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Abstract

We present a natural extension of Andrews’ multiple sums counting partitions of
the form (λ1, · · · , λm) with λi ≥ λi+k−1 + 2. The multiple sum that we construct
is the generating function for the so-called K-restricted jagged partitions. A jagged
partition is a sequence of non-negative integers (n1, n2, · · · , nm) with nm ≥ 1 subject
to the weakly decreasing conditions ni ≥ ni+1− 1 and ni ≥ ni+2. The K-restriction
refers to the following additional conditions: ni ≥ ni+K−1 + 1 or ni = ni+1 − 1 =
ni+K−2 + 1 = ni+K−1. The corresponding generalization of the Rogers-Ramunjan
identities is displayed, together with a novel combinatorial interpretation.

1 Introduction

In 1981 Andrews [2] showed that the generating function for partitions with prescribed
number of parts subject to the following difference 2 condition

λj ≥ λj+k−1 + 2 (1)

and containing at most i − 1 parts equal to 1 is

Fk,i(z; q) =
∞∑

m1,···,mk−1=0

qN2
1+···+N2

k−1+Li zN

(q)m1 · · · (q)mk−1

, (2)
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with
Nj = mj + · · ·+ mk−1 , Lj = Nj + · · ·Nk−1 , N = L1 , (3)

(Lk = Lk+1 = 0) and

(a)n = (a; q)n =
n−1∏
i=0

(1 − aqi) . (4)

This is a one-parameter deformation of the multiple q-series of the analytic Andrews-
Gordon identity [1, 3].

In this work, we present the derivation of the generating function for jagged partitions
of length m, which are sequences of non-negative integers (n1, n2, · · · , nm) satisfying

nj ≥ nj+1 − 1 , nj ≥ nj+2 , nm ≥ 1 , (5)

and further subject to the following K-restrictions:

nj ≥ nj+K−1 + 1 or nj = nj+1 − 1 = nj+K−2 + 1 = nj+K−1 , (6)

for all values of j ≤ m−K +1, with K > 2. Following [2], the derivation of the generating
function uses a recurrence process controlled by a boundary condition. In the present case,
the boundary condition is a constraint on the number of pairs 01 that can appear in the
K-restricted jagged partitions. Our main result is the following (which is a reformulation
of Theorem 7, section 3):

Theorem 1. If AK,2i(m, n) stands for the set of non-negative integer sequences (n1, · · · , nm)
of weight n =

∑m
j=1 nj satisfying the weakly decreasing conditions (5) together with the

restrictions (6) and containing at most i − 1 pairs 01, then its generating function is

∑
n,m≥0

AK,2i(m, n)zmqn =
∞∑

m0,···,mκ−1=0

qm0(m0+1)/2+εm0mκ−1+N2
1+···+N2

κ−1+Li zm0+2N

(q)m0 · · · (q)mκ−1

, (7)

where κ and ε (= 0 or 1) are related to K by K = 2κ− ε and where Nj and Lj are given
in (3) with k replaced by κ.

Jagged partitions have first been introduced in the context of a conformal-field theoret-
ical problem [15]. In that framework, K = 2κ, i.e., it is an even integer. The generating
function for the 2κ-restricted jagged partitions with boundary condition specified by i
has been found in [5]. It is related to the character of the irreducible module of the
parafermionic highest-weight state specified by a singular-vector condition labeled by the
integer 1 ≤ i ≤ κ.

Our essential contribution in this paper is to present the generating function for K
odd. This is certainly a very natural extension to consider and it turns out to be not
so straightforward. Moreover, the resulting generating function has a nontrivial product
form, which is given in Theorem 11 (in the even case, the product form reduces to the
usual one in the Andrews-Gordon identity [1]). In all but one case, the resulting gener-
alizations of Rogers-Ramanujan identities reduce to identities already found by Bressoud
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[6]. However, the identity corresponding to i = κ (with K = 2κ − 1) appears to be new.
But quite interestingly, in all cases (i.e., for all allowed values of i and K, including K
even), we present (in Corollary 12) a new combinatorial interpretation of these generalized
Rogers-Ramanujan identities in terms of jagged partitions. The significance of this work
lies more in this new interpretation of these identities than in the novelty of the results.

Somewhat unexpectingly, a physical realization of the K-restricted jagged partitions
for K odd has been found recently, in the context of superconformal minimal models [14].

2 Jagged partitions

Let us start by formalizing and exemplifying the notions of jagged partitions and their
restrictions.

Definition 2. A jagged partition of length m is a sequence of m non-negative integers
(n1, n2, · · · , nm) satisfying nj ≥ nj+1 − 1, nj ≥ nj+2 and nm ≥ 1.

Notice that even if the last entry is strictly positive, some zero entries are allowed.
For instance, the lowest-weight jagged partition is of the form (· · · 01010101). The origin
of the qualitative ‘jagged’ is rooted in the jagged nature of this lowest-weight sequence.
The list of all jagged partitions of length 6 and weight 7 is:

{(410101), (320101), (230101), (311101), (221101), (212101), (211111), (121111), (121201)} .
(8)

Observe that to the set of integers {0, 1, 1, 1, 2, 2} there correspond three jagged partitions
of length 6 and weight 7 but, of course, only one standard partition.

Definition 3. A K-restricted jagged partition of length m is a jagged partition further
subject to the conditions: nj ≥ nj+K−1 + 1 or nj = nj+1 − 1 = nj+K−2 + 1 = nj+K−1

(called K-restrictions) for all values of j ≤ m − K + 1, with K > 2.

The first condition enforces a difference-one condition between parts separated by a
distance K − 1 in the sequence. However, the second condition allows for some partitions
with difference 0 between parts at distance K−1 if in addition they satisfy an in-between
difference 2 at distance K − 3. In other words, it is equivalent to nj = nj+K−1 and
nj+1 = nj+K−2 + 2. The general pattern of such K consecutive numbers is (n, n +
1, · · · , n − 1, n), where the dots stand for a sequence of K − 4 integers compatible with
the weakly decreasing conditions (5).

The list of all 5-restricted jagged partitions of length 6 and weight 7 is

{(320101), (230101), (221101), (212101), (121201)} . (9)

Comparing this list with that in (8), we see that (410101) is not allowed since n2 = n6

but n3 6= n5 + 2. (311101) and (211111) are excluded for the same reason. Moreover,
(1211101) is excluded since n1 = n5 but n2 6= n4 + 2. (212101) is an example of an
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allowed jagged partition with an in-between difference 2 condition for parts separated by
the distance K − 3 = 2.

3 Recurrence relations for generating functions

We first introduce two sets of K-restricted jagged partitions with prescribed boundary
conditions:

AK,2i(m, n): the number of K-restricted jagged partitions of n into m parts with at most
(i − 1) pairs of 01, with 1 ≤ i ≤ [(K + 1)/2].

BK,j(m, n): the number of K-restricted jagged partitions of n into m parts with at most
(j − 1) consecutive 1’s at the right end, with 1 ≤ j ≤ K.

These definitions are augmented by the specification of the following boundary conditions:

AK,2i(0, 0) = BK,j(0, 0) = 1 , AK,0(m, n) = BK,0(m, n) = 0 . (10)

Moreover, it will be understood that both AK,2i(m, n) and BK,j(m, n) are zero when either
m or n is negative and if either of m or n is zero (but not both).

We are interested in finding the generating function for the set AK,2i(m, n). BK,j(m, n)
is thus an auxiliary object whose introduction simplifies considerably the analysis.

Lemma 4. The sets AK,2i and BK,j satisfy the following recurrence relations:

(i) AK,2i(m, n) − AK,2i−2(m, n) = BK,K−2i+2(m − 2i + 2, n − i + 1) ,
(ii) BK,2i+1(m, n) − BK,2i(m, n) = AK,K−2i+ε(m − 2i, n − m) ,
(iii) BK,2i(m, n) − BK,2i−1(m, n) = AK,K−2i+2−ε(m − 2i + 1, n − m) , (11)

where ε is related to the parity of K via its decomposition as

K = 2κ − ε (ε = 0, 1) . (12)

Proof: The difference on the left hand side of the recurrence relations selects sets of jagged
partitions with a specific boundary term. In particular, AK,2i(m, n)−AK,2i−2(m, n) gives
the number of K-restricted jagged partitions of n into m parts containing exactly i − 1
pairs of 01 at the right. Taking out the tail 01 · · ·01, reducing then the length of the
partition from m to m − 2(i − 1) and its weight n by i − 1, we end up with K-restricted
jagged partitions which can terminate with a certain number of 1’s. These are elements
of the set BK,j(m−2i+2, n− i+1). It remains to fix j. The number of 1’s in the stripped
jagged partitions is constrained by the original K-restriction. Before taking out the tail,
the number of successive 1’s is at most K − 2(i − 1) − 1; this fixes j to be K − 2(i − 1).
We thus get the right hand side of (i). By reversing these operations, we can transform
elements of BK,K−2i+2(m − 2i + 2, n − i + 1) into those of AK,2i(m, n) − AK,2i−2(m, n),
which shows that the correspondence is one-to-one. This proves (i).
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Consider now the relation (ii). The left hand side is the number of K-restricted
jagged partitions of n into m parts containing exactly 2i parts equal to 1 at the right end.
Subtracting from these jagged partitions the ordinary partition (1m) = (1, 1, 1, · · · , 1)
yields new jagged partitions of length m − 2i and weight n − m. Since these can have a
certain number of pairs of 01 at the end (which is possible if originally we had a sequence
of 12 just before the consecutive 1’s), we recover elements of AK,2i′(m − 2i, n − m). It
remains to fix i′. Again, the K-restriction puts constraints of the number of allowed pairs
12 in the unstripped jagged partition; it is ≤ (K − 2i + ε − 2)/2. [Take for instance
K = 7 and 2i = 4; the lowest-weight jagged partition of length 7 and four 1’s at the end
is (2121111), which is compatible with the difference-one condition for parts at distance
6; by stripping off (17), it is reduced to (101) so that here there is at most one pair of
01 allowed. Take instead K = 8 and again 2i = 4; the lowest-weight jagged partition of
length 8 is now (22121111), the leftmost 2 being forced by the difference-one condition for
parts at distance 7; it is reduced to (1101) so that here there is again at most one pair of
01 allowed. Note that for both these examples, the alternative in-between difference-two
condition is not applicable.] Hence i′ = (K −2i+ ε)/2 = κ− i. Again the correspondence
between sets defined by the two sides of (ii) is one-to-one and this completes the proof of
(ii). The proof of (iii) is similar.

Let us now define the generating functions:

ÃK,2i(z; q) =
∑

m,n≥0 zmqnAK,2i(m, n) ,

B̃K,j(z; q) =
∑

m,n≥0 zmqnBK,j(m, n) . (13)

In the following, we will generally suppress the explicit q dependence (which will never be
modified in our analysis) and write thus ÃK,2i(z) for ÃK,2i(z; q). The recurrence relations
(i)− (iii) are now transformed into q-difference equations given in the next lemma, whose
proof is direct.

Lemma 5. The functions ÃK,2i(z; q) and B̃K,j(z; q) satisfy

(i)′ ÃK,2i(z) − ÃK,2i−2(z) = (z2q)i−1 B̃K,K−2i+2(z) ,
(ii)′ B̃K,2i+1(z) − B̃K,2i(z) = (zq)2i ÃK,K−2i+ε(zq) ,
(iii)′ B̃K,2i(z) − B̃K,2i−1(z) = (zq)2i−1 ÃK,K−2i+2−ε(zq) , (14)

with boundary conditions:

ÃK,2i(0; q) = ÃK,2i(z; 0) = B̃K,j(0; q) = B̃K,j(z; 0) = 1 , (15)

and
ÃK,0(z) = B̃K,0(z) = 0 . (16)

Lemma 6. The solution to Eqs (14)-(16) is unique.

Proof: This follows from the uniqueness of the solutions of (10)-(11), which is itself
established by a double induction on n and i (cf. sect. 7.3 in [3]).

the electronic journal of combinatorics 12 (2005), #R12 5



The solution to Eqs (14)-(16) is given by the following theorem, whose proof is reported
in the next section.

Theorem 7. The solutions to Eqs (14)-(16) are

ÃK,2i(z) =
∞∑

m1,···,mκ−1=0

(−zq1+εmκ−1)∞ qN2
1 +···+N2

κ−1+Li z2N

(q)m1 · · · (q)mκ−1

,

B̃K,2i(z) =
∞∑

m1,···,mκ−1=0

(−zq1+εmκ−1)∞ qN2
1 +···+N2

κ−1+Li+N z2N

(q)m1 · · · (q)mκ−1

, (17)

where Nj and Lj are defined in (3) with k replaced by κ and B̃K,2i+1(z) is obtained from
these expressions and (iii)′.

Fully developed multiple q-series are obtained by expanding (−zq1+εmκ−1)∞ as

(−zq1+εmκ−1)∞ =
∞∑

m0=0

zm0qm0(m0+1)/2qεm0mκ−1

(q)m0

. (18)

Corollary 8. For K = 2κ, the solutions to Eq. (14)-(16) reduce to

ÃK,2i(z; q) = (−zq)∞Fκ,i(z
2; q) ,

B̃K,2i(z; q) = (−zq)∞Fκ,i(z
2q; q) , (19)

with Fκ,i(z
2; q) defined in (2).

Proof: This follows directly from Theorem 7 with ε = 0. An alternative direct proof,
independent of Theorem 7, is given in section 5. See also [5].

4 Proof of Theorem 7

The proof of (17) proceeds as follows (and this argument is much inspired by [2]). One
first rewrites the formulas (17) under the form

ÃK,2i(z) =
∑
n≥0

(−zq1+εn)∞ q(κ−i)n (z2qn)(κ−1)n

(q)n
Fκ−1,i(z

2q2n) ,

B̃K,2i(z) =
∑
n≥0

(−zq1+εn)∞ q(2κ−i−1)n (z2qn)(κ−1)n

(q)n
Fκ−1,i(z

2q2n+1) (20)

The function B̃K,2i−1(z) is obtained from these expressions by

B̃K,2i−1(z) = B̃K,2i(z) − (zq)2i−1ÃK,K−2i+2−ε(zq) . (21)

The function Fκ,i(z) is defined in (2) and it satisfies the recurrence relation:

Fκ,i(z) − Fκ,i−1(z) = (zq)i−1Fκ,κ−i+1(zq) , (22)
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with boundary conditions

Fκ,i(z; 0) = Fκ,i(0; q) = 1 Fκ,0(z) = Fκ,−1(z) = 0 . (23)

Note that the vanishing of Fκ,0(z) together with the recurrence relation (22) imply that

Fκ,1(z) = Fκ,κ(zq) . (24)

The multiple q-series (2) is the unique solution of (22) with the specified boundary con-
ditions [2].

We will now show that the expressions (20) satisfy the recurrence relations (14) and
the boundary conditions (15) and (16). The latter are immediately verified: the vanishing
of Fκ−1,−1(z) implies that of ÃK,0(z) and B̃K,0(z), while the precise form of (20) together
with the fact that Fκ,i(z; q) is equal to 1 if either z or q vanishes ensure the validity of
(15).

Let us first verify the relation (i)′:

ÃK,2i(z) − ÃK,2i−2(z) =
∑
n≥0

(−zq1+εn)∞ q(κ−i)n (z2qn)(κ−1)n

(q)n

×
[
Fκ−1,i(z

2q2n) − qnFκ−1,i−1(z
2q2n)

]
. (25)

In the first step, we reorganize the square bracket as

Fκ−1,i(z
2q2n) − Fκ−1,i−1(z

2q2n) + (1 − qn)Fκ−1,i−1(z
2q2n) (26)

and then replace the first two terms by (z2q2n+1)i−1Fκ−1,κ−i(z
2q2n+1) using (22). That

leads to
ÃK,2i(z) − ÃK,2i−2(z) = R1 + R2 (27)

with

R1 = (z2q)i−1
∑
n≥0

(−zq1+εn)∞ q(κ+i−2)n (z2qn)(κ−1)n

(q)n
Fκ−1,κ−i(z

2q2n+1) (28)

and

R2 =
∑
n≥1

(−zq1+εn)∞ q(κ−i)n (z2qn)(κ−1)n

(q)n−1

Fκ−1,i−1(z
2q2n) (29)

(note that the summation in R2 starts at n = 1 and (q)n in the denominator has been
changed to (q)n−1 to cancel the (1 − qn) in numerator.) Let us leave R2 for the moment
and manipulate R1. First write

Fκ−1,κ−i(z
2q2n+1) = Fκ−1,κ−i+1(z

2q2n+1) − [Fκ−1,κ−i+1(z
2q2n+1) − Fκ−1,κ−i(z

2q2n+1)] (30)

and use again (22) to replace the last two terms by −(z2q2n+2)κ−iFκ−1,i−1(z
2q2n+2). We

have thus decomposed R1 in two pieces:

R1 = S1 + S2 (31)
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with

S1 = (z2q)i−1
∑
n≥0

(−zq1+εn)∞ q(κ+i−2)n (z2qn)(κ−1)n

(q)n

Fκ−1,κ−i+1(z
2q2n+1)

= (z2q)i−1B̃K,K−2i+2+ε(z) (32)

(to fix the second subindex of B observe that K − 2i + 2 + ε = 2(κ − i + 1)) and

S2 = −(z2q)i−1
∑
n≥0

(−zq1+εn)∞ (z2qn+2)(κ−1)n+(κ−i)

(q)n

Fκ−1,i−1(z
2q2n+2) . (33)

Summing up our results at this point, we have

ÃK,2i(z) − ÃK,2i−2(z) = (z2q)i−1B̃K,K−2i+2+ε(z) + S2 + R2 . (34)

Let us now come back to R2. We first shuffle the index n to start its summation at
zero:

R2 = (z2q)i−1
∑
n≥0

(−zq1+ε(n+1))∞(z2qn+2)(κ−1)n+(κ−i)

(q)n

Fκ−1,i−1(z
2q2n+2) . (35)

From now on, we will use the following compact notation:

(−zq1+εn)∞fm =
∞∑

m=0

zmqm(m+1)/2qεmn

(q)m
fm , (36)

i.e., we understand that (−zq1+εn)∞ is defined by its sum expression over m so that it
makes sense to insert at its right a term that depends upon m. With that notation,
shifting n by one unit yields:

(−zq1+ε(n+1))∞ = (−zq1+εn)∞ qεm . (37)

R2 reads thus

R2 = (z2q)i−1
∑
n≥0

(−zq1+εn)∞qεm(z2qn+2)(κ−1)n+(κ−i)

(q)n
Fκ−1,i−1(z

2q2n+2) . (38)

By comparing this expression with that of S2, we find that the summand in R2 and
S2 are exactly the same except for the sign and an extra factor qεm in R2:

S2 + R2 = −(z2q)i−1
∑
n≥0

(−zq1+εn)∞(z2qn+2)(κ−1)n+(κ−i)

(q)n

(1− qεm)Fκ−1,i−1(z
2q2n+2) . (39)

A simple observation here is that 1 − qεm vanishes if ε = 0. Since ε can take only the
values 0 or 1, we can thus write

(1 − qεm) = ε(1 − qm) . (40)
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S2 + R2 is thus proportional to ε and we can evaluate the proportionality factor at ε = 1.
It is simple to check that

(−zq1+εn)∞(1 − qm) = zq (−zq1+εn)∞ qm+εn . (41)

To be explicit: this is obtained from (1 − qm)/(q)m = 1/(q)m−1 and by shuffling the m
index in the m-summation. Similarly, replacing z → zq in (−zq1+εn)∞ leads to

(−zq2+εn)∞ = (−zq1+εn)∞ qm . (42)

The comparison of the last two results gives

(−zq1+εn)∞(1 − qm) = zq (−zq2+εn)∞ qεn . (43)

Substituting this into the expression of S2 + R2 (and setting ε = 1 when it appears in an
exponent) leads to

S2 + R2 = −ε (z2q)i−1(zq)2(κ−i)+1ÃK,2i−2(zq) . (44)

Note that we can replace 2κ by K + 1 (since ε = 1) in the exponent of zq.

Collecting all our results, we have

ÃK,2i(z) − ÃK,2i−2(z) = (z2q)i−1
[
B̃K,K−2i+2+ε(z) − ε (zq)K−2i+2ÃK,2i−2(zq)

]

= (z2q)i−1 B̃K,K−2i+2(z) , (45)

since B̃K,K−2i+2+ε is equal to B̃K,K−2i+2 if ε = 0 or is given by (21) if ε = 1. We have thus
completed the verification of (i)′.

We now turn to the relation (ii)′. Note that the left hand side is not expressible
directly in terms of a summand times a difference of F -functions due to the presence of
B̃K,2i+1. The first step amounts to reexpressing it in terms of B̃K,2i+2:

B̃K,2i+1(z) − B̃K,2i(z) = B̃K,2i+2(z) − B̃K,2i(z) − (zq)2i+1ÃK,K−2i−ε(zq) . (46)

Let us first concentrate on the difference between the two B̃ factors:

B̃K,2i+2(z) − B̃K,2i(z) =
∑
n≥0

(−zq1+εn)∞ q(2κ−i−2)n (z2qn)(κ−1)n

(q)n

×
[
Fκ−1,i+1(z

2q2n+1) − qnFκ−1,i(z
2q2n+1)

]
. (47)

Again, we decompose the term in square bracket as follows

[Fκ−1,i+1(z
2q2n+1) − Fκ−1,i(z

2q2n+1)] + (1 − qn)Fκ−1,i(z
2q2n+1) , (48)

substitute this into the previous equation and write the corresponding two terms as R′
1 +

R′
2. With the identity (37), R′

2 takes the form

R′
2 = z2κ−2q3κ−i−3

∑
n≥0

(−zq1+εn)∞ qεmq(4κ−i−4)n (z2qn)(κ−1)n

(q)n
Fκ−1,i(z

2q2n+3) . (49)
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On the other hand, R′
1, using (22), reads

R′
1 = (zq)2i

∑
n≥0

(−zq1+εn)∞ q(2κ+i−2)n (z2qn)(κ−1)n

(q)n
Fκ−1,κ−i−1(z

2q2n+2) . (50)

In order to demonstrate (ii)′, the target is to recover, within the expression of B̃K,2i+1(z)−
B̃K,2i(z), that of (zq)2iÃK,K−2i+ε(zq), which reads (using (42))

(zq)2iÃK,K−2i+ε(zq) = (zq)2i
∑
n≥0

(−zq1+εn)∞ qmq(2κ+i−2)n (z2qn)(κ−1)n

(q)n

Fκ−1,κ−i(z
2q2n+2) .

(51)
Apart from the factor of qm and the value of the second index of the function F , the last
two expressions are identical. This indicates the way we should manipulate R′

1. First
write

Fκ−1,κ−i−1(z
2q2n+2) = Fκ−1,κ−i(z

2q2n+2)− [Fκ−1,κ−i(z
2q2n+2)−Fκ−1,κ−i−1(z

2q2n+2)] . (52)

This decomposes R′
1 in two pieces S ′

1 + S ′
2 with

S ′
1 = (zq)2i

∑
n≥0

(−zq1+εn)∞ q(2κ+i−2)n (z2qn)(κ−1)n

(q)n

Fκ−1,κ−i(z
2q2n+2) (53)

and (using again (22))

S ′
2 = −z2κ−2q3κ−i−3

∑
n≥0

(−zq1+εn)∞ q(4κ−i−4)n (z2qn)(κ−1)n

(q)n
Fκ−1,i(z

2q2n+3) . (54)

In S ′
1, we then insert a factor qm as follows: 1 = qm + (1 − qm) and write the resulting

two contributions as
S ′

1 = (zq)2iÃK,K−2i+ε(zq) + T ′
2 (55)

and (with (41)):

T ′
2 = (zq)2i+1

∑
n≥0

(−zq1+εn)∞ qεn+mq(2κ+i−2)n (z2qn)(κ−1)n

(q)n

Fκ−1,κ−i(z
2q2n+2) . (56)

Collecting the results of this paragraph, we see that to complete the proof of (ii)′ we only
have to show that

R′
2 + S ′

2 + T ′
2 − (zq)2i+1ÃK,K−2i−ε(zq) = 0 . (57)

By comparing R′
2 and S ′

2, we notice that their summands are identical, up to the sign and
to an extra qεm in R′

2. R′
2 + S ′

2 contains thus the factor (1 − qεm) which can be handled
as previously (cf. eqs (40) and (41)). The result is

R′
2 + S ′

2 = −ε z2κ−1q3κ−i−2
∑
n≥0

(−zq1+εn)∞ qmq(4κ−i−3)n (z2qn)(κ−1)n

(q)n
Fκ−1,i(z

2q2n+3) . (58)
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Combining next T ′
2 with −(zq)2i+1ÃK,K−2i−ε(zq) leads to

T ′
2 − (zq)2i+1ÃK,K−2i−ε(zq) = (zq)2i+1

∑
n≥0

(−zq1+εn)∞ qmq(2κ+i−2+ε)n (z2qn)(κ−1)n

(q)n

×[Fκ−1,κ−i(z
2q2n+2) − Fκ−1,κ−i−ε(z

2q2n+2)] . (59)

Using (22) in a slightly modified form, i.e., as

Fκ−1,κ−i(z
2q2n+2) − Fκ−1,κ−i−ε(z

2q2n+2) = ε (z2q2n+3)(κ−i−1)Fκ−1,i(z
2q2n+3) , (60)

we are led to
T ′

2 − (zq)2i+1ÃK,K−2i−ε(zq) = −(R′
2 + S ′

2) , (61)

which demonstrates (57) and thus (ii)′.

Finally, with B̃K,2i−1(z) defined by (21), relation (iii)′ is an identity. We have thus
completed the proof of the relations (20) or equivalently of Theorem 7.

5 Two simple applications to partition counting

By adding the staircase (m−1, m−2, · · · , 1, 0) to the sequence (n1, · · ·nm), we transform
it into an ordinary partition. With λj = nj + m− j, the weakly decreasing conditions (5)
become

λj ≥ λj+1 and λj ≥ λj+2 + 2 , (62)

while the K-restrictions (6) take the form

λj ≥ λj+K−1 + K or λj = λj+1 = λj+K−2 + K − 1 = λj+K−1 + K − 1 . (63)

To transform a generating function for K-restricted jagged partitions to one for partitions
subject to (62) and (63), we simply need to replace zN by zNqN(N−1)/2. Two limiting cases
of our general result are of interest.

Corollary 9. The number of partitions satisfying λj ≥ λj+2 + 2 is given by

lim
κ→∞

∑
m,n≥0

A2κ,2κ(m, n)zmqm(m−1)/2+n =
∑

m0,m1≥0

q(m0+m1)2+m2
1zm0+2m1

(q)m0(q)m1

= F3,3(z) . (64)

Proof: In the limit κ→∞, the restrictions can be disregarded and we are left with unre-
stricted jagged partitions, which, by Corollary 8, satisfy

lim
κ→∞A2κ,2κ(z) = (−zq)∞ lim

κ→∞Fκ,κ(z
2) =

(−zq)∞
(z2q)∞

. (65)

The second equality follows from Theorem 2 of [2]. By expanding (−zq)∞/(z2q)∞ and
replacing zN by zNqN(N−1)/2, we recover the first equality of (64), which is seen to be

the electronic journal of combinatorics 12 (2005), #R12 11



equivalent to F3,3(z), as it should (since we simply recover a special case of [2] quoted in
the introduction).

Corollary 10. The number of partitions satisfying λj ≥ λj+2 + 3 is given by

∑
m,n≥0

A3,4(m, n)zmqm(m−1)/2+n =
∑

m0,m1≥0

qm2
0+3m1(m0+m1−1/3)zm0+2m1

(q)m0(q)m1

. (66)

Proof: For K = 3, all the restrictions on the partitions defined by (62) and (63) reduce to

λj ≥ λj+2 + 3 . (67)

We can apply (17) to the counting of such partitions by considering A3,4(z, q) (i.e., setting
i = 2 to take into account all boundary conditions). Replacing again zN by zNqN(N−1)/2,
leads to (66).

This provides a quite simple derivation of a specialization of the generating function
of partitions (λ1, · · · , λm) satisfying λi ≥ λi+k−1 +3 obtained in [11] (cf. their Eq 6). (See
also Theorem 9.9 of [12] for the generating functions of the restricted partitions for this
generic case (all k). Our result is also a specialization of the one presented in Theorem
5.14 of [10] pertaining to the case λi ≥ λi+2 + `.)

6 Product form of the specialized generating func-

tion

Let us return to the general multiple sum ÃK,2i(z) = ÃK,2i(z; q). For z = 1, it can be
regarded as the sum-side of a generalized version of the Rogers-Ramanujan identities. In
this section, we display the corresponding product form together with its combinatorial
interpretation.

Theorem 11. The product form of ÃK,2i(1; q), with K = 2κ − ε and 1 ≤ i ≤ κ reads

ÃK,2i(1; q) =
∞∏

n=1

(1 + qn)
∞∏

n 6=0,±i mod (K+1)

(1 − qn)−1 (ε = 0, 1, ; i < (K + 1)/2)

=
∞∏

n 6=0 mod κ

[(1 + qn)(1 − qn)−1] (ε = 1, i = κ) . (68)

Proof: Using the simple identity (−q1+εmκ−1)∞ = (−q)∞/(−q)εmκ−1 , we can rewrite ÃK,2i,
given by (17), as

ÃK,2i(1; q) = (−q)∞
∞∑

m1,···,mκ−1=0

qN2
1+···+N2

κ−1+Li

(q)m1 · · · (q)mκ−2(q
1+ε; q1+ε)mκ−1

. (69)
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Up to the prefactor (−q)∞, the multiple sum is now in a form equivalent to one used in
[6]. The result (68) for i < (K + 1)/2 follows directly from Theorem 1 of [6]. It only
remains to consider the case where ε = 1 and i = (K + 1)/2 = κ. But this is implicitly
treated in Lemma 1 of [6], which leads immediately to the second line of (68). (In that
case, the restriction n 6= 0,±κ mod 2κ reduces to n 6= 0 mod κ.)

Manifestly, in all cases but ε = 1, i = κ, the factor (−q)∞ can be dropped from both
sides of (68) (cf. (69) for the left hand side). By doing so, we recover the Andrews-Gordon
identities (ε = 0) [1] and the Bressoud identities (ε = 1) [6]. For ε = 1, i = κ, (68) appears
to be a new identity.

Note that for ε = 1, i < κ, we have the following expression:

Ã2κ−1,2i(1; q) =
(−q)∞
(q)∞

(qi, q2κ−i, q2κ; q2κ)∞ . (70)

For i = 1, this is equal to Fκ,1(−1/q; 1; q) (cf. Lem. 2.6 of [16]), a specialization of the
function Fκ,i(a; z; q) of Andrews [2, 3] (Fκ,i(z; q) in (2) being its a = 0 version). For i = κ,
we have

Ã2κ−1,2κ(1, q) =
(−q)∞
(q)∞

(qκ; qκ)∞
(−qκ; qκ)∞

= Fκ,κ(−1; 1; q) , (71)

where the last identity is proved in [16], Lem. 2.5. For i = 2, K = 3, this is the product
side of Lebesgue’s identity (cf. [3] Cor. 2.7 with a = 1).

The combinatorial interpretation of the Rogers-Ramanujan-type identities (68) (with
ÃK,2i given by (17)) relies on the description of jagged partitions as overpartitions. Recall
that an overpartition is a partition in which the first occurence of a number may be
overlined [9]. An overpartition is thus equivalent to a pair (ᾱ, β) of partitions with the
constraint that the parts of ᾱ are distinct (i.e., they are the overlined parts). There
is a natural bijection between overpartitions and jagged partitions, obtained as follows
[17]. Replace adjacent integers (n, n + 1) within the jagged partition by 2n + 1 and
similarly replace adjacent integers (n, n) by 2n. The numbers thus obtained form the
parts of β. The remaining entries of the jagged partitions are necessarily non-zero and
distinct integers; they build up ᾱ. On the other hand, given an overpartition (ᾱ, β),
one first decomposes all entries of β according to their parity, either as 2n = (n, n) or
2n + 1 = (n, n + 1) and uses the resulting (adjacent) parts together with those of ᾱ,
to construct a jagged partition according to the restrictions (5). This is unique and this
demonstrates the bijective character of the correspondence. (Observe that the equivalence
between the set of jagged partitions of weight n and pairs of partitions (ᾱ, β) whose weights
add up to n, is a direct consequence of the generating function (65)). A similar bijection
between jagged partitions and overpartitions has also been obtained in [18].

The above bijection and Theorem 11 lead directly to the following.

Corollary 12. The number AK,2i(n) (with 1 ≤ i ≤ [(K + 1)/2] and K = 2κ − ε) of
jagged partitions of weight n satisfying the restrictions (6) and containing at most i − 1
pairs 01 is equal to the number of overpartitions (ᾱ, β) of combined weight n where parts
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of β are not equal to 0,±i mod K + 1 if 1 ≤ i < (K + 1)/2 or where no part of ᾱ and β
is equal to 0 mod κ if ε = 1 and i = κ.

A completely different combinatorial interpretation of the identity (68) (without the
(−q)∞ factor) is given in [1, 6] (except for the case ε = 1 and i = κ which is not covered
in [6]). We stress that by including a (−q)∞ factor, we end up with a new combinatorial
description of these previously known identities. Note also that the sum-side does not
seem to have a natural interpretation in terms of overpartitions with a difference condition
between parts at distance K − 1.

7 Complementary remarks

Before concluding, we would like to present some clarifying remarks. The first one concerns
the relationship between the K-restrictions (6) and the recurrence relations (11). A basic
observation is that they have a dual role: the restriction conditions specify the allowed
jagged partitions, while the recurrence relations are controlled by the excluded jagged
partitions. Hence, if at first sight it might not seem natural to have a restriction formulated
in terms of an ‘or’-type condition, it is clear that the introduction of an alternative allows
for more jagged partitions than with a single restriction. And this implies that there
are less excluded jagged partitions, meaning, in turn, that the recurrence relations are
simplified. In other words, if the restriction was formulated solely as a difference-one
condition for parts at distance K−1, that would result in a system of recurrence relations
more complicated than (11) and unlikely to be solvable in closed form.

To make the duality more explicit, observe that the K-restrictions (6) are equivalent
to excluding all jagged partitions containing a subsequence (nj , · · · , nj+K−1) of either one
of the following form:

(p, · · · , p︸ ︷︷ ︸
K−2`

, p − 1, p, · · · , p − 1, p︸ ︷︷ ︸
2`

) or (p, p + 1, · · · , p, p + 1︸ ︷︷ ︸
2`

, p, · · · , p︸ ︷︷ ︸
K−2`

) (72)

with 0 ≤ ` ≤ [K/2]. When viewed from this angle, the naturalness of the condition (6)
reveals itself: it amounts to excluding precisely one subsequence of length K for each
value of the weight n =

∑K−j+1
r=j nr (n ≥ [(K + 1)/2]). But this pattern of excluded

subsequences pops up directly from the recurrence relations. The condition (i) indicates
that we need to exclude all sequences whose tail is of the form

(· · · , 1, · · · , 1︸ ︷︷ ︸
K−2`

, 0, 1, · · · , 0, 1︸ ︷︷ ︸
2`

) , (73)

(with ` = i − 1), while the conditions (ii) and (iii) amounts to eliminating all sequences
with the following tail:

(· · · , 1, 2, · · · , 1, 2︸ ︷︷ ︸
2`

, 1, · · · , 1︸ ︷︷ ︸
K−2`

) (74)
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(with ` = κ− i or κ− i+1− ε respectively). Since the restriction conditions are invariant
under a shift of all the parts nj by the same integer p (i.e., by adding (pm) to the jagged
partition), the exclusion condition must share this invariance property; this lifts the tail-
exclusions (73) and (74) to the general ones (72).

Next, since our proof of Theorem 7 is not constructive and based on the judicious
ansatz (17), it is fair to present some rationale underlying this ansatz. At first, we already
knew from [5] that for K = 2κ,

ÃK,2i(z) = (−zq)∞Fκ,i(z
2) . (75)

Here is a very quick proof, independent of Theorem 7. Set

ÃK,2i(z) = f(z)Fκ,i(z
2) (76)

and substitute this into (i)′, using (22); this leads to

B̃K,2i(z) = f(z)Fκ,i(z
2q) . (77)

Then from (iii)′ we get

B̃K,2i−1(z) = f(z; q)Fκ,i(z
2q) − z2i−1q2i−1f(zq)Fκ,κ−i+1(z

2q2) . (78)

The substitution of these expressions into (ii)′ yields then

f(z; q) = (1 + zq)f(zq) ⇒ f(z) = (−zq)∞ . (79)

In that case, the m0 mode defined by the sum expression of (−zq)∞ is thus independent
of the mj ones of Fκ,i. Given that in the large-K limit, the parity of K should not matter
anymore, we should recover the above simple result even for K odd, as K→∞. This
means that if the m0 mode is coupled to some other modes mj when K is odd, this
coupling should disappear as K→∞. In the multiple-sum expression (1) of Fκ,i, we see

that there are terms like qjm2
j , so that in the large K (or κ) limit, the only contributing

values of the modes mj with j of the order of κ are mj = 0 (with the usual assumption
that q < 1). From these considerations, we thus knew that m0 could couple only with
those modes mj with j of the order of κ. The natural guess is to look for a single coupling
with the mode with largest subindex, mκ−1. This is also a very natural hypothesis if we
expect an iterative formula like (20) to exist (where the iteration is on κ) in which the
dependence upon the modes mj , 1 ≤ j ≤ κ − 2 is factored out.

8 Conclusion

We have presented a rather interesting extension of the generating function counting
partitions whose parts separated by distance k − 1 differ by at least 2, by enumerating
novel types of partitions (dubbed ‘jagged’) subject to a new type of restriction. That
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the rather complicated restriction considered here (dictated, as already pointed out, by a
physical problem) leads to a set of q-difference equations solvable by functions so similar
to the original Andrews’ multiple sums is certainly quite remarkable.

The jagged partitions that have been considered in the present work are character-
ized by the nature of their lowest-weight sequence which is (· · · 010101). It is clear that
there is a whole hierarchy of jagged-type partitions generalizing those considered here.
The simplest generalizations are characterized by the following lowest-weight sequences :
(· · · 001001), (· · · 020202) and (· · · 012012). The generating functions enumerating those
specific generalized jagged partitions are presented in [13]. However, we have not found
the proper way of imposing restrictions on these jagged partitions that would lead to
tracktable generating functions. For that quest, we had no guide from physical models.

As already stressed, the main interest of this work is probably rooted in the new light
it sheds on the following well-known generalization of the Ramanujan-Rogers identities
(with K = 2κ − ε and i < (K + 1)/2):

∞∑
m1,···,mκ−1=0

qN2
1 +···+N2

κ−1+Li

(q)m1 · · · (q)mκ−2(q
1+ε; q1+ε)mκ−1

=
∞∏

n 6=0,±i mod (K+1)

(1 − qn)−1 (80)

The combinatorial interpretation of this identity is presented in [6]. Our new interpreta-
tion, in terms of jagged partitions, does not apply directly to the above identity, however.
It merely provides an interpretation of a dressed version of it, that is, the identity that
results from multiplying both sides by (−q)∞ (cf. Corollary 12). In addition, it covers
one case that is not considered in [6] (ε = 1 and i = κ).

Note finally that the sum side of (80) has been reinterpreted in terms of lattice paths
in [7] (building on the works [8] and [4]). This poses the natural problem: what type of
lattice paths are enumerated by the multiple sum (80) times (−q)∞ ?
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