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Abstract

In this note we prove the following conjecture of Nowakowski and Rall: For
arbitrary graphs G and H the upper domination number of the Cartesian prod-
uct G� H is at least the product of their upper domination numbers, in symbols:
Γ(G� H) ≥ Γ(G)Γ(H).

A conjecture posed by Vizing [7] in 1968 claims that

Vizing’s conjecture: For any graphs G and H, γ(G �H) ≥ γ(G)γ(H),

where γ, as usual, denotes the domination number of a graph, and G �H is the Cartesian
product of graphs G and H . It became one of the main problems of graph domination,
cf. surveys [2] and [4, Section 8.6], and two recent papers [1, 6].

The unability of proving or disproving it lead authors to pose different variations of
the original problem. Several such variations were studied by Nowakowski and Rall in the
paper [5] from 1996. In particular, they proposed the following

Conjecture (Nowakowski, Rall): For any graphs G and H, Γ(G �H) ≥ Γ(G)Γ(H),

where Γ denotes the upper domination of a graph. In this note we prove this conjecture.
In fact, if both graphs G and H are nontrivial (i.e. have at least two vertices) we prove
the following slightly stronger bound:

Γ(G �H) ≥ Γ(G)Γ(H) + 1.
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We start with basic definitions. For graphs G and H , the Cartesian product G �H
is the graph with vertex set V (G) × V (H) where two vertices (u1, v1) and (u2, v2) are
adjacent if and only if either u1 = u2 and v1v2 ∈ E(H) or v1 = v2 and u1u2 ∈ E(G). For
a set of vertices S ⊆ V (G) × V (H) let pG(S), pH(S) denote the natural projections of S
to V (G) and V (H), respectively.

A set S ⊂ V (G) of vertices in a graph G is called dominating if for every vertex v ∈
V (G) \S there exists a vertex u ∈ S that is adjacent to v. A dominating set S is minimal
dominating set if no proper subset of S is dominating. Minimal dominating sets give rise to
our central definition. The upper domination number Γ(G) of a graph G is the maximum
cardinality of a minimal dominating set in G. Recall that the domination number γ(G) is
the minimum cardinality of a (minimal) dominating set in G. The following fundamental
result due to Ore, cf. [3, Theorem 1.1], characterizes minimal dominating sets in graphs.

Theorem 1 A dominating set S is a minimal dominating set if and only if for every
vertex u ∈ S one of the following two conditions holds:

(i) u is not adjacent to any vertex of S,
(ii) there exists a vertex v ∈ V (G) \ S such that u is the only neighbor of v from S.

Based on Ore’s theorem we present a partition of the vertex set of a graph depending
on a given minimal dominating set. Let DG be a minimal dominating set of a graph G.
If for a vertex u ∈ DG the condition (ii) of Theorem 1 holds, then we say that v is a
private neighbor of u (that is, v is adjacent only to u among vertices of DG). Note that
u can have more than one private neighbor. Also note that for a vertex u of DG both
conditions of Theorem 1 can hold at the same time, that is, it can have a private neighbor
and be nonadjacent to all other vertices of DG. Denote by D′

G the set vertices of DG that
have a private neighbor, and by PG the set of vertices of V (G) \ DG which are private
neighbors of some vertex of D′

G. By NG we denote the set of vertices of V (G) \DG which
are adjacent to a vertex of D′

G but are not private neighbors of any vertex of D′
G. Set

D′′
G = DG \D′

G denoting the vertices of DG which do not have private neighbors (so they
must enjoy condition (i) of the theorem), and finally let the remaining set be RG, that is
RG = V (G) \ (DG ∪PG ∪NG). We will skip the indices if the graph G will be understood
from the context. Note that given a minimal dominating set D of a graph G, the sets
D′, D′′, P, N and R form a partition of the vertex set V (G). In addition, some pairs of
sets must clearly have adjacent vertices (like D′ and P ), while some other pairs of sets
clearly do not have any adjacent vertices (like D′ and D′′). The situation is presented
in Figure 1, where doubled line indicates that between two sets there must be edges, a
normal line indicates that between the two sets edges are possible (but are not necessary),
and no line between two sets means no edges are possible. Note that every vertex of R is
adjacent to a vertex of D′′, and that every vertex of N ∪ P is adjacent to a vertex of D′.
Of course, some of the sets could also be empty for some dominating sets.

If A and B are two subsets of the vertex set of a graph we say that A dominates
(vertices of) B if every vertex of B has a neighbor in A or is a vertex of A. We may then
also say that B is dominated by (vertices of) A.
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Figure 1: Partition of the vertex set

In the proof of the conjecture we will use two special sets, obtained by an operation of
completion of a certain set to a set that dominates a specified set of vertices of a graph.
Let us present these operations.

1. Let G be a graph, D a minimal dominating set, and D′, D′′, P, N, R the correspond-
ing sets that form a partition of V (G). Let I be a subset of R. By SP (D′, I) we denote
a subset of vertices from D′ such that SP (D′, I) ∪ I dominates P ∪ N (it need not be a
dominating set of entire graph), and is minimal in the folowing sense. For each vertex u
of SP (D′, I)

(*) there exists a vertex v ∈ P ∪N such that u is its only neighbor from SP (D′, I)∪I.
That such a set always exists follows from two facts. First D′ itself dominates P ∪ N

(and if I does not dominate any vertex of P ∪ N , then D′ is already minimal in the
above sense). Now, minimality condition can be easily achieved by adding to SP (D′, I)
vertex by vertex from D′ that are needed to dominate vertices of P (those which are
not dominated by I), and after that, if some of the vertices of N remain undominated,
additional vertices from D′ are added to SP (D′, I).

2. The second operation is a modification of the first, where we start with a subset
of D′′ ∪ R instead of just R. So let J be a subset of D′′ ∪ R. By SP ′(D′, J) we denote a
minimal set of vertices from D′ such that N∪P is dominated by vertices of J∪SP ′(D′, J).

Theorem 2 For any nontrivial graphs G and H,

Γ(G �H) ≥ Γ(G)Γ(H) + 1.

Proof. For the proof we will construct a minimal dominating set D of G �H having
enough vertices. Let DG and DH be minimal dominating sets of G and H , respectively,
with maximum cardinality, that is |DG| = Γ(G) and |DH | = Γ(H).

Consider first the case where in one of the factors (say G) the set D′′ is empty. Then
D := D′

G × V (H) is clearly a minimal dominating set (every vertex of D has a private
neighbor) with more than Γ(G)Γ(H)+1 vertices. If both D′

G and D′
H are empty, then let

D := (D′′
G ×D′′

H) ∪ I where I is a maximum independent set of the subgraph induced by
(V (G) \ D′′

G) × (V (H) \D′′
H). Since I is obviously nonempty, D is a minimal dominating

set (it is a maximal independent set) with at least Γ(G)Γ(H) + 1 vertices.
In the sequel we may assume without loss of generality that D′

H 6= ∅, D′′
H 6= ∅ and

D′′
G 6= ∅. We will construct D as a union of six pairwise disjoint sets (in the case D′

G = ∅
the last three sets will be empty).
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Let the first set be D1 = D′′
G × DH (note that it has |D′′

G| · Γ(H) vertices). Let the
second set (D2) be a maximum independent set I of the subgraph induced by RG × RH .

For each x ∈ RG denote by Ix the set I ∩ ({x} × V (H)). Let SP (D′
H, pH(Ix)) be the

subset of D′
H obtained by the operation defined above, and consider the corresponding

subset of G�H , that is {x} × SP (D′
H, pH(Ix)). Let the third set of D be the union of all

such sets, that is

D3 =
⋃

x∈RG

{x} × SP (D′
H, pH(Ix))

which is obviously a subset of RG × D′
H .

The fourth set is obtained similarly by reversing the roles of G and H . That is for
each y ∈ RH denote by Iy the set I ∩ (V (G) × {y}). Then SP (D′

G, pG(Iy)) is a subset of
D′

G, and let

D4 =
⋃

y∈RH

SP (D′, pG(Iy)) × {y}

which is a subset of D′
G × RH .

For each y ∈ D′
H let Jy be the set of vertices from V (G)×{y} that are already included

in D. That is
Jy = (D1 ∪ D3) ∩ (V (G) × {y}),

and for each such set add to D vertices in V (G)×{y} by using the second operation from
above:

D5 =
⋃

y∈D′
H

SP ′(D′
G, pG(Jy)) × {y}

which is clearly a subset of D′
G × D′

H .
Finally, set

D6 = D′
G × (V (H) \ (D′

H ∪ RH)).

Since |PH | ≥ |D′
H |, we infer |V (H) \ (D′

H ∪ RH)| ≥ |DH |, and so |D6| ≥ |D′
G| · Γ(H).

Now, as said before let D = D1 ∪ D2 ∪ D3 ∪ D4 ∪ D5 ∪ D6 and obviously the six sets
are pairwise disjoint. From previous observations we get

|D1| + |D6| ≥ |D′′
G| · Γ(H) + |D′

G| · Γ(H) = |DG| · Γ(H) = Γ(G)Γ(H).

Since D′′
G 6= ∅ and D′′

H 6= ∅, we get RG ∪ NG 6= ∅ and RH ∪ NH 6= ∅. If RG = ∅ then D5

must be nonempty. If RG 6= ∅ and RH = ∅ then D3 must be nonempty. Finally, RG 6= ∅
and RH 6= ∅ implies D2 is nonempty. We infer that |D| ≥ Γ(G) Γ(H) + 1. (This is even
easier to deduce if D′

G = ∅.)
In the rest of the proof we (must) show that D is a minimal dominating set of G �H .

To prove that D is a dominating set we will partition G�H and check for each part that
is dominated by D.

Vertices of D′′
G × V (H) are obviously dominated by D1.

Next consider vertices of RG × V (H). Vertices of RG ×RH are dominated by I = D2,
since it is its maximum (and thus maximal) independent set. Vertices of RG × DH are
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dominated by D1, and other vertices of RG × V (H) are dominated by D2 ∪D3 (by using
the operation SP ).

Vertices of D′
G × V (H) are dominated by D6. Indeed, recall that D6 is D′

G × (PH ∪
D′′

H ∪ NH), and that PH ∪ D′′
H ∪ NH is a dominating set of H .

Vertices of PG × V (H) and of NG × V (H) are dominated as follows. If y ∈ V (H) is a
vertex of RH then (PG ∪ NG) × {y} is dominated by D2 ∪ D4 by using operation SP . If
y is in D′

H then (PG ∪NG) × {y} is dominated by D1 ∪D3 ∪D5 by using operation SP ′.
Finally, if y /∈ RH ∪D′

H then (PG ∪NG)×{y} is dominated by D6 because D′
G dominates

PG ∪ NG.
This proves that D is a dominating set of G �H . To see that D is minimal dominating

set we will use Theorem 1. Namely, for each vertex of D we will show that one of the two
conditions (i) or (ii) from that theorem holds.

Let (x, y) ∈ D1. If y ∈ V (H) belongs to D′′
H then clearly (x, y) is not adjacent to any

vertex of D. If y ∈ V (H) is from D′
H then it has a private neighbor z ∈ V (H). It is clear

that (x, z) is a private neighbor of (x, y) (with respect to D) and so (ii) holds for (x, y).
Let (x, y) ∈ D2. Recall that D2 is a maximum independent set of the subgraph

induced by RG × RH . And so by definition of independence no two vertices of D2(= I)
are adjacent. Other vertices of D that belong to {x} × V (H) or V (G) × {y} also cannot
be adjacent to (x, y) since they are obtained by operation SP and belong to {x} × D′

H

and D′
G×{y}, respectively. Recall that D′ does not have adjacencies with R, hence every

vertex of D2 enjoys condition (i) of Theorem 1.
If (x, y) ∈ D3, then y ∈ SP (D′

H, pH(Ix)) which means that y enjoys condition
(*): there exists a vertex v ∈ PH ∪ NH such that y is the only neighbor of v from
SP (D′

H, pH(Ix)) ∪ Ix. Hence (x, y) is the only neighbor of (x, v) from D ∩ ({x} × V (H)).
It is also clear that (x, v) does not have neighbors in D∩ (V (G)×{v}) which implies that
(x, y) enjoys condition (ii) of Theorem 1 with respect to D.

The case (x, y) ∈ D4 is analog of the previous case and we treat it similarly, concluding
that (x, y) enjoys condition (ii) of Theorem 1.

The case (x, y) ∈ D5 is only slightly different, since the vertex was derived by operation
SP ′ on V (G). The minimality condition again implies that there is a vertex (u, y) ∈
(PG ∪ NG) × D′

H such that (x, y) is its only neighbor in D ∩ (V (G) × {y}). Since there
are no vertices in D ∩ ((PG ∪ NG) × V (H)) we infer that (u, y) is a private neighbor of
(x, y) with respect to D.

Let (x, y) ∈ D6, that is x ∈ D′
G and y ∈ PH ∪ D′′

H ∪ NH . Note that x ∈ V (G) has a
private neighbor u ∈ PG, and it is clear that (u, y) is a private neighbor of (x, y).

�

The bound of the theorem is sharp, for instance consider nontrivial paths on at most 3
vertices. It would be interesting to characterize graphs for which the equality is achieved.

We conclude with the following question: can the bound be strengthened to

Γ(G �H) ≥ Γ(G)Γ(H) + min{|V (G)| − Γ(G), |V (H)| − Γ(H)}
for any nontrivial graphs G and H?
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