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Abstract

In this paper, we consider a weakening of the definitions of uniform and perfect
one-factorizations of the complete graph. Basically, we want to order the 2n − 1
one-factors of a one-factorization of the complete graph K2n in such a way that
the union of any two (cyclically) consecutive one-factors is always isomorphic to
the same two-regular graph. This property is termed sequentially uniform; if this
two-regular graph is a Hamiltonian cycle, then the property is termed sequentially
perfect. We will discuss several methods for constructing sequentially uniform and
sequentially perfect one-factorizations. In particular, we prove for any integer n ≥ 1
that there is a sequentially perfect one-factorization of K2n. As well, for any odd
integer m ≥ 1, we prove that there is a sequentially uniform one-factorization of
K2tm of type (4, 4, . . . , 4) for all integers t ≥ 2 + dlog2 me (where type (4, 4, . . . , 4)
denotes a two-regular graph consisting of disjoint cycles of length four).

1 Introduction

A one-factor of a graph G is a subset of its edges which partitions the vertex set. A one-
factorization of a graph G is a partition of its edges into one-factors. Any one-factorization
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of the complete graph K2n has 2n−1 one-factors, each of which has n edges. For a survey
of one-factorizations of the complete graph, the reader is referred to [10], [14] or [15].

A one-factorization {F0, . . . , F2n−2} of K2n is sequentially uniform if the one-factors
can be ordered (F0, . . . , F2n−2) so that the graphs with edge sets Fi ∪ Fi+1 (subscripts
taken modulo 2n − 1) are isomorphic for all 0 ≤ i ≤ 2n − 2. Since the union of two
one-factors is a 2-regular graph which is 2-edge-colorable, it is isomorphic to a disjoint
union of even cycles. We say the multiset T = (k1, . . . , kr) is the type of a sequentially
uniform one-factorization if Fi∪Fi+1 is isomorphic to the disjoint union of cycles of lengths
k1, . . . , kr, where k1 + · · ·+kr = 2n. When the union of every two consecutive one-factors
is a Hamiltonian cycle, the one-factorization is said to be sequentially perfect.

The idea to consider orderings of the one-factors in a one-factorization of K2n is not
entirely academic. In fact, an ordered one-factorization of K2n is a schedule of play for a
round-robin tournament (played in 2n− 1 rounds). Round-robin tournaments possessing
certain desired properties have been studied (see [15, Chapter 5], or [7]); however, to
our knowledge, round robin tournaments with this “uniform” property have not been
considered previously.

The definition above is a relaxation of the definition of uniform (perfect) one-factoriz-
ation of K2n, which requires that the union of any two one-factors be isomorphic (Hamil-
tonian, respectively). Much work has been done on perfect one-factorizations of K2n; for
a survey, see Seah [13]. Perfect one-factorizations of K2n are known to exist whenever n
or 2n− 1 is prime, and when 2n = 16, 28, 36, 40, 50, 126, 170, 244, 344, 730, 1332, 1370,
1850, 2198, 3126, 6860, 12168, 16808, and 29792 (see [1]). Recently a few new perfect
one-factorizations have been found, the smallest of which is in K530 (see [4, 9, 16]); how-
ever before this, no new perfect one-factorization of K2n had been found since 1992 ([17]).
The smallest value of 2n for which the existence of a perfect one-factorization of K2n is
unknown is 2n = 52. We will show that sequentially perfect one-factorizations are much
easier to produce and indeed we will produce a sequentially perfect one-factorization of
K2n for all n ≥ 1.

Various uniform one-factorizations have been constructed from Steiner triple systems,
[10]. For instance, when n = 2m for some positive m, the so-called binary projective
Steiner triple systems provide a construction of uniform one-factorizations of K2n of type
(4, 4, . . . , 4). There are also sporadic examples of perfect Steiner triple systems, [8], which
give rise to uniform one-factorizations of type (2n − 4, 4). When v = 3m, uniform one-
factorizations (4, 6, . . . , 6) exist (these are Steiner one-factorizations from Hall triple sys-
tems) and when p is an odd prime there is a uniform one-factorization of Kps+1 of type
(p + 1, 2p, . . . , 2p) which arises from the elementary abelian p-group (see [10]).

The remainder of this paper is organized as follows. In Section 2, we review the classical
“starter” construction for one-factorizations and we show that sequentially perfect one-
factorizations of K2n exist for all n. In Section 3, we summarize existence results obtained
by computer for small orders. In Section 4, we investigate the construction of sequentially
uniform one-factorizations from so-called quotient starters in noncyclic abelian groups.
Here we obtain interesting number-theoretic conditions that determine if the resulting
one-factorizations can be ordered so that they are sequentially uniform. In Section 5,
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we present a recursive product construction which yields infinite classes of sequentially
uniform one-factorizations of K2tm of type (4, 4, . . . , 4), for any odd integer m.

2 Starters

We describe our main tool for finding sequentially uniform one-factorizations. Let Γ be
an abelian group of order 2n− 1, written additively. A starter in Γ is a set of n− 1 pairs
S = {{x1, y1}, . . . , {xn−1, yn−1}} such that every nonzero element of Γ appears as some xi

or yi, and also as some difference xj − yj or yj − xj . Let S∗ = S ∪ {{0,∞}} and define
x + ∞ = ∞ + x = ∞ for all x ∈ Γ. Then {S∗ + x : x ∈ Γ} forms a one-factorization of
K2n (with vertex set Γ ∪ {∞}).

Many of the known constructions for (uniform and perfect) one-factorizations use
starters in this way. In our first lemma we note the connection between starter-induced
one-factorizations and sequentially uniform one-factorizations. Clearly, the order in which
the 1-factors are listed is essential to the type of a sequentially uniform one-factorization.
Thus we will sometimes refer to ordered one-factorizations in this context. Whenever we
discuss sequentially uniform one-factorizations, we will always give the 1-factor ordering.

Lemma 2.1. Let S be a starter in Z2n−1 with n ≥ 1. Then the ordered one-factorization
of K2n generated by S, namely (S∗, S∗+1, S∗+2, . . . , S∗+(2n−2)) is sequentially uniform.

Proof: For any x ∈ Z2n−1, we have (S∗ + x) ∪ (S∗ + (x + 1)) = x + (S∗ ∪ (S∗ + 1)), so all
unions of two consecutive one-factors in the given order are isomorphic. 2

Remark: When gcd(k, 2n− 1) = 1, the ordering (S∗, S∗ + k, S∗ + 2k, . . . , S∗ + (2n − 2)k)
of the same one-factorization is also sequentially uniform. Note, however, that it is not
necessarily of the same type as the ordered one-factorization (S∗, S∗ + 1, S∗ + 2, . . . , S∗ +
(2n − 2)).

The most well-known one-factorization of K2n (called GK(2n)) is generated from the
patterned starter P = {{x,−x} : x ∈ Z2n−1} in the cyclic group Z2n−1. It is known
when 2n− 1 is prime that GK(2n) is a perfect one-factorization and, in general, GK(2n)
is a uniform one-factorization for all n ≥ 1. The cycle lengths in P ∗ ∪ (P ∗ + k) for
k ∈ Z2n−1 \ {0} are now given.

Lemma 2.2. Let P be the patterned starter in Z2n−1 with n ≥ 1. Let k ∈ Z2n−1 \ {0}
with gcd(2n − 1, k) = d. Then P ∗ ∪ (P ∗ + k) consists of a cycle of length 1 + (2n − 1)/d
and (d − 1)/2 cycles of length 2(2n − 1)/d.

Proof: The cycle through infinity is (∞, 0, 2k,−2k, 4k,−4k, . . . ,−k, k), which has length
1 + (2n − 1)/d. All other cycles (if any) are of the form

(i,−i, 2k + i,−2k − i, 4k + i,−4k − i, . . . ,−2k + i, 2k − i),

for 1 ≤ i < d. 2

Combining Lemmas 2.1 and 2.2 (with d = 1) we have the following result.
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Theorem 2.3. For every n ≥ 1 there exists a sequentially perfect one-factorization of
K2n.

Contrast this with the known results for perfect one-factorizations: the sporadic small
values mentioned in the Introduction, and only two infinite classes (each of density zero).

3 Small orders

The one-factorizations of K4 and K6 are unique and in each case they are perfect. Hence
both are sequentially perfect (the only possible type in these small cases). The one-
factorization of K8 obtained from the unique Steiner triple system of order 7 has type
(4, 4) while GK(8) is a perfect one-factorization. Hence there exist sequentially uniform
one-factorizations of K8 of all possible types.

We have checked all starters in Z9 by computer and report that no ordering of the
translates of any of these starters yields a sequentially uniform one-factorization of K10

of type (4, 6). However, there does exist a uniform one-factorization of type (4, 6) (it is
one-factorization #1 in the list of all 396 non-isomorphic one-factorizations of K10 given
in [1, p. 655]). Clearly this is also sequentially uniform of type (4, 6) under any ordering
of the one-factors. From Theorem 2.3 there exists a sequentially perfect one-factorization
of K10. Thus sequentially uniform one-factorizations of K10 exist for both possible types.

Obviously, the ordering of the one-factors can affect the type of the 2-factors formed
from consecutive 1-factors in an ordered one-factorization. Given a starter S in Z2n−1,
let FS(k) denote the ordered one-factorization (S∗, S∗ + k, S∗ + 2k, . . . , S∗ + (2n − 2)k)
of K2n. In the following examples we discuss sequentially uniform one-factorizations in
K12 and K14. In Z13 we will give one starter which induces all possible types of ordered
one-factorizations when different orderings are imposed on translates of that starter.

Example 3.1. Given the following starter in Z11,

S = {{1, 2}, {3, 8}, {4, 6}, {5, 9}, {7, 10}},

FS(1) is sequentially uniform of type (6, 6), FS(2) is sequentially uniform of type (4, 8)
and FS(3) is sequentially uniform of type (12).

By checking all starters in Z11, we found that no ordering of any of the one-factoriz-
ations formed by these starters gave a sequentially uniform one-factorization of type
(4, 4, 4). However, Figure 1 provides a non-starter-induced ordered one-factorization which
is sequentially uniform of this type.

In [12] it is found that there exist exactly five nonisomorphic perfect one-factorizations
of K12 and in [2] a uniform one-factorization of type (6, 6) is given. From the enumer-
ation in [5], it is known that there exist no other uniform one-factorizations of K12.
Hence it is noteworthy that FS(2) (defined in Example 3.1) gives a sequentially uni-
form one-factorization of K12 of type (8, 4) and Figure 1 gives a sequentially uniform
one-factorization of type (4, 4, 4).
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Figure 1: A sequentially uniform one-factorization of K12 with type (4, 4, 4)

F0 : {{0, 1}, {2, 6}, {3, 4}, {7, 9}, {8, 10}, {5, 11}}
F1 : {{0, 2}, {1, 6}, {3, 9}, {4, 7}, {5, 10}, {8, 11}}
F2 : {{0, 3}, {1, 4}, {5, 8}, {6, 7}, {2, 9}, {10, 11}}
F3 : {{0, 4}, {1, 3}, {2, 8}, {7, 10}, {6, 11}, {5, 9}}
F4 : {{0, 5}, {1, 2}, {3, 8}, {4, 9}, {6, 10}, {7, 11}}
F5 : {{0, 8}, {1, 7}, {2, 11}, {3, 5}, {4, 6}, {9, 10}}
F6 : {{0, 6}, {1, 5}, {2, 10}, {4, 8}, {3, 7}, {9, 11}}
F7 : {{0, 7}, {1, 10}, {2, 5}, {3, 6}, {4, 11}, {8, 9}}
F8 : {{0, 9}, {1, 11}, {2, 3}, {4, 10}, {5, 6}, {7, 8}}
F9 : {{0, 11}, {1, 9}, {2, 4}, {3, 10}, {6, 8}, {5, 7}}
F10 : {{0, 10}, {1, 8}, {2, 7}, {3, 11}, {4, 5}, {6, 9}}

Example 3.2. The following starter in Z13,

S = {{1, 10}, {2, 3}, {4, 9}, {5, 7}, {6, 12}, {8, 11}},
yields sequentially uniform one-factorizations of K14 of all possible types: namely (14),
(10, 4), (8, 6), and (6, 4, 4). Specifically, FS(3) is sequentially uniform of type (6, 4, 4),
FS(1) is sequentially uniform of type (8, 6), FS(2) is sequentially uniform of type (10, 4)
and FS(5) is sequentially uniform of type (14).

For large n, there are many more possible types than there are translates, so the starter
in Example 3.2 is of particular interest. In the Appendix we give examples of sequentially
uniform one-factorizations of K2n of all possible types, for 14 ≤ 2n ≤ 24.

4 Starters in non-cyclic groups

Many uniform and perfect one-factorizations are known to be starter-induced over a non-
cyclic group; for example, see [6]. So it is natural to also expect sequentially uniform
one-factorizations where the ordering is not cyclic. In this section we give a numerical
condition that determines when certain starter-induced one-factorizations over non-cyclic
groups are sequentially uniform.

Let q be an odd prime-power (not a prime) and write q = 2rt + 1, where t is odd.
In order to eliminate trivial cases, we will assume that t > 1. Suppose ω is a generator
of the multiplicative group of Fq and let Q be the subgroup (of order t) generated by
ω2r. Suppose the cosets of Q are Ci = ωiQ, i = 0, . . . , 2r − 1. A starter S in Fq is said
to be an r-quotient starter if, whenever {x, y}, {x′, y′} ∈ S with x, x′ ∈ Ci, it holds that
y/x = y′/x′. An r-quotient starter S can be completely described by a list of quotients
(a0, . . . , ar−1), such that

S = {{x, aix} : (ai − 1)x ∈ Ci, i = 0, . . . , r − 1}.
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It is not hard to see that S∗∪(S∗+x) is isomorphic to S∗∪(S∗+y) whenever x/y ∈ C0∪Cr.
It follows that every 1-quotient starter yields a uniform one-factorization. We now show
that, although r-quotient starters might not generate uniform one-factorizations when
r > 1, [6], the resulting one-factorizations usually can be ordered in such a way that they
are sequentially uniform.

Theorem 4.1. Suppose q = pd is an odd prime-power (with p prime and d > 1) such
that q = 2rt + 1 and t > 1 is odd. Let S be any r-quotient starter in Fq. Then the
one-factorization generated by S can be ordered to be sequentially uniform if and only if
the multiplicative order of p modulo t is equal to d.

Proof: Let q = pd = 2rt+1 with t odd. C0 is the multiplicative subgroup of F
∗
q generated

by a primitive tth root of 1 in Fq, say α. The splitting field of xt − 1 over Fp is Fpe,
where e is the smallest positive integer such that pe ≡ 1 (mod t). Hence the extension
field Fp(α) = Fq if and only if the multiplicative order of p modulo t, which we denote by
ordt(p), is equal to d.

Suppose that ordt(p) = d. Then Fp(α) = Fq and 1, α, . . . , αd−1 is a basis of Fq over
Fp. Therefore, every element x ∈ Fq can be expressed uniquely as a d-tuple (x1, . . . , xd) ∈
(Zp)

d, where

x =
n∑

i=1

xiα
i−1.

Now, consider the graph on vertex set (Zp)
d in which two vertices are adjacent if and

only if they agree in d− 1 coordinates and their values in the remaining coordinate differ
by 1 modulo p (this is a Cayley graph of the elementary abelian group of order pd). It is
not hard to check that this graph has a hamiltonian cycle, say C = (y1, y2, . . . , ypd, y1).
The cycle C provides the desired ordering of Fq because the difference between any two
consecutive elements yi and yi+1 is in C0 ∪ Cr (note that one of yi − yi+1 and yi+1 − yi is
a power of α and hence in C0, while the other is in Cr).

Conversely, suppose that ordt(p) = e < d. Then Fp(α) = Fpe which is a strict subfield
of Fq. Clearly C0 ∪ Cr ⊆ Fpe. Suppose that y1, y2, . . . is an ordering of the elements of
Fq such that adjacent elements always have a difference that is an element of C0 ∪ Cr.
Without loss of generality we can take y1 = 0. But then every element yi is in the subfield
Fpe, which is a contradiction. Hence, the desired ordering cannot exist. 2

It is interesting to note that the proof above does not depend on the structure of the
starter S. Either all r-quotient starters in Fq yield sequentially uniform one-factorizations
or they all do not do so.

Example 4.2. Let q = 25 so that t = 3 and r = 4. We have ordt(p) = 2 = d, so
Theorem 4.1 asserts that any 4-quotient starter will yield a sequentially uniform one-
factorization. In particular, if we take F25 = Z5[x]/(x2 + x + 2) then C0 contains a basis
{1, α} for the field, where α = x8 = 3x + 1. The field elements can be cyclically ordered

0, 1, 2, 3, 4, 3x, . . . , 3x + 4, x, . . . , x + 4, 4x, . . . , 4x + 4, 2x, . . . , 2x + 4, 0

so that the difference of consecutive elements is either 1 or α.
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Most applications of r-quotient starters use values of r that are powers of two (see, for
example, [6]). It is interesting to determine the conditions under which the hypotheses of
Theorem 4.1 are satisfied in this case. This is done in Lemma 4.3.

Lemma 4.3. Suppose q = pd is an odd prime-power (with p prime and d > 1) such that
q = 2kt + 1 and t > 1 is odd. Then one of the two following conditions hold:

1. ordt(p) = d, or

2. p = 2j −1 for some integer j (i.e., p is a Mersenne prime) and d = 2. (In this case,
ordt(p) = 1 is less than d.)

Proof: Suppose that pe ≡ 1 (mod t) for some positive integer e < d (note that e|d). Let
pe = bt + 1 where b is a positive integer. Then

2kt + 1 = q = (pe)d/e = (bt + 1)d/e = cbt + 1

for some integer c. Hence, b|2k, and therefore b = 2` for some positive integer ` ≤ k. So
we have that pe = 2`t + 1.

Let ρ = pe and f = d/e. Then we have that

t =
ρf − 1

2k
=

ρ − 1

2`
.

Removing common factors, we obtain

ρf−1 + ρf−2 + · · · + ρ + 1 = 2k−`. (1)

Suppose that k = `. Then the right side of (1) is equal to 1, so f = 1 and d = e. This
contradicts the assumption that d > e. Therefore k > ` and the right side of (1) is even.

Now, suppose that f is odd. Then the left side of (1) is odd, and we have a contra-
diction. Therefore f is even, and ρ + 1 is a factor of the left side of (1). This implies that
2k−` ≡ 0 (mod ρ + 1), and hence ρ = 2j − 1 for some integer j ≥ 2. Then, after dividing
(1) by the factor ρ + 1, we obtain the following equation:

ρf−2 + ρf−4 + · · ·+ ρ2 + 1 = 2k−`−j. (2)

Suppose that j < k − `. Then the right side of (2) is even and ρ2 + 1 is a factor of the
left side of (2), so ρ2 = 2i−1 for some integer i ≥ 2. But ρ = 2j −1 where j ≥ 2, so ρ ≡ 3
(mod 4). Then ρ2 ≡ 1 (mod 4), which contradicts the fact that ρ2 = 2i − 1 where i ≥ 2.
Therefore we have that j = k − `. This implies that f = 2 and so d = 2e. So ρ = 2j − 1
for some integer j and q = ρ2.

However, it is easy to prove that the Diophantine equation 2u−yv = 1 has no solution
in positive integers with u, v > 1†. See, for example, Cassels [3, Corollary 2]. Therefore,

†This result is a special case of Catalan’s Conjecture, which states that the Diophantine equation
xu−yv = 1 has no solution in positive integers with u, v > 1 except for 32−23 = 1. Catalan’s Conjecture
was proven correct in 2002 by Mihăilescu (see Metsänkylä [11] for a recent exposition of the proof).
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we can conclude that ρ is prime. Hence, p = 2j −1 is a Mersenne prime, e = 1 and d = 2.
In this case, we have q = p2. Then we have that

q − 1 = (p − 1)(p + 1) = (p − 1)2j ≡ 0 (mod t).

But t is odd, so p ≡ 1 (mod t). Therefore ordt(p) = 1. 2

Example 4.4. Let q = 961 = 312 so p = 31 and d = 2. Here p = 31 = 25 − 1 is a
Mersenne prime. We can write q = 2515 + 1, so t = 15. We see that ordt(p) = 1 < 2, as
asserted by Lemma 4.3.

The following corollary is an immediate consequence of Theorem 4.1 and Lemma 4.3.

Corollary 4.5. Suppose q = pd is an odd prime-power (with p prime and d > 1) such
that q = 2kt + 1 and t > 1 is odd. Let S be any 2k−1-quotient starter in Fq. Then the
one-factorization generated by S can be ordered to be sequentially uniform if and only if
it is not the case that p is a Mersenne prime and d = 2.

5 Product construction

We now recall the usual product construction for one-factorizations, and apply it to
determine another infinite class of sequentially uniform one-factorizations.

Suppose that F is a one-factor on X and G is a one-factor on Y , where |X| = 2n and
|Y | = 2m. Define various one-factors of X × Y by

F ∗ =
{{(xi, y), (x′

i, y)} : {xi, x
′
i} ∈ F, y ∈ Y

}
,

G∗ =
{{(x, yj), (x, y′

j)} : x ∈ X, {yj, y
′
j} ∈ G

}
,

FG =
{{(xi, yj), (x

′
i, y

′
j)} : {xi, x

′
i} ∈ F, {yj, y

′
j} ∈ G

}
.

Given one-factorizations F = {F0, . . . , F2n−2} and G = {G0, . . . , G2m−2} of K2n and
K2m on the points X and Y , respectively, it is easy to see that

FG =
{
FiGj : i = 0, . . . , 2n − 2 and j = 0, . . . , 2m − 2

}
⋃{

F ∗
i : i = 0, . . . , 2n − 2

} ⋃{
G∗

j : j = 0, . . . , 2m − 2
}

is a one-factorization of X × Y .
The following are easy lemmas about the cycle types of pairs of one-factors in FG.

Lemma 5.1. For any i ∈ {0, . . . , 2n− 2} and j ∈ {0, . . . , 2m− 2}, the following all have
cycle type (4, 4, . . . , 4):

(i) F ∗
i ∪ G∗

j ,

(ii) FiGj ∪ F ∗
i , and

(iii) FiGj ∪ G∗
j .

the electronic journal of combinatorics 12 (2005), #R1 8



Lemma 5.2. If (F0, F1, . . . , F2n−2) is sequentially uniform of type (4, 4, . . . , 4), then the
following all have cycle type (4, 4, . . . , 4):

(i) F ∗
i ∪ F ∗

i+1, and

(ii) FiGj ∪ Fi+1Gj,

for any i, j, where the subscripts i + 1 are reduced modulo 2n − 1.

We can use the above results to give a product construction for sequentially uniform
one-factorizations of type (4, 4, . . . , 4).

Theorem 5.3. Suppose there exists a sequentially uniform one-factorization of K2n of
type (4, 4, . . . , 4). Let m ≤ n. Then there is a sequentially uniform one-factorization of
K4mn of type (4, 4, . . . , 4).

Proof: We use all the notation above, with (F0, F1, . . . , F2n−2) sequentially uniform of
type (4, 4, . . . , 4) and G any one-factorization of K2m. The ordered one-factorization

(
G∗

0, F0G0, F1G0, . . . , F2n−2G0, F
∗
2n−2,

G∗
1, F1G1, F2G1, . . . , F0G1, F

∗
0 ,

G∗
2, F2G2, F3G2, . . . , F1G2, F

∗
1 ,

...

G∗
2m−2, F2m−2G2m−2, . . . , F2m−3G2m−2, F

∗
2m−3,

F ∗
2m−2, F

∗
2m−1, . . . , F

∗
2n−3

)

of K4mn is sequentially uniform of type (4, 4, . . . , 4) by Lemmas 5.1 and 5.2. 2

By applying the above product construction with 2n a power of 2 — for which the
existence of uniform one-factorizations of type (4, 4, . . . , 4) are known — one immediately
has the following corollary.

Corollary 5.4. For any odd integer m ≥ 1, there is a sequentially uniform one-factoriz-
ation of K2tm of type (4, 4, . . . , 4) for all integers t ≥ 2 + dlog2 me.

Let t0 = t0(m) denote the smallest integer such that there is a sequentially uniform
one-factorization of K2tm of type (4, 4, . . . , 4) for all integers t ≥ t0. Corollary 5.4 provides
an explicit upper bound on t0(m); however, for a particular value of m, we might be able
to give a better bound on t0(m). For example, the sequentially perfect one-factorization of
K4 shows that t0(1) = 2, the sequentially uniform one-factorization of K12 of type (4, 4, 4)
given in Figure 1 yields t0(3) = 2, and the sequentially uniform one-factorization of K20

of type (4, 4, 4, 4, 4) exhibited in the Appendix gives t0(5) = 2. In fact, we conjecture that
t0(m) = 2 for all odd integers m ≥ 1.

As a final note, we observe that the existence results for sequentially uniform one-
factorizations of K2tm of type (4, 4, . . . , 4) provide an interesting contrast to those for
uniform one-factorizations of K2tm of type (4, 4, . . . , 4), which exist only when m = 1 (see
Cameron [2, Proposition 4.3]).
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Appendix

Below is a table giving all possible types for sequentially uniform one-factorizations of K2n,
14 ≤ 2n ≤ 24. Each type is realized by the ordered 1-factorization FS(1) corresponding
to the starter S = {{xi, xi + i} : i = 1, . . . , n − 1} in Z2n−1.

type (x1, . . . , xn−1)
(14) (1, 5, 8, 6, 12, 3)

(10, 4) (1, 9, 4, 6, 3, 12)
(8, 6) (1, 5, 9, 6, 3, 11)

(6, 4, 4) (7, 2, 9, 1, 6, 10)
(16) (1, 4, 8, 9, 7, 14, 3)

(12, 4) (1, 4, 8, 9, 5, 12, 7)
(10, 6) (1, 7, 11, 4, 5, 12, 6)
(8, 8) (1, 3, 7, 9, 6, 8, 12)

(8, 4, 4) (2, 11, 9, 4, 5, 1, 14)
(6, 6, 4) (3, 11, 2, 6, 7, 8, 9)

(4, 4, 4, 4) (3, 6, 11, 12, 5, 7, 2)
(18) (1, 3, 7, 12, 8, 9, 4, 6)

(14, 4) (1, 3, 11, 8, 4, 10, 6, 7)
(12, 6) (1, 5, 8, 12, 9, 4, 13, 15)
(10, 8) (1, 3, 6, 11, 8, 10, 7, 4)

(10, 4, 4) (1, 13, 5, 7, 9, 4, 16, 12)
(8, 6, 4) (1, 4, 12, 5, 8, 10, 7, 3)
(6, 6, 6) (1, 6, 10, 5, 11, 15, 7, 12)

(6, 4, 4, 4) (3, 7, 12, 2, 8, 10, 11, 14)
(20) (1, 3, 6, 11, 13, 8, 10, 4, 7)

(16, 4) (1, 3, 9, 13, 10, 8, 4, 18, 16)
(14, 6) (1, 3, 9, 7, 13, 8, 10, 15, 16)
(12, 8) (1, 3, 9, 13, 6, 10, 8, 18, 14)

(12, 4, 4) (1, 5, 12, 6, 9, 17, 11, 8, 13)
(10, 10) (1, 3, 12, 9, 11, 4, 7, 17, 18)
(10, 6, 4) (1, 4, 10, 11, 7, 18, 9, 14, 8)
(8, 8, 4) (1, 3, 12, 10, 6, 7, 16, 9, 18)
(8, 6, 6) (1, 4, 5, 13, 9, 10, 11, 7, 3)

(8, 4, 4, 4) (2, 5, 11, 4, 10, 12, 13, 9, 16)
(6, 6, 4, 4) (2, 14, 8, 13, 7, 4, 18, 1, 15)

(4, 4, 4, 4, 4) (6, 16, 17, 11, 4, 8, 3, 5, 12)

type (x1, . . . , xn−1)
(22) (1, 3, 4, 10, 11, 13, 8, 12, 9, 17)

(18, 4) (1, 3, 4, 13, 11, 12, 8, 6, 10, 20)
(16, 6) (1, 3, 4, 10, 11, 12, 13, 9, 6, 19)
(14, 8) (1, 3, 4, 12, 9, 11, 13, 10, 6, 19)

(14, 4, 4) (1, 4, 7, 11, 12, 14, 19, 8, 9, 3)
(12, 10) (1, 3, 6, 11, 13, 10, 12, 20, 8, 4)
(12, 6, 4) (1, 3, 7, 15, 11, 8, 13, 4, 9, 17)
(10, 8, 4) (1, 3, 7, 11, 14, 6, 13, 9, 16, 8)
(10, 6, 6) (1, 3, 7, 16, 12, 8, 6, 11, 9, 15)

(10, 4, 4, 4) (1, 5, 11, 13, 19, 6, 8, 10, 16, 20)
(8, 8, 6) (1, 3, 12, 6, 13, 14, 4, 9, 7, 19)

(8, 6, 4, 4) (1, 3, 10, 16, 12, 9, 4, 6, 19, 8)
(6, 6, 6, 4) (1, 8, 6, 11, 12, 19, 13, 18, 7, 14)

(6, 4, 4, 4, 4) (1, 11, 5, 16, 9, 6, 17, 10, 19, 15)
(24) (1, 3, 4, 9, 11, 15, 12, 14, 8, 10, 18)

(20, 4) (1, 3, 4, 13, 10, 16, 12, 6, 11, 8, 21)
(18, 6) (1, 3, 4, 10, 16, 13, 8, 9, 11, 12, 18)
(16, 8) (1, 3, 4, 10, 12, 15, 11, 8, 13, 19, 9)

(16, 4, 4) (1, 3, 6, 10, 16, 11, 15, 12, 4, 8, 19)
(14, 10) (1, 3, 4, 13, 16, 8, 11, 12, 6, 9, 22)
(14, 6, 4) (1, 3, 6, 10, 12, 16, 13, 11, 21, 8, 4)
(12, 12) (1, 3, 4, 10, 12, 16, 13, 11, 6, 8, 21)
(12, 8, 4) (1, 3, 4, 13, 10, 12, 9, 14, 20, 11, 8)
(12, 6, 6) (1, 3, 4, 15, 9, 10, 11, 12, 13, 21, 6)

(12, 4, 4, 4) (1, 3, 13, 15, 4, 6, 14, 10, 8, 20, 11)
(10, 10, 4) (1, 3, 6, 15, 16, 8, 11, 12, 4, 7, 22)
(10, 8, 6) (1, 3, 4, 11, 9, 16, 12, 13, 8, 10, 18)

(10, 6, 4, 4) (1, 3, 4, 12, 15, 13, 10, 6, 9, 21, 11)
(8, 8, 8) (1, 3, 4, 11, 16, 8, 10, 12, 13, 9, 18)

(8, 8, 4, 4) (1, 3, 19, 14, 10, 7, 4, 12, 8, 6, 21)
(8, 6, 6, 4) (1, 3, 9, 13, 22, 15, 7, 10, 11, 6, 8)

(8, 4, 4, 4, 4) (1, 4, 16, 10, 13, 9, 5, 22, 17, 11, 20)
(6, 6, 6, 6) (1, 5, 6, 12, 15, 21, 10, 11, 13, 8, 3)

(6, 6, 4, 4, 4) (1, 6, 14, 7, 13, 15, 3, 12, 19, 22, 16)
(4, 4, 4, 4, 4, 4) (5, 17, 9, 11, 13, 21, 1, 22, 16, 10, 3)
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