has h4s(4,2,2,1) = s(9,2,2,1) +
s(8,3,2,1) + s(8,2,2,2) + s(8,2,2,2,1) + s(7,4,2,1) + s(7,3,2,2) + s(7,3,2,1,1) + s(7,2,2,2,1) + s(6,4,2,2) +
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2 The Pieri and Murnaghan-Nakayama rules

s(6,4,2,1,1) + s(6,3,2,2,1) + s(5,4,2,2,1). Although a dozen terms remain, the number of
nonzero terms produced by application of lemma 2.2 before normalisation is considerably
larger, namely 178. To illustrate the cancellation, consider the cancelled term s(4,2,4,2,2)

that arises for α = (0, 0, 2, 1, 2). Putting µ = (4, 2, 2, 1), and comparing (µ + α)[ ] =
(4, 2, 4, 2, 2)[ ] = (3, 0, 1,−2,−3,−6,−7 . . .) with µ[ ] = (3, 0,−1,−3,−5,−6,−7 . . .), we
see that the entries of the former sequence that lie outside their respective save intervals
are (µ + α)[2] = 1 /∈ I2 = {−1} and (µ + α)[4] = −3 /∈ I4 = {−5,−4}. Since in fact
1 ∈ I1 = {0, 1, 2} and −3 ∈ I3 = {−3,−2}, the values f(i) 6= i are f(2) = 1 and
f(4) = 3. Therefore a term sµ+α′ cancelling sµ+α can be obtained either by transposing
the entries 0 and 1 at indices 1 and 2 of (µ + α)[ ] or by transposing the entries −2
and −3 at indices 3 and 4. The result can be written as (4, 3, 3, 2, 2)[ ] respectively
as (4, 2, 4, 1, 3)[ ], and indeed one has s(4,3,3,2,2) = s(4,2,4,1,3) = −s(4,2,4,2,2), while the
occurring compositions can be written as µ + α′ for α′ = (0, 1, 1, 1, 2), (0, 0, 2, 0, 3),
respectively, so that both s(4,3,3,2,2) and s(4,2,4,1,3) occur in the summation. The rule of
choosing the lexicographically first pair of indices would in fact make the term s(4,2,4,2,2)

cancel against s(4,3,3,2,2).
As with proposition 2.4, propositions 2.3 and 2.5 lead to recurrence relations for

certain scalar products. In particular we obtain such relations for the Kostka numbers:

K ′
λ/µ,α =

〈
sµeα

∣∣ sλ

〉
=

∑
µ′∈P|µ|+α0

[µ ↼ µ′ ]K ′
λ/µ′,(α1,α2,...), (23)

Kλ/µ,α =
〈
sµhα

∣∣ sλ

〉
=

∑
µ′∈P|µ|+α0

[µ ↽ µ′ ]Kλ/µ′,(α1,α2,...), (24)

for all λ, µ ∈ P and α ∈ C. One can recursively apply these recurrence relations; using
the basic case K ′

λ/λ,α = K ′
λ/λ,α = [α = (0) ] and comparing with definition 1.2.2, one

finds the promised combinatorial description of Kostka numbers.

2.6. Corollary. For λ, µ ∈ P and α ∈ C, the Kostka number Kλ/µ,α equals the
number # SST(λ/µ, α) of semistandard tableaux of shape λ/µ and weight α, and
K ′

λ/µ,α is the number of transposed semistandard tableaux of shape λ/µ and weight α.

As a consequence the two are related by K ′
λ/µ,α = Kλt/µt,α.

This description shows that one has # SST(λ/µ, α) = # SST(λ/µ, σ(α)) for any
σ ∈ S∞, and it turns equation (18) into a combinatorial expression of hα and eα in
terms of Schur functions. In fact, we may consider hα and eα as generating polynomials
in Λ of semistandard (respectively transposed semistandard) Young tableaux of weight α
by shape, in the basis of Schur functions:

hα =
∑

λ∈P|α|

∑
T∈SST(λ)

[wt(T ) = α ] sλ, (25)

eα =
∑

λ∈P|α|

∑
T∈SST(λt)

[wt(T ) = α ] sλ. (26)
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3 The Cauchy, Jacobi-Trudi and Von Nägelsbach-Kostka identities

Besides the combinatorial description of corollary 2.6, one also has the following expres-
sions for Kλ/µ,β and K ′

λ/µ,β that can be obtained directly from lemma 2.2, using (10)
and (9):

Kλ/µ,β =
∑
α∈C

#Mα,β

〈
sµ+α

∣∣ sλ

〉
=
∑

M∈M
[ col(M) = β ] ε(µ + row(M), λ), (27)

K ′
λ/µ,β =

∑
α∈C

#M[2]

α,β

〈
sµ+α

∣∣ sλ

〉
=

∑
M∈M[2]

[ col(M) = β ] ε(µ + row(M), λ). (28)

These expressions produce the Kostka numbers by an alternating enumeration of matri-
ces rather than by a direct enumeration of tableaux, and are therefore rather inefficient
as a means of computing those numbers. However it will prove useful to have, as a com-
plement to corollary 2.6, these descriptions that do not involve semistandard tableaux,
or horizontal or vertical strips.

§3. The Cauchy, Jacobi-Trudi and Von Nägelsbach-Kostka identities.

We have expressed products of elementary, of power sum, and of complete symmetric
functions as Z-linear combinations of Schur functions. However we have not yet ex-
pressed Schur functions themselves in terms of anything else, not even in terms of mono-
mials, other than via the polynomial division used in their definition. In this section we
shall provide such expressions of (skew) Schur functions, in terms of minimal symmetric
functions (which implies an expression in terms of monomials), in terms of products hα

of complete symmetric functions, and in terms of products eα of elementary symmetric
functions. The latter two expressions will eventually be obtained via another applica-
tion of lemma 2.2, but the expression in terms of minimal symmetric functions will be
obtained in an indirect manner, by establishing that the dual basis of {mλ | λ ∈ P }
with respect to the scalar product on Λ is in fact the set {hλ | λ ∈ P } (with the obvious
correspondence between their elements, in other words

〈
mλ

∣∣ hµ

〉
= [λ = µ ] ). Another

way of formulating that property is that scalar products
〈
f
∣∣ hλ

〉
can be interpreted as

the coefficient of mλ in the expression of f as linear combination of minimal symmetric
functions, and hence that

〈
f
∣∣ hα

〉
can be interpreted as the coefficient of Xα in the

expansion of f [XN] into monomials. This will imply in particular that Kλ/µ,α can be
interpreted as the coefficient of Xα in sλ/µ[XN].

Let us first show that {hλ | λ ∈ P } is a Z-basis of Λ in the first place. Since its
elements are precisely the monomials that can be formed from the set {hi | i > 0 }, this
amounts to showing that those hi are algebraically independent generators of Λ, which
can then be viewed as a polynomial ring Z[h1, h2, . . .]. One has hµ =

∑
λ∈Pn

Kλ,µsλ for
µ ∈ Pn, while { sλ | λ ∈ P } is known to be a Z-basis of Λ, so we can obtain our goal by
showing that the matrix (Kλ,µ)λ,µ∈Pn

of Kostka numbers is invertible for every n. That
will follow from the fact that this matrix is unitriangular for the dominance ordering
on Pn.

3.1. Proposition. For λ ∈ Pn and α ∈ Cn, Kλ,α 6= 0 implies α+ ≤ λ; moreover
Kλ,α = 1 if α+ = λ.
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3 The Cauchy, Jacobi-Trudi and Von Nägelsbach-Kostka identities

Proof. Since Kλ,α = Kλ,α+ we may assume α = α+ ∈ P. We use the description
of Kλ,α in corollary 2.6. For any Young tableau (λ(i))i∈N ∈ SST(λ), the diagram
[λ(k)] is contained in the topmost k rows of [λ], for all k ∈ N. The existence of
(λ(i))i∈N ∈ SST(λ, α) therefore implies

∑
i∈[k] αi = |λ(k)| ≤∑i∈[k] λi. If α = λ, we see

that [λ(k)] must coincide with the topmost k rows of [λ], whence # SST(λ, λ) = 1.

A combinatorial proof of this proposition for general α ∈ C, without using Kλ,α =
Kλ,α+ , can also be given, but is slightly more awkward to formulate (one basically
argues that the number of squares contributed by any column to the first k rows of [λ]
is at least as large as the contribution, in any T ∈ SST(λ, α), of the k largest parts of α
to that column). But we shall only use the case α ∈ P.

The proposition implies that the matrix (Kλ,µ)λ,µ∈Pn
is upper unitriangular, and

hence invertible, if Pn is ordered in such a way that λ comes before µ whenever λ ≥ µ,
for instance by decreasing lexicographic order. Since, by corollary 2.6, (K ′

λ,µ)λ,µ∈Pn
is

obtained from that matrix by a permutation of its rows (the permutation being given by
the map λ 7→ λt:Pn → Pn), we may conclude from eµ =

∑
λ∈Pn

K ′
λ,µsλ that Λ is also a

polynomial ring Z[e1, e2, e3 . . .], a fact that is sometimes called the fundamental theorem
of symmetric functions, and that is usually proved without using Schur functions.

To prove that the basis {hλ | λ ∈ P } is dual to {mλ | λ ∈ P }, one may establish,
for f running through some basis of Λ, that f =

∑
λ∈P

〈
f
∣∣ hλ

〉
mλ or equivalently that

f [XN] =
∑

α∈C
〈
f
∣∣ hα

〉
Xα. It is not practical to use the basis of Schur functions for

this, since in that case those expressions are precisely what we would like to conclude
from duality. However for f = eβ or for f = hβ we already know their expressions in
terms of monomials, which are given in equations (9) and (10), while the scalar prod-
ucts that should coincide with the coefficients in those equations are easily computed.
Indeed using equations (18) to develop these elements in the orthonormal basis of Schur
functions one finds

〈
eβ

∣∣ hα

〉
=
∑

λ∈P K ′
λ,βKλ,α and

〈
hβ

∣∣ hα

〉
=
∑

λ∈P Kλ,βKλ,α.
Thus we need to show the following.

3.2. Proposition. For every α, β ∈ C one has

#Mα,β =
∑
λ∈P

Kλ,αKλ,β (29)

and

#M[2]

α,β =
∑
λ∈P

Kλ,αK ′
λ,β. (30)

Proof. This is the one place where we import a result from elsewhere. The proposition
expresses the enumerative consequences of the bijections between integer matrices and
pairs of semistandard tableaux of equal shape defined in [Knu], the first of which is
known as the RSK-correspondence.

3.3. Corollary. The Z-bases {hλ | λ ∈ P } and {mλ | λ ∈ P } of Λ are dual to each
other with respect to

〈 · ∣∣ · 〉: for every f ∈ Λ one has f =
∑

λ∈P
〈
hλ

∣∣ f 〉mλ, and

consequently f [XN] =
∑

α∈C
〈
hα

∣∣ f 〉Xα.
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Proof. Since we have shown that {hλ | λ ∈ P } and { eλ | λ ∈ P } are Z-bases of Λ,
either of the special cases f = hβ or f = eβ that are given by proposition 3.2 suffice
to prove the general case f ∈ Λ.

Applying this corollary to f = sλ/µ gives the expressions that we were after, of
(skew) Schur functions in terms of minimal symmetric function and in terms of mono-
mials:

sλ/µ =
∑
ν∈P

Kλ/µ,νmν , (31)

sλ/µ[XN] =
∑
α∈C

Kλ/µ,αXα =
∑

T∈SST(λ/µ)

Xwt(T ). (32)

For µ = (0), the final expression describes sλ[XN] as the generating series in Z[[XN]]
of semistandard Young tableaux of shape λ by weight. This is often taken as the
definition of Schur functions (for instance in [Stan]), but in our setting it is a non-
trivial statement that provides an alternative combinatorial interpretation of semi-
standard Young tableaux T ∈ SST(λ, α): rather than corresponding to constituent
Schur functions sλ of hα, they now correspond to constituent monomials Xα of sλ[XN].
One may ask whether this result can be proved in a bijective manner. The way in
which we obtained it does not qualify as a bijective proof: although the main in-
gredients (lemma 2.2 and proposition 3.2) are based on explicit correspondences, we
did need some (linear) algebraic reasoning. The most direct possible bijective proof
would be to give, for f =

∑
α∈Nn

∑
T∈SST(λ,α) Xα ∈ Z[X[n]], a correspondence be-

tween terms that establishes f∆n = aδn+λ[X[n]]. That would require a fairly com-
plicated correspondence, but there is a simpler possibility that nevertheless is more
or less equivalent: taking f =

∑
T∈SST(λ) Xwt(T ) and β = (0) in lemma 2.2, its

right hand side
∑

T∈SST(λ) swt(T ) should reduce by cancellations to sλ, and one may
seek to describe such a cancellation process explicitly. For instance for λ = (2, 1)
the right hand side, restricted to wt(T ) ∈ N3 thanks to proposition 2.1, gives
s(2,1) + s(2,0,1) + s(1,2) + 2s(1,1,1) + s(1,0,2) + s(0,2,1) + s(0,1,2); here the terms s(2,0,1),
s(1,2), and s(0,1,2) are null, and the remaining terms except the initial one can be can-
celled using 0 = s(1,1,1) + s(1,0,2) = s(1,1,1) + s(0,2,1). We shall see below, when we
consider products of Schur functions, that an explicit and general description of such a
cancellation can indeed be given.

Now that we have identified the generating series of semistandard Young tableaux
of a given shape by weight, we may turn the equations of proposition 3.2 into generating
series identities by multiplying them by XαY β and summing over α, β ∈ C; one obtains

∏
i,j∈N

1
1 − XiYj

=
∑
λ∈P

sλ[XN]sλ[YN] (33)

and ∏
i,j∈N

(1 + XiYj) =
∑
λ∈P

sλ[XN]sλt [YN]. (34)
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The first of these is called the Cauchy identity (although it is difficult to justify the
attribution; for details see [Stan, p. 397]), and the second the dual Cauchy identity.
From (12) and (33) one deduces (after combining terms in the left hand side of the
former with a common value β+ = λ) that

∑
λ∈P

hλ[XN]mλ[YN] =
∑
λ∈P

sλ[XN]sλ[YN] (35)

in Z[[XN, YN]], which is an alternative formulation of the duality of corollary 3.3. Sim-
ilarly (11) and (34) give

∑
λ∈P

eλ[XN]mλ[YN] =
∑
λ∈P

sλt [XN]sλ[YN]. (36)

This equation does not express a duality like the previous one, but one can relate the
two equations using the Z-linear involution ω: Λ → Λ that maps sλ 7→ sλt for all
λ ∈ P. By (18), the fact that K ′

λ,α = Kλt,α implies ω(hα) = eα for all α ∈ C, so
ω coincides with the ring morphism Λ → Λ that sends hi 7→ ei for all i > 0 (which
exists since Λ = Z[h1, h2, . . .]). Then (36) can be obtained from (35) by applying, to
the subring of Z[[XN, YN]] that is the the image of Λ⊗Λ via f ⊗ g 7→ f [XN]g[YN], the
ring automorphism corresponding to the automorphism ω ⊗ 1 of Λ⊗Λ. (Actually that
is not quite true: one needs to take the closure of the subring in the topology of power
series rings, and extend the automorphism to that closure by continuity.)

We now proceed to express skew Schur functions as Z-linear combinations of el-
ements hα. Since duality of bases is a symmetric notion, the coefficient of hν in the
expression of any f ∈ Λ in the basis {hλ | λ ∈ P } can be computed as

〈
mν

∣∣ f 〉. Ap-
plying this for f = sλ/µ, we see that its coefficient of hν is

〈
mν

∣∣ sλ/µ

〉
=
〈
sµmν

∣∣ sλ

〉
.

This number can be determined by applying lemma 2.2 for mν (a case that we did not
yet exploit before), which gives as result the expression

∑
α∈C[α

+ = ν ] ε(µ + α, λ).
This shows that

sλ/µ =
∑
ν∈P

∑
α∈C

[α+ = ν ] ε(µ + α, λ)hν =
∑
α∈C

ε(µ + α, λ)hα, (37)

since hν = hα when α+ = ν. This achieves the expression of skew Schur functions in
terms of complete symmetric functions, but we shall proceed to make the expression
more transparent. The process will be somewhat different from what we have seen
before, as we shall not actually cancel any pairs of terms, nor even group together terms
for values of hα that are equal.

The nonzero terms of the final summation of (37) can be found by permuting the
terms of λ[ ] in all possible ways such that each term of the resulting sequence σ(λ[ ])
is at least as large as the corresponding term of µ[ ] (in formula, λ[σ−1(i)] ≥ µ[i] for
all i ∈ N), which condition we shall abbreviate as σ(λ[ ]) ≥ µ[ ]; then α = σ(λ[ ]) − µ[ ]
gives a contribution ε(σ)hα. From the proof of proposition 2.1 we see that if λ ∈ Nl, then
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one needs to consider only permutations σ ∈ Sl. For instance for λ/µ = (5, 4, 2)/(3, 1),
only permutations of the 3 initial terms of λ[ ] = (4, 2,−1,−4, . . .) need to be considered,
and only the permutations giving (4, 2,−1), (2, 4,−1), (4,−1, 2), and (2,−1, 4) satisfy
σ(λ[ ]) ≥ µ[ ] = (2,−1,−3, . . .); for this case (37) therefore gives s(5,4,2)/(3,1) = h(2,3,2) −
h(0,5,2) − h(2,0,5) + h(0,0,7) = h(3,2,2) − 2h(5,2) + h7. We can now write (37) as

sλ/µ =
∑
σ∈Sl

[ σ(λ[ ]) ≥ µ[ ] ] ε(σ) hσ(λ[ ])−µ[ ]. (38)

With the convention that hi = 0 when i < 0 (which will take care of the factor [ σ(λ[ ]) ≥
µ[ ] ] ), we can write this expression as the determinant of a matrix whose entries are
complete symmetric functions:

sλ/µ = det
(
hλ[i]−µ[j]

)
i,j∈[l]

when λ ∈ Nl. (39)

This identity is called the Jacobi-Trudi identity. For the example above, it gives

s(5,4,2)/(3,1) =

∣∣∣∣∣∣
h2 h5 h7

h0 h3 h5

0 h0 h2

∣∣∣∣∣∣ = h(3,2,2) − 2h(5,2) + h7.

To obtain an expression of skew Schur functions in terms of elementary symmetric
functions, we may apply the automorphism ω to equation (37), giving

sλt/µt =
∑
α∈C

ε(µ + α, λ)eα, (40)

from which one deduces as above, again with the convention that ei = 0 when i < 0,
that

sλt/µt = det
(
eλ[i]−µ[j]

)
i,j∈[l]

when λ ∈ Nl, (41)

or equivalently
sλ/µ = det

(
eλt[i]−µt[j]

)
i,j∈[r]

when λ0 ≤ r. (42)

This final equation is sometimes referred to as the dual Jacobi-Trudi identity, but we
prefer to call it the Von Nägelsbach-Kostka identity (following Littlewood, see [Litt,
p. 87], but restoring the spelling that had been lost in translation). We note that Kostka
proved the identity in [Kos] by an ingenious manipulation of determinants representing
alternants, see [Muir, p. 155]; see also [Stan, p. 397].
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§4. The Gessel-Viennot correspondences.
Let us compare equation (27), which expresses the Kostka number Kλ/µ,β as an alter-
nating sum over integral matrices with column sums given by β, with the description
of Kλ/µ,β as counting semistandard tableaux of shape λ/µ and weight β. The inte-
gral encodings M of such tableaux (given in definition 1.2.3) are also matrices with
col(M) = β, and since moreover row(M) = λ − µ, these matrices contribute +1 to the
alternating sum in (27). Therefore these integral encodings give a subset of its terms
that completely accounts for the value of the alternating sum; apparently all remaining
terms cancel out. We can combine the observed identity for all β into a generating series
identity∑

β∈C
Kλ/µ,βXβ =

∑
M∈M

ε(µ + row(M), λ)Xcol(M) =
∑

M∈Tabl(λ/µ)

Xcol(M), (43)

where the second member is obtained from (27), and the third member from corollary 2.6
by taking integral encodings. In this section we shall discuss the reduction of the second
member to the third member by cancellations, and a similar question for an identity
derived from equation (28).

We know from (32) that the first and last members of (43) equal sλ/µ[XN], and
the cancellation that we consider is often associated with the Jacobi-Trudi identity.
Indeed, if one takes equation (10), slightly rewritten as hα[XN] =

∑
M∈M[ row(M) =

α ]Xcol(M), and substitutes it into (37), then one obtains

sλ/µ[XN] =
∑

M∈M
ε(µ + row(M), λ)Xcol(M), (44)

whose second member matches that of (43). We note however that we did not need (32)
or (37) to obtain (43).

In fact, the way we obtained (43) suggests a way to understand how to cancel terms
in it. Its second member was originally obtained from an application of lemma 2.2
for multiplication by hβ , while its third member was obtained by repeated applica-
tion of proposition 2.5 for individual multiplications by factors hβj

, each of which uses
lemma 2.2 followed by a pruning of the summation. It suffices to postpone such inter-
mediate pruning. Stated differently, for each term of the second member that needs to
be cancelled, one needs to find the factor hβj

responsible for this fact, and cancel the
term correspondingly.

Let M ∈ M with col(M) = β. Each column M t
j represents the exponent of a term

in the factor hβj
of hβ , so that the entire matrix represents the monomial Xrow(M) in

the expansion of hβ . If we have M ∈ Tabl(λ/µ), which means that M is the integral
encoding of some semistandard tableau T of shape λ/µ, then the sequence of partitions
(λ(l))l∈N that defines T can be found by starting with µ and successively adding the
compositions M t

j for increasing values of j: λ(l) = µ+
∑

j<l M t
j . Therefore the condition

that M ∈ Tabl(λ/µ) amounts to the requirement that µ +
∑

j<l M
t
j ↽ µ +

∑
j≤l M t

j

holds for all l ∈ N, and that moreover one has µ + row(M) = λ.
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Now suppose that M /∈ Tabl(λ/µ), so that M defines a term of the second member
of (43) that has to be cancelled. Should only the final part µ + row(M) = λ of the
condition M ∈ Tabl(λ/µ) fail, then µ + row(M) is a partition distinct from λ (recall
that α ↽ α′ implies that α, α′ ∈ P), which means that ε(µ + row(M), λ) = 0, and
the term defined by M is null (this case only arises because (43) just deals with the
coefficient

〈
hβ

∣∣ sλ/µ

〉
=
〈
sµhβ

∣∣ sλ

〉
rather than with all of sµhβ).

Putting that case aside, there must be an index l for which µ +
∑

j<l M t
j 6↽ µ +∑

j≤l M t
j , and we choose the minimal such l; this means that in the computation where

sµ is successively multiplied by the factors hβj
, the term determined by M is cancelled

after the multiplication by hβl
. At that point the term is sα with α = µ +

∑
j≤l M

t
j ,

and it is cancelled against a term sα′ defined similarly, but possibly with a different
composition instead of the final term M t

l of the summation (as usual we do not exclude
the possibility α′ = α, if already sα = 0). From the proof of proposition 2.5 we recall
that α′ is such that the sequence α′[ ] is obtained from α[ ] by interchanging its entries
at appropriately chosen distinct indices i0 and i1. Those indices were chosen in a
manner that ensures that the value that should replace M t

l in the expression for α′ is
a composition, i.e., it has no negative coefficients. That composition is in fact obtained
from M t

l by a transfer between the entries Mi0,l and Mi1,l, by which we mean the
replacement of those entries by some pair of natural numbers with the same sum.

We have considered M truncated to its columns M t
j with j ≤ l, and found another

such partial matrix such that their contributions to sµhβ0 · · ·hβl
cancel. It is clear

algebraically that the total contribution to sµhβ from matrices that extend the first
partial matrix cancels the total contribution from matrices that extend the other partial
matrix. However, to describe the cancellation in (43) combinatorially, we have to match
up the term for M with a specific term cancelling it, taking into account also the
columns M t

j with j > l. The obvious way to do this is to exchange, in addition to the
transfer between Mi0,l and Mi1,l, the entire remainders of rows i0 and i1 to the right
of those entries; in this way it is guaranteed that the values of (µ + row(M))[i0] and
(µ + row(M))[i1] are interchanged between a pair of matching matrices.

Here is a simple example to illustrate the construction of cancelling matrices. Let
λ/µ = (7, 5, 4)/(1) and

M =


 1 2 3

2 1 2
3 1 0


 ,

so that β = col(M) = (6, 4, 5). Then one already has µ +
∑

j<l M
t
j 6↽ µ +

∑
j≤l M

t
j for

l = 0, the concrete values being µ = (1) 6↽ (2, 2, 3) = µ+M t
0. Setting α = µ+M t

0 one has
α[ ] = (1, 0, 0,−4, . . .), and the indices (i0, i1) can be chosen in various ways. For instance
for (i0, i1) = (0, 1) one finds the sequence α′[ ] = (0, 1, 0,−4, . . .) for α′ = (1, 3, 3), which
can be realised by replacing M t

0 by (0, 3, 3). But one can also take (i0, i1) = (1, 2), which
permutes two identical entries of α[ ] and therefore gives α′′ = α, and an unchanged
column M t

0 (and indeed one has s(2,2,3) = 0). Performing the indicated changes to M ,
we find that the contribution to sµhβ from M could be cancelled by either one of the
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contributions from the matrices

M ′ =


 0 1 2

3 2 3
3 1 0


 or M ′′ =


 1 2 3

2 1 0
3 1 2


 .

Indeed one has s(7,5,4) = −s(4,8,4) = −s(7,3,6) (the subscripts were respectively computed
as µ + row(M), µ + row(M ′), and µ +row(M ′′)), which shows that the contribution of
M to the second member of (43) could cancel against that of M ′ or of M ′′; the rule of
choosing the minimal possible (i0, i1) would in fact select M ′. Apart from the operations
involved in the cancellation, the example illustrates the fact that when we cancel sα

against sα′ with α 6= α′, one might still have sα = 0; it also shows that cancelling a null
term sα in sµhβ0 · · ·hβl

“against itself” might lead to the cancellation of two distinct
terms in sµhβ .

There is a beautiful graphical way of visualising this cancellation, and the terms
that survive it, due to Gessel and Viennot [GeVi]. Set α(j) = µ +

∑
j′<j M t

j′ for j ∈ N,
so that M identifies the term sα(j) in the development of sµhβ0 · · ·hβj−1 . The idea
is to trace for each fixed index i the evolution of the number α(j)[i], as j increases,
by means of a lattice path: a path connecting points of Z2 using unit steps in two
orthogonal directions, in the current case down and to the right. One has a separate
path for each i ∈ N; path i passes through all of the points

(
j, α(j)[i]

)
for j ∈ N.

These points are connected as follows: after arriving at
(
j, α(j)[i]

)
, the path takes Mi,j

horizontal steps (so the second coordinate becomes α(j)[i] + Mi,j = α(j+1)[i]), followed
by a vertical step to arrive at

(
j + 1, α(j+1)[i]

)
. If i > 0, this portion of path i remains

disjoint from path i − 1 if and only if α(j+1)[i] < α(j)[i − 1], in other words if the
addition of Mi,j to α(j)[i] leaves it inside what we called the safe interval Ii in the
proof of proposition 2.5. Thus all paths will remain disjoint when taking into account
column M t

j if and only if α(j) ↽ α(j) + M t
j = α(j+1); they will remain disjoint forever

if and only if M ∈ Tabl(λ′/µ) for some λ′ ∈ P.
For any M , path i starts at (0, µ[i]) and eventually runs along the vertical line(∗, (µ + row(M))[i]

)
. The term for M in the second member of (43) is nonzero if and

only if these vertical lines, for i ∈ N, form a permutation of the lines (∗, λ[i])i∈N, whose
sign then gives the coefficient of the term. If moreover µ + row(M) is a partition,
which must necessarily be λ given the previous condition, then this permutation will
be the identity, so that path i runs from the point (0, µ[i]) to the line (∗, λ[i]). This
is in particular (but not exclusively) the case whenever the paths are disjoint, so that
M ∈ Tabl(λ/µ).

As an example of a term that survives the cancellation, and of the family of disjoint
paths that corresponds to it, we recall from §1 the integral encoding M ∈ Tabl(λ/µ)
of the tableau T ∈ SST(λ/µ) of (2), where λ/µ = (9, 8, 5, 5, 3)/(4, 1). To facilitate
recognition of the compositions (in fact partitions) α(j), we have written the coefficients
of µ along the left border of M . The paths, taken from right to left, correspond to the
rows of the matrix from top to bottom, and to the rows of T in the same order.
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T :

0 2 4 5 5
0 1 3 4 6 6 6

1 1 2 4 5
2 3 4 6 6
5 6 6




µ M

4 1 0 1 0 1 2 0 0
1 1 1 0 1 1 0 3 0
0 0 2 1 0 1 1 0 0
0 0 0 1 1 1 0 2 0
0 0 0 0 0 0 1 2 0
0 0 0 0 0 0 0 0 0




On the other hand, for the terms that must be cancelled, we have that whenever two
paths of the associated family touch, then a family of paths with opposite contribution
can be formed by exchanging these two paths after the point of contact; if the term is
nonzero, this exchange will change the sign of the permutation defined by the family.
This exchange corresponds to the type of cancellation we considered above. Indeed if
these are paths i0 and i1, and they have point (j, m) in common, then

max(α(j)[i0], α(j)[i1]) ≤ m ≤ min(α(j+1)[i0], α(j+1)[i1]), (45)

and the exchange corresponds to transferring the difference α(j+1)[i0] − α(j+1)[i1] from
Mi0,j to Mi1,j (which leaves both entries ≥ 0 due to the inequality between the
outer members of (45)), followed by the interchange for all j′ > j of the entries
Mi0,j′ and Mi1,j′ .

Looking back at proposition 2.5 from this path point of view, we see that in its
proof there is even more freedom in matching cancelling terms than we used: the ex-
istence of a common point on paths i0 and i1 is all that is needed in order to obtain
a cancellation by a transfer between parts i0 and i1, while we used the stricter re-
quirement f(i0) = f(i1). (To make this clear, recall that the function f was defined
relative to the multiplication by a single factor hj and under the assumption that α(j)

is a partition, by the condition α(j+1)[i] ∈ If(i), where I0 = { k ∈ Z | α(j)[0] ≤ k } and
Ii = { k ∈ Z | α(j)[i] ≤ k < α(j)[i − 1] } for i > 0. Then for i1 > i0 there is a common
point with vertical coordinate j on paths i0 and i1 if and only if i0 ≥ f(i1), which is
certainly the case if f(i1) = f(i0).)

This extra freedom does not increase the number of terms that cancel, it just gives
more possibilities of choosing (i0, i1) for those terms that do allow cancellation. Of
course, to complete a proof that the second member of (43) reduces to the third member,
one must give up this freedom and make a concrete choice that defines a sign-reversing
involution on the set of cancelling terms. A fairly natural choice to do so is to choose
the top-leftmost point that lies on more than one path, in other words take j minimal in
the discussion above and then m = α(j)[i0] where i0 = max { i | α(j+1)[i + 1] ≥ α(j)[i] };
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then i1 = i0 + 1, and only paths i0 and i1 pass through (j, m), which makes it easy to
show that after exchange of paths this rule finds the same point (j, m) and the same
pair (i0, i1). Indeed the fact that we took some pair (i0, i1) with f(i1) = f(i0) in the
proof of proposition 2.5 seems a bit artificial in retrospect (regardless of exactly which
pair was chosen); in particular there may be no such pair with i1 = i0 + 1, so the
common point used need not be the first one where path i1 meets another path.

One can proceed analogously for equation (28), comparing it with the description
of K ′

λ/µ,β as counting transpose semistandard tableaux of shape λ/µ and weight β.
We have not defined binary encodings of such tableaux T (or, for that matter, inte-
gral encodings), but if we take as columns differences of successive partitions of T , we
obtain a binary matrix M whose transpose is the binary encoding of the transpose
of T . The situation is in fact quite similar to the one considered above for (27), as we
have col(M) = β and row(M) = λ − µ, whence M contributes +1 to the summation
in (28), and all such matrices account for the entire value of the summation. Forming
a generating series by β, we obtain

∑
β∈C

K ′
λ/µ,βXβ =

∑
M∈M[2]

ε(µ + row(M), λ)Xcol(M) =
∑

Mt∈Tabl[2](λt/µt)

Xcol(M). (46)

The first equality is related to the Von-Nägelsbach-Kostka identity, since the first mem-
ber of the equation equals sλt/µt [XN] by (32), and the second member can be obtained
by substituting (9) into (40).

Before we consider the reduction of the second member of (46) to its third member
by cancellations, we transform the equation slightly by taking transposes of tableaux
and matrices, so that we will be dealing with ordinary semistandard tableaux and their
binary encodings. At the same time we replace λ/µ by λt/µt so that the members of
the equation represent sλ/µ[XN] rather than sλt/µt [XN]; we get

∑
M∈M[2]

ε(µt + col(M), λt)Xrow(M) =
∑

M∈Tabl[2](λ/µ)

Xrow(M). (47)

Let M ∈ M[2] with row(M) = α. Each row Mi represents a monomial XMi in the
factor eαi

of eα, and the entire matrix represents an occurrence of the monomial Xcol(M)

in the expansion of eα. Put β(i) = µt +
∑

i′<i Mi′ for i ∈ N, then M ∈ Tabl[2](λ/µ)
means that β(i) ∈ P for all i (the remaining requirements for the relations β(i) ↼ β(i+1)

are automatically satisfied) and that β(i) = λt for i sufficiently large (in other words
µt + col(M) = λt). As i increases, M identifies a term sβ(i) in the development of
sµteα0 · · · eαi−1 , until possibly at some point β(i) /∈ P, in which case sβ(i) = 0. If this
never happens, then M also identifies a term sµt+col(M) in the expression of the final
value sµteα in the basis of Schur functions. In this case M gives equal contributions to
both members of (47), which contributions are nonzero if and only if µt + col(M) = λt

or equivalently M ∈ Tabl[2](λ/µ) (the contributions are zero when M ∈ Tabl[2](λ′/µ)
for some partition λ′ 6= λ; as before this case needs no special consideration).
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Now suppose to the contrary that one does have sβ(i) = 0 for some i, and fix i to
the minimal such value. We see that the situation is somewhat simpler than before,
in that there is no need to modify row Mi to find a matching term that accounts
for the cancelling of this contribution to sµteα0 · · · eαi−1 . However the contribution
sµt+col(M) to sµteα might still be nonzero, and in order to find a matrix with a cancelling
contribution (whose rows up to and including Mi will be the same as those of M), one
needs to choose a column index j that “causes” the vanishing of sβ(i) . Concretely,
the fact that sβ(i) = 0, while β(i) was obtained by adding the binary composition Mi

to the partition β(i−1), implies that the sequence β(i)[ ] has equal adjacent entries at
some position (perhaps at several different positions). So choose some j for which
β(i)[j] = β(i)[j + 1], for instance the minimal one. Then to find a matrix whose term
cancels that of M , we may interchange the parts of columns j and j +1 beyond row Mi;
the cancellation is assured by the fact that this modification causes the interchange of
the entries at positions j and j + 1 of the sequence (µt + col(M))[ ].

A simple example will make this more concrete. We take λ/µ = (7, 5, 2)/(2) and

M =




0 0 1 1 0 0 0
1 0 1 0 1 0 1
0 1 0 0 1 0 0
1 1 0 0 1 1 0


 ,

so that α = row(M) = (2, 4, 2, 4). One has β(0) = µt = (1, 1) and β(1) = (1, 1, 1, 1)
which is still a partition, but β(2) = (2, 1, 2, 1, 1, 0, 1) is not, and indeed sβ(2) = 0.
As cause for the vanishing of sβ(2) one can indicate either of the two repetitions in
the sequence β(2)[ ] = (+1,−1,−1,−3,−4,−6,−6,−8,−9, . . .), and interchanging ei-
ther columns 1 and 2 or columns 5 and 6 beyond row 1 leads to two matrices whose
contribution could cancel against that of M , namely

M ′ =




0 0 1 1 0 0 0
1 0 1 0 1 0 1
0 0 1 0 1 0 0
1 0 1 0 1 1 0


 and M ′′ =




0 0 1 1 0 0 0
1 0 1 0 1 0 1
0 1 0 0 1 0 0
1 1 0 0 1 0 1


 .

Indeed one has s(3,3,2,1,3,1,1) = −s(3,1,4,1,3,1,1) = −s(3,3,2,1,3,0,2) (the subscripts were
respectively computed as µt + col(M), µt + col(M ′), and µt + col(M ′′)), which shows
that the contribution of M to the left hand side of (47) could cancel against that of
M ′ or of M ′′; since ε((3, 3, 2, 1, 3, 1, 1), λt) = −1, the former contribution is in fact
−X(2,4,2,4), and the latter are both +X(2,4,2,4). The rule suggested above of choosing j
would pair up M with M ′.

Again we can visualise the cancellation using lattice paths that trace the evolution
of the individual terms of the sequence β(i)[ ] as i increases. In order that all possible
paths (subject only to the condition of eventually running in a prescribed direction) can
be obtained, each bit Mi,j should directly control the direction of segment i of path j,
choosing between two possible directions (note the difference with the correspondence

the electronic journal of combinatorics 11(2) (2006), #A5 30



4 The Gessel-Viennot correspondences

above for integral matrices, where Mi,j determined the number of steps to the right on
path i at horizontal level j). For reasons that will become clear below we choose the
possible directions in the binary case to be downwards (for bits 0) and leftwards (for
bits 1). We want the points on all paths that represent terms of the same sequence β(i)[ ]
to line up, and given the directions in which the paths progress, this alignment must be
along diagonals in Z2. Thus we arrive at the following rule: path j starts at the point
(−µt[j],−µt[j]) on the main diagonal, and passes through the point (i−β(i)[j],−β(i)[j]),
which lies i diagonals below the main diagonal, for each i ∈ N. If for j 6= j′ paths
j and j′ have a point in common, then this happens for the same value of i, and it
means that β(i)[j] = β(i)[j′]. All paths will eventually run straight downwards, with
path j running along the vertical line (∗,−(µt + col(M))[j]). The matrix M will give
a nonzero contribution to the left hand side of (47) if and only if those lines for j ∈ N
are a permutation of the lines (∗,−λt[j]), and M will then give a nonzero contribution
to the right hand side of (47) if and only if the paths remain disjoint, in which case
the permutation must be the identity, so that µt + col(M) = λt. We illustrate such
a family of disjoint paths corresponding to the same semistandard tableau T that was
used before, together with its binary encoding M . Note that columns of T correspond
to those of M , and to the paths, all in the same order from left to right.

T :

0 2 4 5 5
0 1 3 4 6 6 6

1 1 2 4 5
2 3 4 6 6
5 6 6




µt 2 1 1 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 0 0

M 0 0 1 1 1 0 1 0 0 0
1 0 0 0 1 0 0 1 1 0
0 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0




For families of paths that are not disjoint, cancellation can be realised as before by
choosing a pair of paths that meet, and exchanging their parts beyond the first point
of contact; for the matrices this means exchanging the lower parts of the corresponding
columns.
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Now that we have two families of lattice paths related to any semistandard
tableau T , a natural question is how the two are related. It turns out that with a
slight transformation the two families can be aligned so that there is exactly one cross-
ing of members of the two families for every square of [λ/µ]. We show the two families
shown above after transformation, first individually and then in superposition.

We have in fact, for aesthetic reasons, prefixed vertical segments of one unit to all paths
of the first family, and of half a unit to all paths of the second family. The combinatorial
explanation for this nice superposition is that, if T is given by the sequence of partitions
(λ(k))k∈N, then the first family shows the evolution of the sets {λ(k)[i] | i ∈ N } as k
traverses N, and the second family shows the evolution of the complementary sets
{−1 − (λ(k))t[j] | j ∈ N } (the term −1 needed for complementarity was left out of
the coordinates of the second family for simplicity, but is taken into account in the
superposition). Indeed one finds for matrices that are integral and binary encodings
of a semistandard tableau T = (λ(k))k∈N of shape λ/µ, that in our descriptions above
α(j) = λ(j), respectively that β(i) = (λ(i))t.

For the first family of paths, the values λ(k)[i] are most clearly read off at the middle
of the vertical segment from (k − 1, λ(k)[i]) to (k, λ(k)[i]), while for the second family of
paths, the values of −1 − (λ(k))t[j] can be read off on a diagonal passing through the
vertices; this explains the necessity of half a unit of vertical displacement between the
triangular lattices that are the images of the lattice Z2 under the two transformations,
in order to superimpose the lines that correspond to the same sequence λ(k)[ ].

This section would not be complete without a visual explanation of the superposi-
tion of families of paths. The form of path i of the first family describes the evolution
of row i, with i fixed, of the Young diagrams [λ(k)] for k ∈ N, so it has the same
shape as the path along the boundary of a single “row” (i.e., subset with first coor-
dinate fixed) of the 3-dimensional “block diagram” corresponding to the semistandard
tableau, namely { (i, j, k) ∈ N3 | (i, j) ∈ [λ(k)] } in which each element is represented by
a cube. To match the way we drew the lattice paths, the coordinate k must be made to
increase downwards, and the coordinate j to the bottom right. With the coordinate i
increasing to the bottom left, we obtain, for the tableau T of our example, the display
below. The first picture shows just the block diagram, with the top of the “pillars”
for the squares of the diagram [µ] = [(4, 1)] omitted, so that the visible tops of pillars
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correspond to the squares of [λ/µ]. In the second picture we have added the paths along
the “row boundaries”, which trace the boundary of the block diagram at fixed value
of i.

This display has as defects that the relative position of the paths is not correct (so cases
where paths should have a common point would still appear disjoint), and the paths
along “column boundaries” (with j fixed, so running from top right to bottom left) do
not resemble the second family. Both points can be remedied simultaneously, by raising
(in the sense of decreasing k) each “row” i (the plane of cubes with that value of i) by i
units. This amounts to using, instead of the block diagram of the semistandard tableau
(λ(k))k∈N, the set { (i, j, k − i) | (i, j) ∈ [λ(k)] } ⊆ N3. We show the resulting diagram,
and then add the two superimposed families of paths.
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§5. The Littlewood-Richardson rule.

We shall finally apply lemma 2.2 for f = sλ and even for f = sλ/κ, so as to obtain an
expression for multiplication by (skew) Schur functions in the basis of Schur functions.
As usual, the sport will be to find a cancellation of the resulting alternating sum that
leaves only positive contributions (from representation theoretic interpretations of Schur
functions it is clear that the decomposition of the product in the basis of Schur functions
cannot involve negative coefficients). We shall thus find a combinatorial description of
the decomposition of a product sλsµ into Schur functions that is equivalent to the
Littlewood-Richardson rule. In fact we shall obtain a generalisation that was given
in [Zel], which describes the scalar product of an arbitrary pair of skew Schur functions.
Our approach naturally leads to two different formulations of this result, one in terms
of binary matrices and another in terms of matrices with coefficients in N. Both are
equivalent to a more traditional formulation in terms of Littlewood-Richardson tableaux,
but the relation with cancellations in alternating sums gives a perspective somewhat
different from for instance the one we took in [vLee], where the Littlewood-Richardson
rule was approached via Robinson’s correspondence and jeu de taquin. We would like
to note however that coplactic operations provide a very elegant means to unify the two
points of view, as we shall indicate in a sequel to this paper.

As an introduction we shall discuss the question that was evoked after equation (32),
of proving bijectively that Schur functions are the generating series of semistandard
Young tableaux of given shape by weight. The suggested proof was to apply lemma 2.2
for f [XN] =

∑
T∈SST(λ) Xwt(T ) and β = (0), and prove that its right hand side reduces

by cancellations to sλ. If we pretend not to know already that this generating series
f [XN] is a Schur function, then there is in fact another obligation, namely to prove
that f [XN] is a symmetric function, so that lemma 2.2 can be applied in the first place.
Proving this symmetry can, surprisingly, be done in almost the same way as proving
the mentioned cancellation ∑

T∈SST(λ)

swt(T ) = sλ. (48)

The symmetry of f [XN] can be established by giving for each m an involution
on SST(λ) that interchanges components m and m + 1 of the weight, which means, in
terms of the display of the tableaux that the frequencies of the entries m and m + 1
must be interchanged, while preserving the shape. Since there is no reason to change
other entries than m and m + 1, this involution can be viewed as operating only on the
component shape λ(m+1) of tableaux (λ(i))i∈N in SST(λ), which shape is constrained
by the relation λ(m) ↽ λ(m+1) ↽ λ(m+2) in which the shapes λ(m) and λ(m+2) are fixed.

As for the cancellation (48), the one tableau T in the summation whose term
survives the cancellation will be the one whose display has only entries i in any row i,
and which therefore satisfies wt(T ) = λ. For any other T ∈ SST(λ), let i be minimal
such that row i of the display of T has some entry other than i (by column strictness, such
entries must be greater than i), and let the final entry of that row, in column j = λi−1,
have value m + 1 (so m ≥ i). We shall consider this entry as the one that triggers the
cancellation of the term for T , and in constructing T ′ ∈ SST(λ) whose terms cancels
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that of T , we shall leave that entry intact, as well as all rows i′ < i, so that the same
entry m + 1 also triggers the cancellation for T ′. In fact, we shall only change entries
m and m + 1 in the display of T , if any, with the goal of interchanging the values of
wt(T )[m] and of wt(T )[m + 1]. The entries that may be changed are in rows i′ ≥ i and
in columns j′ < j of the display of T , and one can treat the subtableau of entries m, m+1
in that region in isolation: whatever subtableau of entries m, m+1 should replace them,
it will be compatible with the entry m+1 at position (i, j). Moreover, since that single
entry causes the contribution to wt(T )[ ] of the part outside the specified region to have
equal values at indices m and m + 1, the goal must be to interchange the frequencies of
entries m and m + 1 in the mentioned subtableau. Thus, the problem is basically the
same one as for proving symmetry of the generating series f [XN].

The simplest involutions establishing that symmetry are those that were introduced
in [BeKn], and which we shall call the Bender-Knuth involutions. They were in fact in-
troduced in the combinatorial proof of a lemma that essentially states our equation (48)
(lemma 2 of the cited paper), although an application to the symmetry of f immedi-
ately follows it. The idea is straightforward: one ignores any columns containing both
entries m and m + 1 (such entries cannot be changed), after which all rows can be
treated independently, and in each of them one separately interchanges the frequencies
of m and m + 1; we refer to the proof of [Stan, theorem 7.10.2] for details.

A simple example will illustrate these involutions and their application to estab-
lishing (48). Take the semistandard Young tableau displayed as follows

0 0 0 0 0 0 0
1 2 2 2 4 4 4
3 3 3 4 5 6 6
4 5 5 6 6
6 7 7

The Bender-Knuth involution that interchanges the components 5 and 6 of the weight,
operates separately on the singleton sequence [6] in row 4, on the sequence [5, 5, 6] in
columns 1, 2, 3 of row 3, and on the sequence [6, 6] at the end of row 2 (the entries
5 and 6 in column 4 are frozen); the sequences are respectively turned into [5], [5, 6, 6]
and [5, 5]. As for the cancellation (48), it is triggered by the final entry 4 of row 1, and
therefore operates on entries with values 3 and 4; that final entry does not participate
in the exchange, nor do the frozen entries in column 0, so [3, 3, 4] in row 2 and the initial
[4, 4] in row 1 are respectively changed into [3, 4, 4] and [3, 3]. The tableaux resulting
for these two operations are

0 0 0 0 0 0 0
1 2 2 2 4 4 4
3 3 3 4 5 5 5
4 5 6 6 6
5 7 7

and

0 0 0 0 0 0 0
1 2 2 2 3 3 4
3 3 4 4 5 6 6
4 5 5 6 6
6 7 7

.
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One sees that the weights of these tableaux have the required relation to the weight
α = (7, 1, 3, 3, 5, 3, 5, 2) of the initial tableau, notably the weight α′ = (7, 1, 3, 4, 4, 3, 5, 2)
of the final tableau satisfies sα + sα′ = 0.

Now let us turn to more useful applications of lemma 2.2, for which we do not
know the result beforehand. With respect to the application in the previous example
one could replace the choice β = (0) by one taking for β an arbitrary partition µ, which
results in a formula for products sλsµ of Schur functions, or one could replace the choice
f = sλ by the more general f = sλ/κ, resulting in a formula for decomposing skew Schur
functions into ordinary ones. In view of the relation

〈
sλsµ

∣∣ sν

〉
=
〈
sλ

∣∣ sν/µ

〉
the two

problems are equivalent, but it will be interesting to perform both generalisations at
once, which in fact produces no additional complications. So we apply lemma 2.2 with
f = sλ/κ (and hence f [XN] =

∑
T∈SST(λ/κ) Xwt(T )) and β = µ ∈ P, which gives

sλ/κsµ =
∑

T∈SST(λ/κ)

sµ+wt(T ). (49)

We can obtain a somewhat more symmetric formulation by taking coefficients of some
Schur function sν on both sides, which amounts to taking the scalar product with it;
using

〈
sλ/κsµ

∣∣ sν

〉
=
〈
sλ/κ

∣∣ sν/µ

〉
this gives〈

sλ/κ

∣∣ sν/µ

〉
=

∑
T∈SST(λ/κ)

ε(µ + wt(T ), ν). (50)

We shall now describe a cancellation that can be applied to the right hand side
of (49), which was proposed in [Stem]. Contrary to what we saw for (48) there will in
general be more than one term that survives the cancellation, but for those tableaux T
whose term does cancel, an entry m + 1 in its display will be indicated that triggers
the cancellation, and a tableau T ′ whose terms cancels that of T will be constructed
by possibly modifying entries m and m + 1, in much the same way as before. In
particular all changes will be strictly to the left and weakly below the entry triggering
the cancellation.

The condition for cancellation is stated in terms of the weights of individual columns
of T . Define the weight cwtj(T ) of column j of T to be the binary composition α whose
part αi ∈ {0, 1} tells whether or not there is an entry i in column j of the display of T ,
in other words, cwtj(T ) is the column (M ′)t

j of the binary encoding M ′ of T . For later
use also define the weight rwti(T ) of row i of T as the composition β whose part βj gives
the number of entries j in row i of the display of T ; thus rwti(T ) equals row Mi of the
integral encoding M of T . One obviously has wt(T ) =

∑
j∈N cwtj(T ) =

∑
i∈N rwti(T ).

The terms in the right hand side of (49) that will survive the cancellation are those
for the tableaux T with the property that for all l ∈ N one has µ +

∑
j≥l cwtj(T ) ∈ P;

in particular µ+wt(T ) is a partition, so that the term for such T is already normalised.
So once the cancellation is established, it will prove

sλ/κsµ =
∑

T∈SST(λ/κ)

[ ∀l ∈ N: µ +
∑
j≥l

cwtj(T ) ∈ P ] sµ+wt(T ), (51)
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which is a generalisation of the Littlewood-Richardson rule. The tableaux that satisfy
the condition are those that we termed µ-dominant in [vLee, §1.4] (although it requires a
bit of work to see this), and for µ = (0) these are the traditional Littlewood-Richardson
tableaux; as one can see, these describe the decomposition of sλ/κ in the basis of Schur
functions. By taking instead κ = (0), one obtains a description of the decomposition of
sλsµ in that basis, in terms of µ-dominant tableaux of shape λ.

For any T that fails the condition in (51), there is a maximal l such that µ +∑
j≥l cwtj(T ) /∈ P; we fix this l and put α = µ +

∑
j≥l cwtj(T ). Since α /∈ P while

µ +
∑

j>l cwtj(T ) = α − cwtl(T ) ∈ P, and cwtl(T ) is a binary composition, it must
be that there exist some m with αm+1 = αm + 1, which can also be written as α[m] =
α[m + 1]. We choose the minimal such m, which then necessarily also has cwtl(T )m = 0
and cwtl(T )m+1 = 1, so column l of the display of T contains no entry m, but it does
contain an entry m + 1. That entry will be the one that is considered to trigger the
cancellation of the term for T .

Since the entries in columns j ≥ l of the display of T are involved in triggering
the cancellation and determining the values of l and m, they will not be altered during
the construction of a tableau T ′ whose term cancels that of T ; this will ensure that the
cancellation is triggered identically for T ′ as it was for T . As before the subtableau of
entries m, m+1 in columns j < l can be treated in isolation, since the frozen entry m+1
in column l imposes no constraint. One has µ+wt(T ) = α+

∑
j<l cwtj(T ) and for T ′ one

will similarly have µ + wt(T ′) = α +
∑

j<l cwtj(T ′); since α[m] = α[m + 1], the desired
cancellation sµ+wt(T ) + sµ+wt(T ′) = 0 can be assured by having

∑
j<l cwtj(T ′) differ

from
∑

j<l cwtj(T ) by the interchange of the parts indexed by m and m+ 1. Therefore
T ′ can be obtained from T by applying the Bender-Knuth involution for m, m + 1 to
the subtableau in columns j < l.

As an example consider the tableau T of (2) with µ = (7, 6, 5, 4, 2); one finds
l = 5, for which α = µ + (0, 0, 1, 0, 1, 2, 3) = (7, 6, 6, 4, 3, 2, 3) and m = 5, and the
entry m + 1 = 6 at position (1, 5) triggers the cancellation. The tableau T ′ is found
by applying the Bender-Knuth involution for interchanging 5 and 6 to the subtableau
formed by the 5 leftmost columns of T , which transforms

T =

0 2 4 5 5
0 1 3 4 6 6 6

1 1 2 4 5
2 3 4 6 6
5 6 6

into T ′ =

0 2 4 5 5
0 1 3 4 6 6 6

1 1 2 4 5
2 3 4 5 6
5 5 6

. (52)

Indeed one has sµ+wt(T ) + sµ+wt(T ′) = s(9,9,8,6,6,4,7) + s(9,9,8,6,6,6,5) = 0.
The condition for µ-dominance that appears in (51) may appear somewhat strange

at first sight, but it has a remarkable resemblance to the condition that characterises
binary encodings of tableaux. To bring out this resemblance, we shall replace the
tableau T in the summation by its binary encoding M , so that M t

j will replace cwtj(T ),
and row(M) will replace wt(T ). Also we shall apply our cancellations to the right hand
side of (50) rather than of (49). One has col(M) = λt − κt for any M ∈ Tabl[2](λ/κ),
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and those M giving nonzero terms after cancellation satisfy row(M) = ν − µ. Spelling
out explicitly the condition that M ∈ Tabl[2](λ/κ), we therefore obtain the following
statement, equivalent to (51).

5.1. Theorem. (generalised Littlewood-Richardson rule, binary formulation) For all
κ, λ, µ, ν ∈ P:〈

sλ/κ

∣∣ sν/µ

〉
=

∑
M∈M[2]

ν−µ,λt−κt

[ ∀k: κt +
∑
i<k

Mi ∈ P ] [ ∀l: µ +
∑
j≥l

M t
j ∈ P ] .

There is another formulation of the condition of µ-dominance than the one that ap-
pears in (51), which uses row weights rather than column weights, and which is actually
closer to the way the notion was defined in [vLee]. One can determine independently
for each value of m whether any entry m + 1 in the display of T is a candidate for
triggering cancellation. Although in case of multiple candidates, only the topmost one
in the leftmost column containing any candidates will be selected, that rule has no in-
fluence on the set of tableaux that will survive cancellation, namely those for which no
candidates exist at all. In order for an entry m + 1 in column l to be candidate for
triggering cancellation, one must have α[m] = α[m + 1] for α = µ +

∑
j≥l cwtj(T ), and

l must be the largest value for which this condition holds. Then there will not be any
entry m above that entry m + 1 in the same column l of T , and this means that if the
entry m + 1 is in row k, one also has α′[m] = α′[m + 1] for α′ = µ +

∑
i<k rwti(T ) + β,

where β is the weight of the part of row k of T consisting of the candidate entry and
all entries to its right.

Conversely any entry m + 1 for which this condition in terms of α′ holds, and
for which k is minimal, cannot have an entry m in the same column, and is therefore
a candidate for triggering cancellation. Then, assuming there are no such candidate
entries m + 1 in rows i < k, one may test if there is any such entry m + 1 in row k,
by considering α′′ = µ +

∑
i<k rwti(T ) + β′ where β′ the weight of the part of row k

consisting of entries exceeding m (in other words β′ is obtained from rwtk(M) by clearing
its parts at indices ≤ m): there will be such a candidate if and only if α′′

m+1 > α′′
m. This

use of weights of partial rows can be avoided in the formulation, by comparing parts of
two different compositions: if one defines α(i0) = µ+

∑
i<i0

rwti(T ) for i0 ∈ N, then the
final condition α′′

m+1 > α′′
m is equivalent to α

(k)
m < α

(k+1)
m+1 . For instance in our example

above, the fact that some entry 6 in row 1 is a candidate for triggering cancellation,
can be deduced from α

(1)
5 < α

(2)
6 where α(1) = µ + (1, 0, 1, 0, 1, 2) = (8, 6, 6, 4, 3, 2)

and α(2) = α(1) + (1, 1, 0, 1, 1, 0, 3) = (9, 7, 6, 5, 4, 2, 3) (only the underlined entries are
relevant).

Now let us return to formulating µ-dominance, the condition stating that the term
for T is not cancelled at all. This means that the condition just stated fails for all k and
for all m. The failure for given k and for all m simply becomes α(k) ↽ α(k+1), which
means that we can reformulate (51) as follows:

sλ/κsµ =
∑

T∈SST(λ/κ)

[ ∀k ∈ N: µ +
∑
i<k

rwti(T ) ↽ µ +
∑
i≤k

rwti(T ) ] sµ+wt(T ). (53)
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Note that, somewhat surprisingly, the sequence (α(i))i∈N of compositions actually is a
semistandard tableau when T survives the cancellation; its shape is µ+wt(T )/µ, and in
the terminology of [vLee] it is the companion tableau of T witnessing the µ-dominance
of T . If this time we replace T in the summation by its integral encoding, we obtain
a symmetry in the formulation that is even more striking than the one in theorem 5.1.
Again we take (50) as a starting point, and obtain the following statement, which is
equivalent to (53), and therefore to (51), like the previous theorem. This time the
condition that selects the matrices whose term survives the cancellation is exactly like
the condition for being an integral encoding in the first place, except for the interchange
of rows and columns; therefore we add a succinct reformulation of the conditions, using
the notation introduced in definition 1.2.3.

5.2. Theorem. (generalised Littlewood-Richardson rule, integral formulation) For all
κ, λ, µ, ν ∈ P
〈
sλ/κ

∣∣ sν/µ

〉
=

∑
M∈Mλ−κ,ν−µ

[ ∀l: κ +
∑
j<l

M t
j ↽ κ +

∑
j≤l

M t
j ] [ ∀k: µ +

∑
i<k

Mi ↽ µ +
∑
i≤k

Mi ]

=
∑

M∈M
[M ∈ Tabl(λ/κ) ] [M t ∈ Tabl(ν/µ) ] .

We have completed the description of our final application of lemma 2.2, and of
the result of applying cancellations to the expression it yields. There is however one
more variation that we would like to present. In theorems 5.1 and 5.2 we have given
expressions for

〈
sλ/κ

∣∣ sν/µ

〉
in terms of matrices that treat rows and columns similarly.

But our starting point for these expressions, equation (50), does not exhibit such a
symmetry when we replace the semistandard tableaux in the summation by their binary
or integral encoding matrices. We would like to give expressions involving alternating
sums with the same kind of symmetry as the mentioned theorems, and from which
those theorems can be obtained by cancellations. This will require that we proceed
backwards, introducing a second layer of signs by a kind of inverse cancellation process.
In fact we shall use equations (27) and (28) to translate the Kostka numbers, which
are implicit in the summation over semistandard tableaux, into alternating sums over
matrices.

Concretely, we write the right hand side of (50) as
∑

β∈C Kλ/κ,βε(µ + β, ν), and
then we can apply (27), which gives

〈
sλ/κ

∣∣ sν/µ

〉
=
∑

M∈M
ε(κ + row(M), λ)ε(µ + col(M), ν), (54)

or we can apply (28) to Kλ/κ,β = K ′
λt/κt,β, which gives (transposing the binary matri-

ces M) 〈
sλ/κ

∣∣ sν/µ

〉
=

∑
M∈M[2]

ε(κt + col(M), λt)ε(µ + row(M), ν). (55)
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It is clear from the way we have obtained these equations, that one can go from
them to theorems 5.2 and 5.1, respectively, by applying two successive phases of can-
cellation. The first phase is a Gessel-Viennot cancellation of terms with opposite values
of ε(κ + row(M), λ) respectively of ε(κt + col(M), λt), as in (43) and (47), which gives
us back (50) with tableaux replaced by their integral or binary encodings. The second
cancellation phase cancels within the remaining terms pairs with opposite values of the
remaining factor ε(µ + col(M), ν), using the cancellation based on the Bender-Knuth
involutions that was given following (51), translated in terms of integral or binary en-
codings.

It is interesting to compare the way in which these two cancellation phases proceed.
The Gessel-Viennot cancellations search for a failure of the condition M ∈ Tabl(λ/κ)
respectively M ∈ Tabl[2](λt/κt) by successively computing the compositions α(i) that
would define the shapes (or their transposes in the binary case) forming the semistandard
tableau encoded by M if one exists; as soon as one finds α(i) 6↽ α(i+1) respectively
α(i) 6↼ α(i+1), the cancellation of the term for M is detected, and the construction of
a cancelling matrix M ′ starts. Up to this point the second cancellation phase proceeds
in quite the same way, differing only in whether weights of rows or columns of M are
successively added to the compositions α(i), and in the fact that for the binary case
these columns are taken in the opposite order.

But after detecting cancellation and selecting a pair of indices responsible for it, the
Gessel-Viennot cancellations construct M ′ from M by simply interchanging entries for
those indices in the rows or columns that had not yet been considered; in the integral
case there is also a transfer at those indices in the column in which cancellation was
detected itself, which can be interpreted as interchange of those parts of the values of
the entries concerned that remain after the cancellation has been triggered (the parts
of their paths after the first point of contact). Such a simple rule would not work in
the Bender-Knuth case: in the binary case weak increase along rows would be violated,
while in the integral case strict increase in columns would be violated (in either case this
is the only one of the two conditions that can be violated, as the other one is assured
by the way tableaux are encoded by matrices).

What the Bender-Knuth involutions actually do in terms of integral and binary
encodings is not easily described directly, although one can say in general that the
transfers between entries are more limited than what they would be for a Gessel-Viennot
cancellation. This can be seen by considering the encodings of the tableaux T, T ′ in (52).
The changes only involve entries 5 and 6, so we just show the changes to columns 5 and 6
of the integral encoding and to rows 5 and 6 of the binary encoding:


2 0
0 3
1 0
0 2
1 2


↔




2 0
0 3
1 0
1 1
2 1


 and

(
1 0 0 0 1 0 0 1 1
0 1 1 1 1 1 1 1 0

)
l(

1 1 0 1 1 0 0 1 1
0 0 1 0 1 1 1 1 0

) . (56)

The entries where cancellation is triggered have been underlined (in the integral case
it is the final unit of the entry 3, i.e., a value 2 at the same position would not trigger
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cancellation). One sees that the parts of the columns below that entry (in the integral
case) or of the rows to the left of that entry (in the binary case) have not been com-
pletely interchanged. The precise changes depend on the shape λ(5) = (7, 5, 4, 3) in the
tableau T to which the entries 5 in its display are added, and in terms of the matrices
this shape depends both on µ and on the columns to the left of those that were shown,
respectively the rows above those that were shown.

One may wonder, both for (54) and for (55), if it is possible to find a pair of cancel-
lations that reduces them to theorem 5.2 respectively to theorem 5.1, in a manner that
better respects the symmetry present both in the initial and in the final expressions.
In particular one would like to be able to apply the two cancellations in either order,
with the cancellation being applied last operating only on the terms that survived the
first cancellation. This requires that either cancellation respects the condition express-
ing survival under the other cancellation: it will never cancel a survivor of the other
cancellation against a non-survivor. Yet while the involutions defining such cancella-
tions should allow restriction to the survivors of the other cancellation, their definition
should not be limited to those survivors (as is the case for the Bender-Knuth involu-
tions, which are only defined for semistandard tableaux): they should be as general as
the Gessel-Viennot cancellations. We shall show in a forthcoming sequel to this paper
that both for (54) and for (55) such a pair of cancellations does indeed exist. Moreover
the operations used to define these cancellations are quite interesting in their own right,
and they give rise to ramifications that relate to Knuth correspondences and to jeu de
taquin.
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