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Abstract

Atomic latin squares have indivisible structure which mimics that of the cyclic
groups of prime order. They are related to perfect 1-factorisations of complete bi-
partite graphs. Only one example of an atomic latin square of a composite order
(namely 27) was previously known. We show that this one example can be generated
by an established method of constructing latin squares using cyclotomic orthomor-
phisms in finite fields. The same method is used in this paper to construct atomic
latin squares of composite orders 25, 49, 121, 125, 289, 361, 625, 841, 1369, 1849,
2809, 4489, 24649 and 39601. It is also used to construct many new atomic latin
squares of prime order and perfect 1-factorisations of the complete graph Kq+1 for
many prime powers q. As a result, existence of such a factorisation is shown for the
first time for q in

{529,2809,4489,6889,11449,11881,15625,22201, 24389,24649,26569,29929,32041,
38809,44521,50653,51529,52441,63001,72361,76729,78125,79507,103823,
148877,161051,205379,226981,300763,357911,371293,493039,571787}.

We show that latin squares built by the ‘orthomorphism method’ have large
automorphism groups and we discuss conditions under which different orthomor-
phisms produce isomorphic latin squares. We also introduce an invariant called the
train of a latin square, which proves to be useful for distinguishing non-isomorphic
examples.

∗This work was undertaken at Christ Church, Oxford and at the Department of Computer Science,
Australian National University.
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1 Introduction

Group theorists think of the cyclic groups of prime order as their basic building blocks.
Every Cayley table of a finite group is a latin square and the latin squares corresponding
to cyclic groups of prime order display an atomic (in the sense of “indivisible”) structure
indicative of their lack of any algebraic substructure. They are the only groups whose
Cayley tables form atomic latin squares (see Theorem 1). Interestingly, it has recently
been discovered [11], [14], [17] that some non group-based latin squares also have atomic
properties.

There is an established method, which we call the orthomorphism method, for con-
structing latin squares based on cyclotomic orthomorphisms of finite fields. We analyse
some of the basic properties of latin squares built using this method and report that the
method seems moderately successful in producing atomic latin squares, although as yet
no pattern has emerged as to when it does. Crucially though, it provides a means for
constructing atomic latin squares of composite order. The only previously known [17]
example of composite order turns out to be constructible by the orthomorphism method.
In addition we find 14 new composite orders for which atomic latin squares exist, includ-
ing one order (625) which is a fourth power. Unfortunately, since we make crucial use of
field arithmetic, the orthomorphism method cannot work for orders which are not prime
powers, so the existence of atomic latin squares of these orders remains an open question.

An n × n matrix M containing symbols from a set Σ of cardinality n is a row-latin
square if each symbol in Σ occurs exactly once in each row of M . Similarly, M is a
column-latin square if each symbol in Σ occurs exactly once in each column of M and M
is a latin square if it is both row-latin and column-latin. Throughout this paper we will
use the symbols Σ of a latin square to index the rows and columns of that square, and
Σ will always be the elements of a finite field. It is sometimes helpful to think of a latin
square of order n as a set of n2 triples of the form (row, column, symbol), where each
element of a triple belongs to Σ. The latin property means that distinct triples never
agree in more than one co-ordinate.

For each latin square there are six conjugate squares obtained by uniformly permuting
the co-ordinates of each triple. These conjugates can be labelled by a permutation giving
the new order of the co-ordinates, relative to the former order of (123). Hence, the (123)-
conjugate is the square itself and the (213)-conjugate is its transpose. We say that the
(123)-conjugate is the trivial conjugate and the other five conjugates are non-trivial. The
(132)-conjugate is found by interchanging columns and symbols, which is another way
of saying that each row, when thought of as a permutation, is replaced by its inverse.
We will use LT and L∗ to denote, respectively, the (213) and (132) conjugates of a latin
square L.

An isotopism of a latin square L is a permutation of its rows, permutation of its
columns and permutation of its symbols. The resulting square is said to be isotopic to L
and the set of all squares isotopic to L is called an isotopy class. In the special case when
the same permutation π is applied to the rows, columns and symbols, the isotopism is an
isomorphism. An isotopism which maps L to itself is called an autotopism of L and an
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autotopism which is an isomorphism is called an automorphism. In particular, by saying
that a permutation π is an automorphism of L we are asserting that applying π to the
rows, columns and symbols of L yields the same square back again. The main class of L
is the set of squares which are isotopic to some conjugate of L. A latin square is said to
have a conjugate symmetry if it is isotopic to one of its non-trivial conjugates.

A latin subrectangle is a rectangular submatrix R of a latin square L such that exactly
the same symbols occur in each row of R. The latin subrectangle is proper if it has at
least two rows and has (strictly) fewer columns than L. If R is a 2×m latin subrectangle
and R is minimal in that it contains no 2 × k latin subrectangle for 2 ≤ k < m, then we
say that R is a row cycle of length m. Each pair of rows of L decomposes into a set of
one or more row-cycles whose lengths form a partition of n, the order of L. We call this
(unordered) partition the cycle partition corresponding to the two rows in question.

Another way to think of row cycles is in terms of the permutation which maps one
row to another row. Suppose that r and s are two rows of a latin square with index set
Σ. We define a permutation ρ : Σ 7→ Σ by ρ(Lrj) = Lsj for each j ∈ Σ. Each row cycle
between r and s corresponds to a cycle of the permutation ρ and vice versa. If γ is a
cycle of ρ then we find the corresponding row cycle by taking all occurrences in r and s
of symbols which occur in γ.

Column cycles and symbol cycles can be defined similarly to row cycles, and the
operations of conjugacy interchange these objects. A column cycle is a set of entries
which get mapped to a row cycle when the square is transposed. A symbol cycle is a
set of entries which get mapped to a row cycle when we take the (321)-conjugate of the
square. Row cycles, column cycles and symbol cycles will collectively be known as cycles.

A cycle which has length equal to the order of the square is said to be Hamiltonian. As
an example, the (Hamiltonian) cycle between the first two rows of the latin square given in
Figure 1 can be traced, in order, through the symbols 0uplsqceahjgrwtodkfvbnmxi. We
say that a latin square is row-hamiltonian if every row cycle is Hamiltonian. Equivalently,
a latin square is row-hamiltonian if it contains no proper latin subrectangles. The basic
properties of row-hamiltonian squares are studied in [17]. An infinite family of row-
hamiltonian latin squares is constructed in [2]. Other infinite families can be constructed
from perfect 1-factorisations of complete graphs using a well-known method studied, for
example, in [3] and [19].

In this paper we are interested primarily in a stronger property related to row-
hamiltonicity. We say that a latin square is atomic if all of its conjugates are row-
hamiltonian. In other words, a square is atomic if all of its cycles are Hamiltonian.
Among groups, the atomic property characterises the cyclic groups of prime order, as the
next result shows.

Theorem 1 The latin square LG derived from the Cayley table of a group G is atomic if
and only if G is a cyclic group of prime order.

Proof: By [4, Thm 4.2.2] every conjugate of LG is isotopic to LG so LG is atomic if and
only if it is row-hamiltonian. Consider the row cycles of LG between the rows correspond-
ing to two distinct elements g, h ∈ G. It is easy to establish that each of these cycles has
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length equal to the order of the element hg−1. Hence LG is atomic if and only if the order
of every non-identity element of G equals the order of G. The theorem follows. ut

We say that a latin square is group-based if, with appropriate borders added, it be-
comes the Cayley table of some group. The first detailed construction for non group-based
atomic squares was an infinite family published by Owens and Preece [14]. Shortly after-
wards, Wanless [17] coined the name ‘atomic’ and published another family. He has since
discovered a parenthetical remark in a paper by Yamamoto [20] which indicates that as
far back as 1961 Yamamoto had discovered the construction used in [17], although [20]
contains no details.

It is known [11] that for orders up to 10 the only main classes of atomic squares are
those predicted by Theorem 1, but there are exactly 7 main classes of atomic squares of
order 11.

None of the results mentioned above has shown the existence of atomic squares of
composite order. In fact the enumeration for small orders, together with Theorem 1,
might lead to the suspicion that atomic squares must have prime order. That this was
not the case was shown in [17] where an example of order 27 was described. Prior to
the current paper that example was the only one known. In this paper we show that the
orthomorphism method can be used to construct the known atomic square of order 27
and also another atomic square of the same order, but from a different main class. The
method can also be used to construct atomic latin squares of the composite orders 25, 49,
121, 125, 289, 361, 625, 841, 1369, 1849, 2809, 4489, 24649 and 39601 as well as a number
of non group-based examples of prime orders. Details of these constructions will be given
in §6 and §8, but an explicit example is given in Figure 1. This example is noteworthy in
that it is known to be the smallest atomic latin square of an order which is a non-trivial
power of a prime. It is quite possibly the smallest atomic latin square of composite order,
but existence for orders 15 and 21 is currently an open question.

The structure of the paper is as follows. In the next section we describe the ortho-
morphism method. This is an established method for building latin squares, so we briefly
review the literature on the subject. In §3 we describe, without giving proofs, an im-
portant special case of our results, which corresponds to using quadratic orthomorphisms
in the orthomorphism method. Then in §4 we set out the results in full generality, in-
cluding proofs. We prove that each square built using the orthomorphism method has
a large automorphism group. Our results also describe some circumstances under which
two different applications of the orthomorphism method produce isomorphic results. In
§5 we describe how the theory from the previous section can be used to run a computer
search for atomic squares. In §6 we describe some atomic latin squares of composite order
which were found by this search (examples of prime order are discussed in §8). In §7 we
describe an invariant, called the train, which can be used for distinguishing latin squares
from different main classes. Finally, in §9 we list some perfect 1-factorisations of complete
graphs which we found using a variation on our search for atomic latin squares. It turns
out that our method is general enough to construct a perfect 1-factorisation of Kq+1 for
every one of the sporadic values of the prime power q for which a perfect 1-factorisation
has previously been published (as well as finding constructions for many new orders).
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0 e x b f i g p j m k t c q l n r u s d v a w h o
u a i n v 0 r l g x f o e c s m w p q k b h t j d
c t b s w x u m e a r l j o i q g v d h f n p k 0
l m 0 c r n h q u s p j v w a f x k o b e d i t g
s x r u d h 0 k t f i m o e j v l w c n g q a b p
a l h t m e x r d 0 n p k f c s i g w q u v j o b
d j t o i m f 0 c l x q w r v p n s a u k b h g e
f h p x t q w g v r l d a b o u 0 c e j n k s m i
w u s f e b v a h q 0 x i j m k t o n p d c g r l
e b n v j p d x l i q u f 0 r t o h g c m w k s a
h w l k n v a s m d j 0 g p e x c i b t r o q u f
j s w q g l t u o v c k b d p a e f x r 0 i m n h
n g k 0 p a i j x h b e l u q d m r v o w s c f t
i o g a k d e w n t h v p m u b j 0 f x s l r c q
o c u e s j p t r b d w 0 h n g k l i a q m f x v
x k m r l w c n q p u h s a 0 o f b t e i g d v j
g q v j x k o b s e m n d l f i p t 0 w h r u a c
m r o g u s k e i j v c n x t h a q l f p 0 b d w
p f j d b g m i w n t s q v h c u a r 0 o x l e k
r n c i 0 o q v b w g a u t d l h e k s j f x p m
k v a w h c b d p o s f x i g r q n j m t e 0 l u
q 0 f h c t s o a k w g m n b j v d p l x u e i r
t d q l o u n h f c e i r k x w b j m g a p v 0 s
v p d m q r l f 0 u a b t g k e s x h i c j o w n
b i e p a f j c k g o r h s w 0 d m u v l t n q x

Figure 1: Atomic latin square of order 25
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2 The orthomorphism method

A permutation θ of a field F is called an orthomorphism if the map φ : F 7→ F defined by
φ(x) = θ(x)−x is also a permutation of F . An orthomorphism θ is canonical if θ(0) = 0.

For each d ∈ F we define the dth diagonal of a latin square L to be the set of entries
in cells (i, j) satisfying j − i = d. In particular, the 0th diagonal is the main diagonal. If
L is generated from its row 0 by the rule that the entry in row i on diagonal d is i + L0d,
then we say that L is diagonally generated . For any diagonally generated latin square the
map z 7→ z + c for an arbitrary constant c ∈ F is an automorphism (see Lemma 9).

In the special case when F = Zp for some prime p then each of our diagonals cor-
responds to what is sometimes called a broken diagonal in the literature. A diagonally
generated square in this case has the elements of Zp occurring in cyclic order down each
broken diagonal, and such squares have been called diagonally cyclic. See [18] for a survey
of the many important applications of diagonally cyclic latin squares. For our purposes,
the most important result in that paper is that a given permutation θ of Zp can be used
as row 0 of a diagonally cyclic latin square if and only if θ is an orthomorphism. More
generally we have:

Lemma 1 Let θ be a permutation of F . There is a diagonally generated latin square L
with L0j = θ(j) for all j ∈ F if and only if θ is an orthomorphism of F .

Proof: Suppose that θ is a permutation of F and let M be the matrix with index set
F , which satisfies M0j = θ(j) for all j ∈ F and is diagonally generated from this row.
The fact that θ is a permutation and M is diagonally generated guarantees that M is
row-latin. So M will be a latin square unless Mij = Mkj for some i, j, k ∈ F with i 6= k.
But Mij = Mkj is equivalent to

θ(j − i) − (j − i) = M0(j−i) + i − j = Mij − j =

Mkj − j = M0(j−k) + k − j = θ(j − k) − (j − k)

which says that θ is not an orthomorphism. The result should now be clear. ut
Orthomorphisms are closely connected with starters; see [8] for details. The construc-

tions that we give for perfect 1-factorisation in §9 are produced by a technique equivalent
to the quotient coset starters as defined, for example, in [15]. Our construction for atomic
latin squares is a slight generalisation of that technique in that it builds latin squares which
need not be symmetric. Nevertheless, the use of orthomorphisms to build latin squares
is a well established technique (see [7], [8]) for which we make no claim to originality.
Also, our use of cyclotomy classes in our constructions has well established precedents in
design theory, see for example [13] and [9, §4.9]. Cyclotomic orthomorphisms, and hence
all of the main results of this paper, can be neatly rephrased in terms of permutation
polynomials. Again, the interested reader is referred to [8] for more details.
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3 Quadratic Orthomorphisms

In this section we discuss an important special case of our results. This case corresponds
to the quadratic orthomorphisms studied by Evans [7]. All results in this section will
be stated without proof since they are special cases of more general results which will be
proved, in full, in the next section. We introduce them here because they are simpler than
the general statements and hence serve as an easily accessible introduction. The quadratic
case is also worth special attention since it is particularly effective for our purposes, as
we shall see in later sections.

Throughout this section F will be a field of finite order q = pr, where p is an odd
prime. All calculations will take place within F . The set S will comprise the non-zero
squares in F and the set F# is defined to be F \ {0, 1}. For any c, d ∈ F# we define a
matrix L = L[c, d] of order q by

Lij =
{

i + c(j − i) if j − i ∈ S,
i + d(j − i) if j − i 6∈ S,

(1)

where the rows and columns of L are indexed by F . For L to be a latin square it is
necessary and sufficient that cd ∈ S and (1 − c)(1 − d) ∈ S. In what follows we assume
that c, d have been chosen to satisfy this condition.

Each conjugate of the square L defined by (1) is a square of the same form, but possibly
with different constants c, d. The transpose LT of L is given by L[c′, d′] where c′ = 1 − c,
d′ = 1− d if q ≡ 1 mod 4 and c′ = 1− d, d′ = 1− c if q ≡ 3 mod 4. The row-inverse L∗ of
L is given by L[c′′, d′′] where c′′ = 1/c, d′′ = 1/d if c ∈ S and c′′ = 1/d, d′′ = 1/c if c 6∈ S.

The latin square L[c, d] is isomorphic to L[d, c] and is also isomorphic to L[cp, dp].
Furthermore, for any fixed f ∈ F the map x 7→ x + f is an automorphism of L, as is
the map x 7→ x · s for any fixed s ∈ S. So L has an automorphism group of order which
is some multiple of 1

2
q(q − 1). These automorphisms imply that if q ≡ 3 mod 4 then

L is semi-regular, in the sense of Anderson [1]. This means that every pair of rows of
L has the same cycle partition. On the other hand if q ≡ 1 mod 4 then every pair of
rows has one of at most two possible cycle partitions. These restrictions give us hope of
finding row-hamiltonian examples, since fewer things have to be right in order for every
row-cycle to be hamiltonian. By the same token, since each conjugate of L is of the type
defined by (1), it is easy to find such L that are atomic, at least when compared to other
constructions which the author has tried.

4 Cyclotomic Orthomorphisms

In this section we describe a general method for constructing latin squares which in a
number of instances succeeds in building atomic squares. The method is related to the
cyclotomic orthomorphisms studied by Evans [7]. The quadratic case presented in the
previous section is a special case of the method studied here. The claims made in the
previous section will be proved in this section, since they are special cases of the theorems
below.
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As in the previous section, F will be a field of finite order q = pr where p is an odd
prime and F# = F \ {0, 1}. All calculations will take place within F and F will be used
to index the rows and columns of our latin squares. We will use x to denote a primitive
element in F , so that F = {0, x, x2, x3, . . . , xq−1}.

Suppose that q ≡ 1 mod t for some positive integer t and define u = (q − 1)/t. For
i ∈ Zt we define

Ci = {xmt+i : m ∈ Z}
which we call the ith cyclotomy class (with respect to t). Each cyclotomy class contains
exactly u elements of F and between them they partition the non-zero elements of F .
We refer to t as the degree. The quadratic case in the previous section corresponds to
choosing the degree t = 2, in which case C0 = S, the set of non-zero squares. Hence the
following definition is a generalisation of (1).

For any c0, c1, . . . , ct−1 ∈ F# we define a matrix L = L[c0, c1, . . . , ct−1] of order q by

Lij =
{

i if i = j,
i + cs(j − i) whenever j − i ∈ Cs.

(2)

We call the individual ci scaling factors and refer to [c0, c1, . . . , ct−1] as the vector of scaling
factors.

Lemma 2 The necessary and sufficient condition that (2) defines a row-latin square is
that a + α 6≡ b + β mod t for distinct α, β ∈ Zt, where a, b ∈ Zt are defined by cα ∈ Ca and
cβ ∈ Cb.

Proof: First suppose that a + α ≡ b + β mod t where cα ∈ Ca and cβ ∈ Cb for distinct
α, β ∈ Zt. Consider an entry e in row 0 which occupies a column j ∈ Cα. Then e =
L0j = cαj ∈ Ca Cα = Ca+α. Similarly, if k ∈ Cβ then L0k ∈ Cb+β = Ca+α. But there are 2u
elements in Cα ∪ Cβ and only u elements in Ca+α, from which it follows that some symbol
must be repeated in row 0 and L is not row-latin. This establishes the necessity of our
condition.

To prove sufficiency we assume that the condition holds and suppose that Lij = Lik

for some i, j, k ∈ F where j 6= k. We may assume that j 6= i and k 6= i since Lii = i 6= Lil

for all l 6= i by definition, given that cs 6= 0 for all s ∈ Zt. Hence there exist α, β ∈ Zt

such that j − i ∈ Cα and k − i ∈ Cβ . Now Lij = Lik and (2) together imply that

cα(j − i) = cβ(k − i). (3)

Define a, b ∈ Zt by cα ∈ Ca and cβ ∈ Cb. Then cα(j − i) ∈ Ca Cα = Ca+α and cβ(k − i) ∈
Cb Cβ = Cb+β, so (3) implies that a + α ≡ b + β mod t. By assumption this means that
α = β, but then (3) immediately implies that j = k. This contradiction proves the
theorem. ut

In order to establish conditions under which (2) defines a latin square we next consider
the transpose of the matrix defined by (2). For the following result note that ut = q − 1
is even so that one of u or t must be even.
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Lemma 3 The transpose LT of the matrix L defined by (2) is a matrix of the same form,
defined by LT = L[c′0, c

′
1, . . . , c

′
t−1] where for each s ∈ Zt,

c′s =

{
1 − cs if u is even,
1 − cs+t/2 if u is odd.

Proof: By the choice of x we know that −1 = x(q−1)/2 = xut/2. Hence, −1 ∈ Ch where
h = 0 if u is even and h = t/2 if u is odd.

Trivially, Lii = i = LT
ii for all i ∈ F . So let i, j be distinct elements of F and define s

by i− j ∈ Cs. Then LT
ij = Lji = j + cs(i− j) = i + (1− cs)(j − i). The result now follows

since j − i = (−1)(i − j) ∈ Ch+s. ut
Combining the previous two lemmas immediately gives:

Lemma 4 For (2) to define a latin square it is both necessary and sufficient that the
following two conditions hold for all distinct α, β ∈ Zt:

(i) a + α 6≡ b + β mod t where a, b ∈ Zt are defined by cα ∈ Ca and cβ ∈ Cb.

(ii) a′ + α 6≡ b′ + β mod t where a′, b′ ∈ Zt are defined by 1 − cα ∈ Ca′ and 1 − cβ ∈ Cb′ .

The reason for choosing our coefficients cs from F# rather than F should now be
clear, since L cannot be row-latin if cs = 0 and cannot be column-latin if cs = 1.

For a given choice of coefficients [c0, c1, . . . , ct−1] define σ : Zt 7→ Zt by σ(α) = a + α
where cα ∈ Ca. Similarly, define σ′ : Zt 7→ Zt by σ′(α) = a + α where 1 − cα ∈ Ca. Then
Lemma 4 can be rewritten in the following way:

Lemma 5 For (2) to define a latin square it is both necessary and sufficient that σ and
σ′ are permutations.

This is exactly the condition given in [7, Thm 3.7] that [c0, c1, . . . , ct−1] yields a cy-
clotomic orthomorphism. We will henceforth assume that the conditions in Lemma 5 (or
alternatively Lemma 4) are met, so that we do in fact have a latin square. That being the
case, we can ask about its conjugates. These can be generated using Lemma 3 together
with our next result.

Lemma 6 Let L be defined by (2). Then L∗ is a latin square of the same form, defined
by L∗ = L[c′′0, c

′′
1, . . . , c

′′
t−1] where c′′σ(s) = c−1

s .

Proof: Let L∗ be as defined in the statement of the Lemma. We show that L∗ is
the (132)-conjugate of L. Trivially L∗

ii = i = Lii for all i ∈ F . So suppose that i, j
are distinct elements of F and define s by j − i ∈ Cs. Then Lij = i + cs(j − i) and
L∗

i(i+cs(j−i)) = i+ c−1
s (cs(j− i)) = j, using the fact that cs(j− i) ∈ Cσ(s) because j− i ∈ Cs.

ut
Next we look at two ways in which we can get isomorphic results. In doing so we will

make use of the fact that all isomorphisms preserve the main diagonal of an idempotent
latin square (that is, a square L for which Lii = i for all i). Since (2) defines an idempotent
square, we may concentrate on what happens to the off-diagonal entries.
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Lemma 7 Suppose that the vector ẽ = [e0, e1, . . . , et−1] of scaling factors is obtained by
cyclically permuting the elements of c̃ = [c0, c1, . . . , ct−1]. Then L = L(c̃) is isomorphic to
E = L(ẽ).

Proof: Suppose that ci = ei+d where subscripts are in Zt. Fix any λ ∈ Cd and consider the
permutation τ of F which maps y to λy for every y ∈ F . We apply τ to each component
of a general off-diagonal triple (i, j, Lij) of L. Define s by j − i ∈ Cs. Then

(τ(i), τ(j), τ(Lij)) = (λi, λj, λ(i + cs(j − i))) = (λi, λj, λi + cs(λj − λi))

which is a triple in E since λj − λi = λ(j − i) ∈ Cd Cs = Cd+s. ut

Lemma 8 Suppose that the vector ẽ = [e0, e1, . . . , et−1] of scaling factors is related to
c̃ = [c0, c1, . . . , ct−1] by eip = cp

i . Then L = L(c̃) is isomorphic to E = L(ẽ).

Proof: The Frobenius map y 7→ yp is well known to be an isomorphism of F . We apply
this map to each component of (i, j, Lij), a typical off-diagonal triple of L. Define s by
j − i ∈ Cs. Then by the properties of the Frobenius map we have

(ip, jp, Lp
ij) = (ip, jp, (i + cs(j − i))p) = (ip, jp, ip + cp

s(j
p − ip))

which is a triple of E since jp − ip = (j − i)p ∈ Csp. ut
One of the key reasons for the success of our construction is its large automorphism

group. We have:

Lemma 9 Let L be defined by (2). Then the permutations

(i) Pa defined by Pa(z) = a + z for any fixed a ∈ F ,

(ii) Ta defined by Ta(z) = az for any fixed a ∈ C0,

are automorphisms of L.

Proof: To prove (i), fix a ∈ F . Let (i, j, Lij) be a general off-diagonal triple of L and
define s by j − i ∈ Cs. Then

(Pa(i), Pa(j), Pa(Lij)) = (a + i, a + j, a + i + cs((a + j) − (a + i)))

which is a triple in L since (a + j) − (a + i) = j − i ∈ Cs.
To prove (ii), fix a ∈ C0. Let (i, j, Lij) be a general off-diagonal triple of L and define

s by j − i ∈ Cs. Then

(Ta(i), Ta(j), Ta(Lij)) = (ai, aj, a(i + cs(j − i))) = (ai, aj, ai + cs(aj − ai))

which is a triple in L since aj − ai = a(j − i) ∈ C0 Cs = Cs. ut
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A corollary of this last result is that uq = |C0| |F| divides |aut(L)|, the order of the
automorphism group of L. In many cases |aut(L)| = uq, but the atomic square of order
25 given in Figure 1 is an example where the group is strictly larger, as we shall see in
§6. We also note that uq is inversely proportional to the degree, which explains, at least
in part, why quadratic orthomorphisms seem to be the most useful in our current quest.

Informally, one benefit of the large automorphism group is that we get quite regular
cycle structure:

Lemma 10 To establish whether L, as defined by (2), is row-hamiltonian it suffices to
check the cycle partition between row 0 and one row from each of the classes C0, C1, . . .,
Ct−1−h, where h is defined in Lemma 3.

Proof: Suppose that L has a hamiltonian row cycle between row 0 and row ρi ∈ Ci for
each i = 0, 1, . . . , t − 1 − h. Let r1, r2 be two distinct elements of F and define s by
r2 − r1 ∈ Cs. Referring to Lemma 3 we see that −1 ∈ Ch. Hence, by interchanging the
labels r1 and r2 if necessary, we may assume that 0 ≤ s ≤ t − 1 − h. To prove the result
it suffices to show that there is a hamiltonian row cycle between row r1 and r2.

Define α = −r1 and µ = ρs/(r2 − r1) and observe that µ ∈ C0 since it is the ratio of
two elements of Cs. By Lemma 9 the cycle partition between rows r1 and r2 is the same
as that between rows Tµ(Pα(r1)) = Tµ(0) = 0 and Tµ(Pα(r2)) = Tµ(r2 − r1) = ρs, and
hence consists of a hamiltonian cycle as required. ut

5 The search

In this section we describe the algorithm which was used to search for atomic latin squares.
A major strength of the cyclotomic orthomorphism method is that an entire latin

square can be specified by a small number of scaling factors. Hence it is feasible to use a
computer to look for examples of atomic latin squares of orders which are large enough
to be interesting. The characterisation in Lemma 4 is easily implemented so that we
only ever choose scaling factors which will give us a latin square. Also, we can impose
a lexicographic order on choices of scaling factors. Then the results of Lemma 3 and
Lemma 6 can be combined to ensure that of the 6 conjugates of any latin square we
only ever generate the ‘least’ one. Similarly, the results of Lemma 7 and Lemma 8 can
be used to trim the search further, by abandoning any choice of scaling factors which
is isomorphic to an earlier choice. It also makes sense to eliminate degenerate choices of
scaling factors from the search. By degenerate we mean any choice which is periodic, with
non-trivial period, and hence is actually an example of a lower degree orthomorphism.
The extreme case is when every scaling factor is the same and the orthomorphism is linear.
Linear orthomorphisms are of no interest in the current setting since they always produce
group-based latin squares.

There is an important caveat to the above observations, which is this: The exam-
ples quoted over the following pages are not necessarily exactly the examples which the
computer found. Sometimes we have manipulated them to make their symmetries more
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r = 2 3 4 5 6 7 8 9 10

t = 2 2512 473 194 115 56 37 38 39 310

3 1132 193 114 75 56

4 472 133 74 55 36

5 192 34

6 172 73

7 132

8 112 34

12 52

Table 1: Extent of the search for atomic squares with conjugate symmetry.

transparent. This means our examples will not necessarily be lexicographically least
amongst their six conjugates. For example, for a particular main class the computer may
have found a representative which is equal to its (321)-conjugate, but we might choose to
report the (132)-conjugate of such a square, so that it is symmetric in the usual matrix
sense.

Each vector of scaling factors that passes the above tests can be fairly quickly checked
to see if it produces an atomic square. Lemma 10 tells us that we need to build at most
t−h+1 rows of a latin square and check t−h row cycles. If we find any row cycle which is
not Hamiltonian then clearly the square is not row-hamiltonian, but otherwise the square
is. Since a square is row-hamiltonian if and only if its (132)-conjugate is row-hamiltonian
[17], we can tell whether a square is atomic by confirming that its (123), (213) and (312)
conjugates are row-hamiltonian.

The above approach was implemented and a number of atomic latin squares of compos-
ite order were discovered. These will be detailed in §6. It was noted that most (although
not all) of the examples that the computer found had a conjugate symmetry. In particular,
they were related to at least one of their non-trivial conjugates by equality, or by one of
the isomorphisms shown in Lemma 7 and Lemma 8. Hence, the search was subsequently
narrowed to focus on examples of this type.

The search for atomic latin squares of composite order possessing a conjugate symme-
try (of the type just described) was exhaustive up to and including the order shown in
Table 1. As an example, the first entry in that table shows that all quadratic orthomor-
phisms (hence t = 2) were checked in all fields of order q, the square of a prime (hence
r = 2), up to and including the case q = 2512 = 63001.

A search for atomic squares of prime order will be discussed in §8.

6 Atomic squares of composite order

The computer search described in §5 uncovered 16 main classes of atomic latin squares of
composite order. Those examples are summarised in Table 2 and discussed below.

Our finite fields were constructed in the computer by first finding (by trial and error)
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p r q ζ(x) c̃ Symmetry

5 2 25 x2 + x + 2 [15, 4, 22, 23, 2, 4, 1, 9, 2, 4, 1, 9] S∗

3 3 27 x3 + 2x + 1 [20, 4] T
3 3 27 x3 + 2x + 1 [7, 5] T
7 2 49 x2 + x + 3 [12, 2] C

11 2 121 x2 + x + 7 [94, 74, 22, 2] N∗

5 3 125 x3 + 3x + 2 [94, 42] U
17 2 289 x2 + x + 3 [244, 114] C
19 2 361 x2 + x + 2 [163, 47] C
5 4 625 x4 + x2 + 2x + 2 [611, 33] F 2

29 2 8411 x2 + x + 3 [829, 429] F
37 2 1369 x2 + x + 5 [182, 64] F
43 2 1849 x2 + x + 3 [1736, 1736, 728, 728] C∗

53 2 2809 x2 + x + 5 [1150, 180] C
67 2 4489 x2 + x + 2 [2276, 354] C

157 2 24649 x2 + x + 6 [2699, 2137] F
199 2 39601 x2 + x + 6 [21215, 9679] F

Table 2: Atomic latin squares of composite order.

an irreducible polynomial ζ(x) of degree r over Zp with the property that, in the field of
polynomials Zp[x] modulo ζ(x), the polynomial x is a primitive element. This means that
the non-zero elements of the field can be identified with the set {x, x2, x3, . . . , xq−1} of
powers of x. This allows us to adopt a shorthand which mirrors the way that polynomials
were stored in the computer. Instead of writing each scaling factor as a monomial xa we
simply give the index a. For example, we use [94, 74, 22, 2] as shorthand for the vector of
scaling factors [x94, x74, x22, x2].

The first three columns of Table 2 give, respectively, the values of p, r and q = pr, the
parameters of our field F . Following that, we give the irreducible polynomial ζ(x) and
the vector of scaling factors c̃.

In the final column of Table 2 we give a letter code indicating the conjugate symmetries
(if any) that the atomic squares possess. The code ‘T ’ indicates that the square equals
its transpose (that is, it is symmetric in the usual sense). The code ‘S’ indicates that the
square equals its (231) and (312) conjugates (hence it is what is called semisymmetric).
The code ‘C’ indicates that the square is isomorphic to its transpose by a cyclic permu-
tation of the scaling factors, as in Lemma 7. The code ‘F ’ indicates that the square is
isomorphic to its transpose by a cyclic permutation of the scaling factors, followed by an
application of the Frobenius map, as in Lemma 8. The code ‘F 2’ is the same, except the
Frobenius map must be applied twice. The code ‘U ’ indicates that the square is isomor-
phic to its (231)-conjugate by applying the Frobenius map (and hence is also isomorphic
to its (312)-conjugate). The code ‘N ’ indicates that the square has none of the above
symmetries.
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It is also possible that a square might have isomorphisms additional to those predicted
by Lemma 9. An asterisk is used to indicate three squares for which this occurs. The
example of order 1849 is isomorphic to itself by application of the Frobenius map, then a
cyclic permutation of the scaling factors. The example of order 121 has an automorphism
group of size 7260, twice as large as might be expected from Lemma 9. It is not isotopic
to any of its conjugates, and is currently the only known example of an atomic square of
composite order with this property.

The atomic square of order 25 in Table 2 is easily converted into the example given
earlier in Figure 1. The chosen encoding is that for i = 1, 2, . . . , 24 the field element
xi is written as the ith letter of the alphabet and zero is written as ‘0’. The rows and
columns are written in the order of their indices 0, a, b, c, . . . , x. This square is isomorphic
to its transpose (and hence to all of its conjugates, since it is semisymmetric) and has
an automorphism group of order 100. In addition to the 50 automorphisms predicted by
Lemma 9 it has an automorphism φ with cycles

(ahmt)(bgns)(cpod)(ewqk)(flrx)(ivuj).

Note that f , l, r and x are the fourth roots of unity. Negation (i.e. the automorphism T−1

from Lemma 9) is equal to φ2. While the screening described in §5 was strong enough
to prevent the computer reporting multiple copies of most squares, the extra symmetries
of this order 25 example resulted in the computer reporting 4 isomorphic variants of the
same square. If we set

c̃1 = [15, 4, 22, 23, 2, 4, 1, 9, 2, 4, 1, 9]

c̃2 = [13, 16, 13, 16, 14, 7, 3, 7, 2, 19, 1, 9]

c̃3 = [17, 11, 17, 11, 14, 8, 3, 8, 2, 19, 1, 9]

c̃4 = [17, 11, 13, 16, 5, 8, 10, 7, 2, 21, 1, 9]

then all four squares L(c̃i) are semisymmetric and isomorphic to each other. In addition,
both L(c̃2) and L(c̃3) possess a symmetry of type F and L(c̃4) is, like the atomic square of
order 1849, isomorphic to itself by applying the Frobenius map, then a cyclic permutation
of the scaling factors. We chose to use L(c̃1) because of its apparent similarity to the degree
4 example [2, 4, 1, 9], especially given that x15 = 1 − x2, x22 = 1 − x and x23 = 1 − x9 in
the field of Z5[x] modulo x2 + x + 2.

The computer also reported an atomic square of order 49 with the scaling factors
[27, 22, 10, 45, 21, 9, 15, 3], but this turns out to be isomorphic to the one given in Table 2.

The symmetries that we have identified for our atomic squares include (but are not
limited to) all the symmetries which can be demonstrated solely by means of Lemmas 3, 6,
7 and 8. Some of the squares with order exceeding 200 may possess additional symmetries
which could be demonstrated by other means. However, for orders q < 200 nauty [12] was
used to check that there are no additional symmetries (either autotopisms or conjugate
symmetries) other than the ones identified above. In the process it was confirmed that
the two examples of order 27 come from different main classes. These two main classes
are also easily distinguished by an invariant which we introduce in the next section.
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7 Trains of latin squares

There are many invariants which may be used for distinguishing latin squares from differ-
ent main classes. Some of these, such as the number of transversals, can only be computed
in a reasonable time for small orders. Other substructures such as latin subsquares or
cycles are useless for distinguishing atomic latin squares because such squares have, by
definition, no non-trivial substructures of the types mentioned.

In this section we describe a new main class invariant which is useful for distinguishing
main classes of atomic latin squares. We call it the train of the latin square, in analogy
to a very similar invariant which is frequently used for distinguishing non-isomorphic
1-factorisations of graphs [6], [16].

As mentioned in the introduction, we can think of a latin square L of order n with
index set Σ, as a set of triples in Σ3 = Σ×Σ×Σ. The train of L is a directed graph with
vertex set equal to Σ3 and each vertex has outdegree 1. The arc from a vertex (a, b, c) ∈ Σ3

goes to the unique vertex (x, y, z) ∈ Σ3 such that (a, b, z), (a, y, c) and (x, b, c) are triples
of L.

Applying isotopisms to L simply permutes the labels within each copy of Σ in the
train of L, and taking conjugates of L permutes the copies of Σ themselves. Hence we
have:

Lemma 11 If L and M are latin squares from the same main class then the trains of L
and M are isomorphic (as directed graphs).

Of course, the train of L has n3 vertices, which makes full isomorphism testing a
daunting prospect even for moderately large n. Happily, for our purposes, it turns out
that atomic squares are frequently distinguishable by counting the number of sources
(vertices of indegree zero) in their trains, and we encountered no example of a pair of
atomic squares from distinct main classes which could not be distinguished by counting
the vertices of indegree zero and those of indegree one. Therefore, in what follows we shall
not concern ourselves with any structural information other than the indegrees of vertices
in the train. For each d ≥ 0, define sd by saying that nsd is the number of vertices with
indegree d. Let m = max{d : sd > 0}. We call [s0, s1, . . . , sm] the sequence of the train.
The reason for using this sequence rather than the indegree sequence [ns0, ns1, . . . , nsm] is
that for all latin squares of interest in this paper (namely, the squares defined by (2) and,
to a lesser extent, group tables) the si are necessarily integers, are considerably smaller
than nsi and can be calculated more efficiently. These assertions are based on our next
two lemmas.

Lemma 12 For any d ≥ 0 and L defined by (2), sd is the number of vertices (0, b, c) of
indegree d in the train of L, where b and c are allowed to range over the index set F of L.

Proof: We associate with each vertex (0, b, c) the set of n vertices

{(a, b + a, c + a) : a ∈ F} (4)
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Lemma 9 tells us that each of the n vertices in (4) has the same indegree, and each vertex
(x, y, z) of the train of L is associated with a unique (0, b, c), namely (0, y − x, z − x). ut

For an example application, consider the two atomic latin squares of order 27 defined
in §6. These squares, defined by their scaling factors [20, 4] and [7, 5] have trains with
respective sequences [260, 261, 156, 52] and [208, 313, 208]. Hence these squares belong to
two different main classes, by Lemma 11.

In the case of prime order we shall be interested in knowing that our new examples of
atomic latin squares do not belong to the main class of the cyclic group. One way to be
sure of this is to employ the following result.

Lemma 13 Let L be a latin square derived from the Cayley table of a finite group G.
For each g ∈ G define f(g) to be the number of solutions x ∈ G to the equation x2 = g
(in other words f(g) is the number of times g occurs on the main diagonal of L). Define
$i to be the number of g ∈ G for which f(g) = i. Then the sequence of the train of L is
[n$0, n$1, n$2, . . .].

Proof: Let (a, b, c) be a general vertex of the train of L and let d be any solution in G to
d2 = abc−1. The arc from vertex (x, y, z) points to (a, b, c) if and only if xy = c, xb = z and
ay = z. These equations are satisfied if x = dcb−1, y = x−1c and z = xb. Moreover, this
is essentially the only way they can only be satisfied. To see this, substitute x = Xcb−1

into ax−1c = ay = z = xb to obtain abc−1X−1c = Xc and hence X2 = abc−1. Thus the
indegree of (a, b, c) is equal to f(abc−1). For each g ∈ G there are n2 vertices (a, b, c) such
that abc−1 = g, and these vertices together contribute n towards the f(g)th entry in the
sequence of the train of L. ut

It is well known that in groups of odd order every element has a square root, so
f(g) = 1 uniformly over g ∈ G in that case. Hence:

Corollary 1 If T is the train of a latin square derived from the Cayley table of a finite
group G of odd order then the sequence of T is [0, n2].

In particular this shows that the sequence of a train cannot distinguish between two
non-isomorphic groups of the same odd order. However, this last result will prove very
useful for establishing that a given latin square L of odd order is not based on a group.
To do this it suffices to find a single source in the train of L.

8 Atomic squares of prime order

A computer search as described in §5 was used to find numerous new atomic latin squares
of prime order. The only difference from the case of composite orders was that field
arithmetic was handled with integers rather than polynomials. However, to be consistent
with the other version of the program we stored all non-zero elements of the field as powers
of a primitive root ω, which was found by trial and error. Again, we quote scaling factors
by listing the indices only, so [8, 6] is shorthand for [ω8, ω6].
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p ω c̃ Sym Train

11 2 [8, 6] T 40
13 2 [5, 3] C 48
19 2 [9, 1] T 90
19 2 [12, 2] N 117
19 2 [14, 6, 9, 7, 5, 1] T 102
23 5 [8, 6] T 176, 243
23 5 [18, 12] T 154
23 5 [14, 2] N 176, 221
41 6 [31, 37, 7, 5] C 500
43 3 [37, 2, 36, 26, 24, 1] S 588
47 5 [6, 4] N 736
53 2 [7, 5] C 832, 1301
53 2 [48, 8] C 832, 1353
53 2 [44, 14] C 1092
59 2 [51, 35] T 928
67 2 [31, 13] T 1452
73 5 [51, 11] C 2088
73 5 [35, 13] C 2016
83 2 [62, 44] T 2460
97 5 [60, 26] C 3072

101 2 [47, 35] C 3200
101 2 [91, 61] C 3400
103 5 [42, 22] T 2448
103 5 [22, 6] N 2295
103 5 [70, 79, 4] R 3570
107 2 [30, 14] N 3657
109 6 [99, 41] C 3996
109 6 [107, 75] C 3780
127 3 [96, 68] T 3906
127 3 [81, 69, 39] R 5796
127 3 [72, 63, 54] R 5544
131 2 [81, 41] T 5460
139 2 [119, 3] T 5658
139 2 [109, 85] T 6486
149 2 [57, 43] N 8658

Table 3: Atomic latin squares of prime order < 150.
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p ω c̃ Sym Train

151 6 [94, 88, 43] S 7500
157 5 [118, 72, 149, 17] T 8034
167 5 [86, 14] T 9296
173 2 [105, 77] C 8772
179 2 [149, 129] T 7654
181 2 [83, 69] C 6840
191 19 [134, 34] T 11970
191 19 [135, 107] T 13870
211 2 [15, 11] T 15960
211 2 [108, 86] T 17640
223 3 [30, 20] T 11100
229 6 [156, 98] C 19380
239 7 [220, 68] T 14518
241 7 [140, 62] C 13680
263 5 [228, 70] T 15196
263 5 [258, 82] T 15720
269 2 [187, 187, 155, 155] T 21708
277 5 [269, 141] C 16284
283 3 [199, 145] T 16920
307 5 [283, 191] T 20196
349 2 [307, 283] C 40368
367 6 [192, 34] T 47580
367 6 [267, 35] T 50508
367 6 [199, 107] T 47946
373 2 [366, 296] C 54312
383 5 [224, 12] N 51379
397 5 [285, 257] C 34848

Table 4: Atomic latin squares of prime orders in the range [150,400].
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In Table 3 and Table 4 we summarise the atomic squares of orders up to 400 found
by our program. The first three columns give the order of the square, the primitive root
used, and the vector c̃ of scaling factors. In the fourth column we again give a letter
code indicating the conjugate symmetries (if any). The codes ‘T ’, ‘S’ and ‘C’ have the
same meanings as before. The code ‘R’ indicates that the square is isomorphic to its
(231)-conjugate by a cyclic permutation of the scaling factors. The code ‘N ’ indicates
that the square has none of the above symmetries. In the final column we give enough of
the sequence of the train of the square to distinguish it from all other currently known
examples. In most cases this means just giving the first element s0 of the sequence. Recall
from the corollary to Lemma 13 that if s0 6= 0 then the square cannot be group-based.
In particular, the examples in Table 3 and Table 4 are all from a main class distinct from
that of the cyclic group of the same order.

Table 3 and Table 4 represents merely the start of the list of examples found by the
computer, which would be much too lengthy to give in full. Considering only examples
of degree 2 and which have a T or C type symmetry, the program found 256 main classes
of atomic latin squares of prime orders below 10000, and continued to find many more
beyond that point.

The computer reported two examples of order 11, namely the one given in the table
and [5, 3, 4, 9, 3, 3, 3, 6, 3, 1]. However, these two examples belong to the same main class.
Similarly, it reported [4, 2, 4, 4, 10, 4, 4, 4, 9, 11, 3, 1], which is a variation of the square of
order 13 given in the table. We were unable to exhaustively check for any larger order p
whether other squares could be written, in a non-degenerate way, using an orthomorphism
of degree p − 1.

The square of order 19 with scaling factors [12,2] is currently the smallest example of
an atomic square which is not isotopic to any of its conjugates (no such examples were
known prior to this paper).

9 Perfect 1-factorisations

A 1-factor (also called a perfect matching) of a graph G is set of edges of G which between
them include every vertex exactly once. A 1-factorisation of G is a partition of the edges
of G into 1-factors. A 1-factorisation is said to be perfect if the union of any two 1-factors
in it is a Hamiltonian cycle. For background information on these concepts see Seah [15]
or Wallis [16].

It is well known that a perfect 1-factorisation of the complete graph Kn+1 can be used
to write down a symmetric symbol-hamiltonian latin square of order n and vice versa.
The relationship between these two combinatorial objects involves some subtleties, which
are discussed fully in [19]. These subtleties all revolve around questions of isomorphism
though, so they do not affect our present purpose, which is simply to establish existence
for as many orders as possible.

There are two classical infinite families of perfect 1-factorisations of complete graphs.
They show existence for, respectively, Kp+1 and K2p whenever p is an odd prime. Recently
another infinite family was found [3], but it does not yield constructions for any new orders.
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In addition to these infinite families, existence has been shown for Kn+1 for some small
values of n, all of which are either (i) less than 40 or (ii) a prime power. The complete
list, taken from [15] together with [21] is

{15, 27, 35, 39, 49, 125, 169, 243, 343, 729, 1331, 1369, 1849, 2197,

3125, 6859, 12167, 16807, 29791}. (5)

Below we describe, in the same format used in the previous sections, constructions for
symmetric symbol hamiltonian latin squares of order q, for every prime power q in (5) as
well as for the following orders:

{25∗, 81∗, 121∗, 361∗, 529, 625∗, 841∗, 2809, 3481∗, 3721∗, 4489, 6889, 10201∗, 11449,

11881, 15625, 17161∗, 19321∗, 22201, 24389, 24649, 26569, 29929, 32041, 32761∗,

38809, 44521, 50653, 51529, 52441, 63001, 72361, 76729, 78125, 79507, 103823,

148877, 161051, 205379, 226981, 300763, 357911, 371293, 493039, 571787}.

Orders with asterisks on them in this last list were already known to exist because of the
K2p construction (and may have other published constructions as well). All other orders
represent new existence results.

For the case r = 2, we have the examples in Table 5.
For the case r = 3, both the atomic latin squares of order 27 quoted in §6 are symmetric

and hence give perfect 1-factorisations of K28. We also found the examples in Table 6,
which include all cases where p < 100 and p 6≡ 1 mod 8.

For 4 ≤ r ≤ 7, the examples found by the computer are given in Table 7.
We remark that for all constructions in this section, Lemma 3 can be used to confirm

that the latin squares are symmetric. Indeed, that lemma greatly speeded up the computer
search since it shows that we only need consider the case when u is odd, and that in that
case one half of the coefficients in c̃ are determined by the other half.

The two smallest prime powers q for which perfect 1-factorisations of Kq+1 are cur-
rently unknown are now 289 and 961. To use the methods of the current paper to find
these factorisations would require orthomorphisms of degrees at least 32 and 64 respec-
tively.

Note. After writing this paper the author learnt of a preprint by Dinitz and Dukes [5]
and of separate unpublished work by Volker Leck, announced in [10]. In both cases,
quotient coset starters were used to construct perfect 1-factorisations for a number of the
orders which are claimed as new in the present paper. As mentioned in §2, quotient coset
starters are essentially the same method as used here, so it seems to be a case of an idea
whose time was due.
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p q ζ(x) c̃

5 25 x2 + x + 2 [7, 21, 19, 15, 8, 19, 21, 2]
7 49 x2 + x + 3 [18, 37, 9, 25, 20, 18, 29, 29,

17, 20, 43, 31, 37, 17, 1, 1]
11 121 x2 + x + 7 [93, 115, 15, 28, 90, 78, 44, 1]
13 169 x2 + x + 1 [124, 117, 69, 110, 103, 24, 20, 1]
19 361 x2 + x + 2 [330, 213, 321, 218, 219, 295, 27, 1]
23 529 x2 + x + 7 [476, 231, 167, 155, 115, 317, 256, 136,

37, 188, 410, 351, 143, 6, 3, 1]
29 841 x2 + x + 3 [218, 517, 293, 234, 432, 574, 35, 1]
37 1369 x2 + x + 5 [585, 393, 330, 424, 361, 185, 17, 1]
43 1849 x2 + x + 3 [1089, 1612, 241, 1663, 1544, 1706, 16, 1]
53 2809 x2 + x + 5 [406, 1619, 2456, 1370, 173, 2426, 5, 1]
59 3481 x2 + x + 2 [305, 1602, 141, 1858, 1650, 2613, 14, 1]
61 3721 x2 + x + 2 [1197, 2851, 2537, 1982, 822, 338, 8, 1]
67 4489 x2 + x + 12 [3673, 4108, 1340, 4260, 1680, 2374, 20, 1]
83 6889 x2 + x + 2 [1655, 6480, 332, 3610, 1431, 3807, 4, 1]

101 10201 x2 + x + 3 [2265, 3884, 3949, 5896, 3880, 757, 16, 1]
107 11449 x2 + x + 5 [5160, 5673, 3883, 2900, 2696, 190, 32, 2]
109 11881 x2 + x + 6 [4115, 5889, 171, 171, 6581, 3551, 1, 1]
131 17161 x2 + x + 14 [8301, 1958, 13482, 1552, 8005, 12289, 76, 1]
139 19321 x2 + x + 1 [1513, 16898, 11245, 9938, 12878, 489, 30, 1]
149 22201 x2 + x + 3 [5433, 7676, 8164, 21616, 2928, 19682, 12, 1]
157 24649 x2 + x + 6 [21516, 19316, 14337, 8123, 22533, 11362, 10, 3]
163 26569 x2 + x + 11 [24870, 206, 2657, 1983, 14809, 14911, 19, 1]
173 29929 x2 + x + 5 [1311, 15757, 3955, 5877, 14781, 16079, 13, 3]
179 32041 x2 + x + 7 [10770, 18434, 30738, 28500, 27573, 30728, 8, 1]
181 32761 x2 + x + 18 [9019, 9115, 16855, 31186, 31163, 18349, 8, 1]
197 38809 x2 + x + 3 [5856, 23436, 38224, 35243, 27776, 17394, 19, 4]
211 44521 x2 + x + 3 [7849, 22609, 410, 42594, 28439, 5690, 24, 1]
227 51529 x2 + x + 5 [47860, 41567, 33795, 33795, 39131, 14692, 12, 12]
229 52441 x2 + x + 6 [154, 23003, 40875, 40875, 15645, 37966, 1, 1]
251 63001 x2 + x + 19 [48436, 51053, 2013, 17928, 19601, 10940, 4, 1]
269 72361 x2 + x + 2 [70029, 48715, 60292, 60292, 25134, 56126, 18, 18]
277 76729 x2 + x + 11 [50710, 46554, 3880, 62852, 37552, 47940, 26, 22]

Table 5: The case r = 2.
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p q ζ(x) c̃

5 125 x3 + 3x + 2 [82, 84, 58, 4]
7 343 x3 + 3x + 2 [321, 1]

11 1331 x3 + x + 4 [890, 36]
13 2197 x3 + x + 6 [1687, 301, 410, 2]
19 6859 x3 + x + 4 [336, 2]
23 12167 x3 + x + 3 [4852, 66]
29 24389 x3 + x + 11 [1726, 3768, 7130, 4]
31 29791 x3 + x + 14 [20861, 125]
37 50653 x3 + x + 13 [7825, 38009, 28181, 1]
43 79507 x3 + x + 14 [43865, 291]
47 103823 x3 + x + 4 [67515, 45]
53 148877 x3 + x + 5 [84913, 85054, 9840, 17]
59 205379 x3 + x + 3 [121588, 352]
61 226981 x3 + x + 17 [222881, 104322, 130160, 5]
67 300763 x3 + x + 6 [131844, 102]
71 357911 x3 + x + 8 [284564, 508]
79 493039 x3 + x + 9 [133959, 297]
83 571787 x3 + x + 7 [527591, 287]

Table 6: The case r = 3.

p q ζ(x) c̃

3 81 x4 + x + 2 [73, 32, 12, 16, 19, 16, 4, 4, 16, 51, 3, 73, 54, 73, 1, 1]
5 625 x4 + x2 + 2x + 2 [328, 308, 282, 227, 544, 244, 244, 244,

553, 190, 376, 178, 455, 1, 1, 1]

3 243 x5 + 2x + 1 [95, 11]
5 3125 x5 + 4x + 2 [404, 1685, 2583, 8]
7 16807 x5 + x + 4 [14715, 59]

11 161051 x5 + x2 + x + 4 [94526, 86]
13 371293 x5 + 4x + 2 [233293, 189881, 264357, 1]

3 729 x6 + x + 2 [367, 145, 210, 6, 711, 113, 111, 1]
5 15625 x6 + x + 2 [9591, 9728, 12498, 11874, 8690, 14037, 5, 1]

5 78125 x7 + 3x + 2 [36939, 7047, 12756, 6]

Table 7: The cases r = 4, 5, 6 and 7.
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