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Abstract

It is shown that the numbers ci of chains of length i in the proper part L\{0, 1}
of a distributive lattice L of length ` + 2 satisfy the inequalities

c0 < . . . < cb`/2c and cb3`/4c > . . . > c`.

This proves 75 % of the inequalities implied by the Neggers unimodality conjecture.

1 Introduction

The chain polynomial of a finite poset P is defined as

C(P, t) =
∑

i

cit
i,

where ci is the number of chains (totally ordered subsets) in P of length i (i.e., cardinality
i + 1). One of the equivalent forms of a well-known poset conjecture due to Neggers [14]
implies that the chain polynomial of the proper part L \ {0, 1} of a distributive lattice L
of length d + 1 is unimodal, meaning that for some k the coefficients of C(L \ {0, 1}, t)
satisfy the inequalities

c0 ≤ . . . ≤ ck ≥ . . . ≥ cd−1.

See [8] and [20] for background, references and more details concerning this unimodality
conjecture, and see the Appendix for pointers to recent progress on related problems.

The purpose of this note is to show that the unimodality conjecture for chain poly-
nomials of distributive lattices is 75% correct, in the sense that violations of unimodality
can occur only for indices (roughly) between d/2 and 3d/4. More precisely, we prove the
following.
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Theorem 1 The numbers ci of chains of length i in the proper part of a distributive
lattice L of length d + 1 satisfy the inequalities

c0 < . . . < cb(d−1)/2c and cb3(d−1)/4c > . . . > cd−1.

The proof consists in observing that the order complex of L\{0, 1} is a nicely behaved
ball, and then gathering and combining some known facts from f -vector theory. The pieces
of the argument are stated as Propositions 2, 3, 4 and 5. Of these, only Proposition 3
seems to be new.

2 Some f-vector inequalities

For standard notions concerning simplicial complexes we refer to the literature, see e.g.
the books [7, 22].

Let ∆ be a (d − 1)-dimensional simplicial complex, and let fi be the number of i-
dimensional faces of ∆. The sequence (f0, . . . , fd−1) is called the f -vector of ∆. We put
f−1 = 1. The h-vector (h0, . . . , hd) of ∆ is defined by the equation

d∑
i=0

fi−1x
d−i =

d∑
i=0

hi(x + 1)d−i. (1)

In the following two results we assume that (f0, f1, . . . , fd−1) is the f -vector of a (d−1)-

dimensional simplicial complex ∆, and that f0 > d. From now on, let d ≥ 3 and δ
def
= bd

2
c,

ε
def
= bd−1

2
c.

Proposition 2 Suppose that hi ≥ 0, for all 0 ≤ i ≤ d. Then

fi < fj , for all i < j such that i + j ≤ d − 2.

In particular, f0 < f1 < . . . < fε.

Proof. This implication is well known. See e.g. [6, Proposition 7.2.5 (i)]. 2

Proposition 3 Suppose that hi ≥ hd−i ≥ 0, for all 0 ≤ i ≤ δ. Then

fb3(d−1)/4c > . . . > fd−2 > fd−1.

Proof. By (1), the f -vector f = (f0, f1, . . . , fd−1) and the h-vector h = (h0, h1, . . . , hd)
satisfy

fk =
d∑

i=0

hi

(
d − i

d − 1 − k

)
, k = −1, . . . , d − 1. (2)
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Define integer vectors bi as follows:

bi =
(
bi
0, b

i
1, . . . , b

i
d−1

)
, where bi

k =

(
i

d − 1 − k

)
.

Then, by (2), f =
∑d

i=0 hib
d−i, which we rewrite

f =
ε∑

i=0

(hi − hd−i)b
d−i +

δ∑
i=0

hd−ib̃
i, (3)

where

b̃i def
=

{
bi + bd−i , if 2i |= d
bd/2 , if 2i = d.

Let us say that a unimodal sequence

a0 ≤ a1 ≤ . . . ≤ ak ≥ ak−1 ≥ . . . ≥ an

peaks at k (note that this does not necessarily determine k uniquely).
It is shown in [5, Proof of Thm. 5, p. 50] that the vector b̃i is unimodal and peaks at

d− 1− b (d−i)
2

c. The vector bd−i is a segment of a row in Pascal’s triangle, so it is easy to

see that it is unimodal and, in fact, also peaks at d − 1 − b (d−i)
2

c. One easily checks that

d − 1 − b(d − i)

2
c =

{ bd
2
c + b i

2
c − 1 , if d and i are even

bd
2
c + b i

2
c , otherwise.

Hence, both the vectors bd−i (0 ≤ i ≤ ε) and the vectors b̃i (0 ≤ i ≤ δ) are unimodal and
peak between δ and δ + bδ/2c.

By equation (3), f is a nonnegative linear combination of the vectors bd−i and b̃i. It
follows from the previous paragraph that the inequalities hold for each of these vectors
separately, strictly for bd, and non-strictly otherwise. For the computation of the index
b3(d − 1)/4c, see again [5, pp. 50–51]. Hence, if hd = 0 the result follows. The case when
hd = 1 requires a small extra argument to see that the inequalities are in fact strict. For
this case one can proceed as in [5, Proof of Thm. 5]. 2

3 On the h-vectors of balls

We say that a simplicial complex is a polytopal (d − 1)-sphere if it is combinatorially
isomorphic to the boundary complex of some convex d-polytope. See Ziegler [22] for
notions relating to polytopes and convex geometry.

We now review some definitions and results from the general theory of face numbers.
For more about this topic, see e.g. [22] or the survey [2].

It follows from (1) that h0 = 1, h1 = f0 − d, and hd = (−1)d−1χ̃(∆), where χ̃(∆) is
the reduced Euler characteristic of ∆. In particular,

hd =

{
1, if ∆ is a sphere,
0, if ∆ is a ball,
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where the conditions are shorthand for saying that ∆’s geometric realization is homeo-
morphic to a sphere, resp. a ball.

The following are the Dehn-Sommerville relations:

If ∆ is a sphere then hi = hd−i, for all 0 ≤ i ≤ d. (4)

Therefore, for spheres all f -vector information is encoded in the shorter g-vector g =
(g0, . . . , gb d

2
c), defined by gi = hi − hi−1. The relevance of the g-vector for this paper is

the following result, due to Stanley [17]:

If ∆ is a polytopal sphere, then gi ≥ 0 for all i ≥ 0. (5)

If ∆ is a (d − 1)-ball, its boundary complex ∂∆ is a (d − 2)-sphere. Furthermore,
∂∆’s f -vector is determined by that of ∆, as shown by the following consequence of the
Dehn-Sommerville relations, due to McMullen and Walkup [13], see also [3, Coroll. 3.9]:

If ∆ is a ball with boundary ∂∆, then h∆
i − h∆

d−i = g∂∆
i . (6)

Say that a (d−1)-ball ∆ admits a polytopal embedding if ∆ is isomorphic to a subcom-
plex of the boundary complex of some simplicial d-polytope. The following was shown by
Kalai [12, §8] and Stanley [19, Coroll. 2.4].

If ∆ admits a polytopal embedding, then g∂∆
i ≥ 0 for all i ≥ 0. (7)

Combining (5), (6) and (7), we deduce the following result.

Proposition 4 If ∆ is a (d−1)-ball, such that either the boundary sphere ∂∆ is polytopal
or ∆ admits a polytopal embedding, then

hi ≥ hd−i ≥ 0, for all 0 ≤ i ≤ δ.

2

4 Proof of Theorem 1

We refer to [18, Ch. 3] for basic facts and notation concerning distributive lattices.
Let L be a distributive lattice of length d+1, and let ∆L = ∆(L \ {0, 1}) be the order

complex of its proper part. Thus, ∆L is a pure simplicial complex of dimension d − 1.

Proposition 5 Suppose that L is not Boolean. Then the complex ∆L is a (d − 1)-ball
satisfying

(i) ∆L admits a polytopal embedding,

(ii) ∂∆L is polytopal.
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Proof. By Birkhoff’s representation theorem (see [18, Ch. 3]) we have that L = J(P ),
where J(P ) is the family of order ideals of some poset P ordered by inclusion. Let B
denote the Boolean lattice of all subsets of P . Then ∆B = ∆(B \ {0, 1}) is a polytope
boundary (the barycentric subdivision of the boundary of a d-simplex). Furthermore,
∆L is embedded in ∆B as a full-dimensional subcomplex. Finally, ∆L is a shellable ball
[4, 15]. Thus, part (i) is proved.

Part (ii) requires a small convexity argument. Alternatively, it follows from Provan’s
result [15] that ∆L can be obtained from a simplex via repeated stellar subdivisions. Since
this part is not needed for the main result of this paper, details of the proof are left out.
2

We now have all the pieces needed to prove Theorem 1. We may assume that L is not
Boolean, since in that case ∆L is a sphere and Theorem 1 is a special case of [5, Thm. 5].
Then, by Propositions 4 and 5 we have that

hi ≥ hd−i ≥ 0, for all 0 ≤ i ≤ δ.

Furthermore, by Propositions 2 and 3 it follows that the f -vector of ∆L satisfies

f0 < . . . < fb(d−1)/2c and fb3(d−1)/4c > . . . > fd−1.

Since fi = ci for all i, the proof of Theorem 1 is complete.

5 Appendix (added in proof)

By equation (1), the f -polynomial f(x) =
∑d

i=0 fi−1x
d−i and the h-polynomial h(x) =∑d

i=0 hix
d−i are related by f(x) = h(x + 1). The conjecture of Neggers [14] is that all

roots of the h-polynomial of a distributive lattice are real. Equivalently, by equation (1),
that all roots of its f -polynomial are real. It was recently shown by Brändén [10] that an
extension of Neggers conjecture proposed by Stanley is false. Soon after, Stembridge [21]
showed that the Neggers real-rootedness conjecture itself is false.

Real-rootedness of a polynomial implies unimodality. Furthermore, the counterex-
amples to real-rootedness given by Brändén and Stembridge are unimodal. Thus there
remain two unimodality conjectures, one for the f -polynomial (the one referred to in this
paper), and one for the h-polynomial. Recent progress on the latter appears in [1], [9],
[11] and [16].
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[10] P. Brändén, Counterexamples to the Neggers-Stanley Conjecture, Electronic Re-
search Announcements of the Amer. Math. Soc. 10 (2004), 155–158.

[11] J. D. Farley, Linear extensions of ranked posets, enumerated by descents. A problem
of Stanley from the 1981 Banff Conference on Ordered Sets, Advances in Appl.
Math. 34 (2005), 295–312.

[12] G. Kalai, The diameter of graphs of convex polytopes and f -vector theory, in “ Ap-
plied geometry and discrete mathematics, The Victor Klee Festschrift”, DIMACS
Series in Discrete Math. and Theor. Computer Sci., Vol. 4, Amer. Math. Soc.,
Providence, R.I., 1991, pp. 387–411.

[13] P. McMullen and D. W. Walkup, A generalized lower bound conjecture for simpli-
cial polytopes, Mathematika 18 (1971), 264 – 273.

[14] J. Neggers, Representations of finite partially ordered sets, J. Comb. Inf. Syst. Sci.
3 (1978), 113–133.

[15] J. S. Provan , Decompositions, shellings, and diameters of simplicial complexes
and convex polyhedra, Ph.D. Thesis, Cornell Univ., 1977.

[16] V. Reiner and V. Welker, On the Charney-Davis and the Neggers-Stanley conjec-
tures, J. Combinat. Theory, Series A 109 (2005), 247 – 280.

[17] R. P. Stanley, The number of faces of simplicial convex polytopes, Advances in
Math. 35 (1980), 236 – 238.

[18] R. P. Stanley, Enumerative Combinatorics, Vol 1, Cambridge Univ. Press, 1997.

[19] R. P. Stanley, A monotonicity property of h-vectors and h∗-vectors, Europ. J.
Combinatorics 14 (1993), 251 – 258.

[20] R. P. Stanley, Positivity problems and conjectures in algebraic combinatorics, in
“Mathematics: frontiers and perspectives”, Amer. Math. Soc., Providence, R.I.,

the electronic journal of combinatorics 12 (2005), #N4 6



2000.

[21] J. R. Stembridge, Counterexamples to the Poset Conjectures of Neggers, Stanley,
and Stembridge, Trans. Amer. Math. Soc., to appear.

[22] G. M. Ziegler, Lectures on Polytopes, GTM-series, Springer-Verlag, Berlin, 1995.

the electronic journal of combinatorics 12 (2005), #N4 7


