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Abstract

For given finite family of graphs G1, G2, . . . , Gk, k ≥ 2, the multicolor Ramsey
number R(G1, G2, . . . , Gk) is the smallest integer n such that if we arbitrarily color
the edges of the complete graph on n vertices with k colors then there is always
a monochromatic copy of Gi colored with i, for some 1 ≤ i ≤ k. We give a lower
bound for k−color Ramsey number R(Cm, Cm, . . . , Cm), where m ≥ 4 is even and
Cm is the cycle on m vertices.

1 Introduction

In this paper all graphs considered are undirected, finite and contain neither loops nor
multiple edges. By Km we denote the complete graph on m vertices, and by Cm we
denote the cycle of length m. For given graphs G1, G2, . . . , Gk, k ≥ 2, the multicolor
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Ramsey number R(G1, G2, . . . , Gk) is the smallest integer n such that if we arbitrarily
color the edges of the complete graph of order n with k colors, then it always contains a
monochromatic copy of Gi colored with i, for some 1 ≤ i ≤ k. We denote such a number
by Rk(G) if G = G1 = G2 = · · · = Gk. Here in, we consider only 3-color Ramsey number
R3(G) (i.e. we color the edges of the complete graph Kn with color red, blue and green.)
A 3-coloring of Kn is called a (G; n)3-coloring if it contains neither a red G nor a blue
G nor a green G, (G; n)k-coloring is defined analogously. We refer the reader to [6] for a
survey.

2 The Ramsey numbers for even cycles

Up to now, there have been known only two exact values for 3-color Ramsey numbers for
even cycles. More precisely, in [2] it was proved that R3 (C4) = 11, and R3 (C6) = 12 was
showed in [7] with a help of the computer support. When talking about lower bounds, let
us recall that Graham et al. [5] proved that for any k and m, Rk (C2m) ≥ (k − 1) (m − 1)+
1. This bound was improved to (k + 1) m − k + 1 in [3]. Finally, recall that Figaj and
 Luczak proved the following theorem.

Theorem 1 ([4]). For any constants α1, α2, α3 > 0,

R
(
C2bα1nc, C2bα2nc, C2bα3nc

)
= (α1 + α2 + α3 + max{α1, α2, α3} + o (1)) n

while n → ∞.

Consequently, notice that if α1 = α2 = α3 = 1 and n = m we obtain that

R3 (C2m) = (4 + o(1)) m.

In this paper, our main result is the following theorem.

Theorem 2. For all integers m ≥ 2 and an odd integer k ≥ 1,

Rk(C2m) ≥ (k + 1)m.

Proof. We shall give a k-coloring of all edges of a complete graph G′′ = Kn on n =
(k + 1)m− 1 vertices which is a (C2m; n)k-coloring. The situation for k = 1 is obvious, so
we may assume that k ≥ 3.

Let k ≥ 3 be an odd integer. Using a fact that χ′(Kk+1) = k when k is odd (see
e.g. [8]), color properly edges of the complete graph Kk+1 with k colors. “Blow-up” the
coloring m−1 times, i.e. replace each vertex of Kk+1 by the set Gi (1 ≤ i ≤ k+1) of m−1
vertices and each colored edge by a complete monochromatic bipartite graph Km−1,m−1 of
an appropriate color (See Fig. 1 for illustration.) Formally, consider the complete graph
G on k + 1 vertices. Let c : V → {1, . . . , k + 1} be a proper edge-coloring of graph G.
For a vertex i ∈ V , where i ∈ {1, . . . , k + 1}, let Gi denote a complete graph on m − 1
vertices.
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Figure 1: An illustration of coloring from the proof of Theorem 2 for the case m = 4 and
k = 3. To make the picture readable there are shown only edges colored with color 1: ones
which join v1 with each Gi, and edges joining G1 with G2, and G3 with G4. Edges which
join v2 with each Gi, G2 with G3, and G1 with G4 are colored with color 2. Edges which
join v3 with each Gi, G1 with G3 and G2 with G4 are colored with color 3. Subgraphs
G1, G2, G3 and G4 replace “blown-up” vertices of the complete graph K4.

Let G′(V ′, E′) be a complete graph with the set of vertices

V ′ =

k+1⋃
i=1

V (Gi) .

The coloring c′ of the graph G′ is as follows:

c′ ({p, q}) =

{
c (x, y) if p ∈ V (Gx), and q ∈ V (Gy), and x 6= y;
1 otherwise.

Obviously, such a graph G′ contains no monochromatic path of more than 2m−2 vertices.
Next, extend graph G′ to the graph G′′ by adding k new vertices S = {v1, . . . , vk}.

Now, color all edges between vi and V ′ with the color i, and for any pair {i, j} such that
j > i > 0, color edge {vi, vj} with the color i (thus there are no monochromatic cycles in
the subgraph induced by S.)

More formally, let G′′(V ′′, E′′) be a complete graph with the set of vertices V ′′ = V ′∪S.
The coloring c′′ of G′′ is as follows:

c′′ ({p, q}) =




i if p = vi ∈ S, and q ∈ V (Gj) , and 1 ≤ j ≤ k + 1;
i if p = vi ∈ S, and q = vj ∈ S, and 1 ≤ i < j ≤ k;
c′ ({p, q}) otherwise.

It remains to show that in G′′ there are no monochromatic cycles of length at least
2m. Suppose, contrary to our claim, that G′′ contains a cycle C of color d longer than

the electronic journal of combinatorics 12 (2005), #N13 3



Kkm−1 Km−1

K(k+1)m−2

Figure 2: An illustration of coloring from the proof of Corollary 1. Edges of Kkm−1 are
colored with k − 1 colors without monochromatic cycle of length 2m. All edges from the
graph Km−1 and a bipartite graph Kkm−1,m−1 are colored with color k (dashed line denote
edges assigned with color k.)

2m − 1. Since in G′ there is no monochromatic path of length greater than 2m − 2, we
have

C ∩ S 6= ∅.
Next, the only vertex from S which is adjacent by an edge of color d with G is vd, hence

C ∩ S = {vd} .

Since vd can be contained only once in the cycle C, this implies that the cardinality of
the set

{i : C ∩ Gi 6= ∅}
is at most 2. Thus the length of C is less than 2m, a contradiction.

Corollary 1. For all integers m ≥ 2 and an even integer k ≥ 2,

Rk (C2m) ≥ (k + 1) m − 1.

Proof. Let n = (k + 1)m − 2. By Theorem 2, there exists (C2m; km − 1)k−1-coloring of
a complete subgraph Kkm−1 of Kn. A (C2m; n)k-coloring of Kn is obtained by assigning
the last color k to all remaining edges (See Fig. 2.) Indeed, on the contrary suppose that
there exists a monochromatic cycle of length 2m. This cycle has the last k-th color. The
number of vertices from Kkm−1 which belong to cycle is at least m+ 1 and is greater than
the number of such vertices from Km−1. The maximal possible number of edges between
Kkm−1 and Km−1 is 2m − 2. Thus there exists an edge contained in the graph Kkm−1,
what is impossible.

The following corollary is straightforward:
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Corollary 2. For all integers m ≥ 2,

R3 (C2m) ≥ 4m.

In particular, notice that we obtain R3 (C8) ≥ 16. Moreover, by using upper bound for
Ramsey number for even cycles ([5, Section 5.7, Theorem 10]), we have R3 (C8) ≤ 2412,
and by using known upper bound for Ramsey number for symmetric bipartite graph K4,4

([1]), we have R3 (C8) ≤ 648.
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