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Abstract

We provide a combinatorial proof for the fact that for any fixed n, the sequence
{i(n, k)}0≤k≤(n

2)
of the numbers of permutations of length n having k inversions is

log-concave.

1 Introduction

Let p = p1p2 · · · pn be a permutation of length n, or, in what follows, an n-permutation.
An inversion of p is a pair (i, j) of indices so that i < j, but pi > pj. The enumeration
of n-permutations according to their number i(p) of inversions, and the study of numbers
i(n, k) of n-permutations having k inversions, is a classic area of combinatorics. The
best-known result is the following [4].

Theorem 1.1 Let n ≥ 2. Then we have

∑
p∈Sn

xi(p) =

(n
2)∑

k=0

i(n, k)xk = (1 + x)(1 + x + x2) · · · (1 + x + x2 + · · ·+ xn−1).

Another classic result [3] is that the numbers i(n, k) also count n-permutations having
major index k. Details about this result, and other related results can be found in [1].
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A somewhat less explored property of the numbers i(n, k) is log-concavity. The se-
quence (ak)0≤k≤m is called log-concave if akak+2 ≤ a2

k+1 for all k. See [5] for a classic
survey of log-concave sequences, and see [2] for an update on that survey. A polynomial is
called log-concave if its coefficients form a log-concave sequence. It is a classic result (see
for instance [1] for a proof) that the product of log-concave polynomials is log-concave.

Therefore, Theorem 1.1 immediately implies that the polynomial
∑(n

2)
k=0 i(n, k)xk is log-

concave, that is, the sequence i(n, 0), i(n, 1), · · · , i(n,
(

n
2

)
) is log-concave. We could not

find any previous proof of this fact that does not use generating functions. In this paper,
we will provide such a proof. It is also the first non-generating function proof we know of
in which a sequence whose length is quadratic in terms of the length of the input objects
is shown to be log-concave.

2 The proof of our claim

2.1 The outline of the proof

It is easy to see that the sequence (ak)0≤k≤m is log-concave if and only if akal ≤ ak+1al−1

for all k ≤ l−2. One implication is trivial, and the other becomes obvious if we note that
log-concavity is equivalent to the sequence ak+1/ak being weakly decreasing.

Let p be an n-permutation, and set p = p1p2 · · · pn. Define In,k to be the set of all
n-permutations with exactly k inversions. When there is no danger of confusion about
what n is, we will just write Ik instead of In,k.

The structure of our proof will be as follows. We want to prove the following theorem.

Theorem 2.1 For all integers n, k and l satisfying 0 ≤ k ≤ l − 2 ≤
(

n
2

)
− 2, there exists

an injection fn,k,l : Ik × Il → Ik+1 × Il+1.

Theorem 2.1 is clearly equivalent to what we want to prove. We will prove our claim
by induction on n. That is, first, we will construct the injections fn,k,l for the smallest
meaningful value of n, which is n = 3. Then, in the induction step, we will use the
assumption that the maps fn−1,k,l exist for all allowed values of k and l to create the
maps fn,k,k+2. We will not create the maps fn,k,l for k < l − 2, but we do not have to,
since the existence of the maps fn,k,k+2 in itself implies the log-concavity of the sequence
{i(n, k)}0≤k≤(n

2)
, and therefore, it implies the existence of the maps fn,k,l for k < l − 2.

That will complete the induction step of our proof.

2.2 The details of the proof

It is time that we carried out the strategy to prove Theorem 2.1 that we discussed in the
previous subsection.
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The smallest value of n for which the domains of the maps fn,k,l are not all empty is
n = 3. In this case, fn,k,l is defined for the (k, l)-pairs (0,2), (0,3) and (1,3). In those cases,
we define f3,0,2(123, 231) = (213, 132), f3,0,2(123, 312) = (213, 213), and f3,0,3(123, 321) =
(213, 231), as well as f3,1,3(132, 321) = (231, 231), and f3,1,3(213, 321) = (312, 231). It will
soon become obvious why we define f this way.

Now let n ≥ 4, and assume we have defined fn−1,k,l for all allowed values of k and l.

Let (p, q) ∈ Ik × Ik+2, with p = p1p2 · · · pn and q = q1q2 · · · qn. Proceed as follows.

(Rule 1) If p1 < n and q1 > 1, increase p1 by one, and decrease the entry of p that was one
larger than p1 by one. Let the obtained permutation be p′. Similarly, decrease q1

by 1, and increase the entry of q that was one larger than q1 by 1. Let the obtained
permutation be q′. Set fn,k,k+2(p, q) = (p′, q′).

Note that p′ starts with an entry larger than 1, and q′ starts with an entry less than
n.

Example 2.2 If p = 2134 and q = 3142, then we have f4,1,3(p, q) = (3124, 2143).

(Rule 2) If p1 = n, or q1 = 1, then remove these entries, to get the permutations p∗ and q∗.
(After natural relabeling, these are both permutations of length n − 1.) Because of
the extreme values of at least one of the omitted elements, we have i(q∗) − i(p∗) ≥
i(q) − i(p) = 2. Therefore, there exist positive integers r and s, with r ≤ s − 2, so
that (p∗, q∗) is in the domain of fn−1,r,s.

Take fn−1,r,s(p∗, q∗) = (p̄, q̄) ∈ I(n−1, r+1)×I(n−1, s−1). Now prepend p̄ by p1,
and prepend q̄ by q1. In both cases, entries larger than or equal to the prepended
entry have to be increased by 1. Call this new pair of n-permutations (p1p̄, q1q̄).
Finally, set fn,k,k+2(p, q) = (q1q̄, p1p̄). We point out that we swapped p and q.

Note that either q1q̄ starts in 1 or p1p̄ starts in n.

Example 2.3 If p = 1324 and q = 1432, then we have (p∗, q∗) = (213, 321), there-
fore, recalling that we have already defined f3,1,3 for 3-permutations, f3,1,3(p∗, q∗) =
(p̄, q̄) = (312, 231). Reinserting the removed first entries, we get (p1p̄, q1q̄) =
(1423, 1342). Finally, after swapping the two permutations of the last pair, we get
f4,1,3(p, q) = (1342, 1423).

Lemma 2.4 The map fn,k,k+2 : Ik × Ik+2 → Ik+1 × Ik+1 is an injection.

Proof: First, it is clear that fn,k,k+2 maps into Ik+1 × Ik+1 since both rules increase
the number of inversions of the first permutation by one, and decrease the number of
inversions of the second permutation by one.

Now we prove that fn,k,k+2 is one-to-one. We achieve this by induction on n, the initial
case of n = 3 being obvious. Assume now that the statement is true for n − 1.
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Let (t, u) ∈ Ik+1 × Ik+1, with t = t1t2 · · · tn, and u = u1u2 · · ·un. We show that (t, u)
can have at most one preimage under fn,k,k+2. There are two cases.

1. If t1 > 1 and un < n, then (t, u) could only be obtained as a result of applying fn,k,k+2

if Rule 1 was used. In that case, we have f−1
n,k,k+2(t, u) = ((t1 − 1)t2 · · · tn, (u1 +

1)u2 · · ·un).

2. If t1 = 1, or u1 = n, then (t, u) could only be obtained as a result of applying fn,k,k+2

if Rule 2 was used. In that case, to get the preimage of (t, u), we need to remove
the first entry of t and the first entry of u, swap the permutations, and find the
preimage of the resulting pair (ū, t̄) under the appropriate map fn−1,r,s.

However, the preimage of (ū, t̄) under fn−1,r,s is unique by the induction hypothesis,
therefore so is f−1

n,k,k+2(t, u).

This completes our proof. 3

Consequently, the sequence {i(n, k)}0≤k≤(n
2)

is log-concave, and the injections fn,k,l

exist for all values k and l satisfying 0 ≤ k ≤ l − 2 ≤
(

n
2

)
− 2.
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