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Abstract
We prove that the sum of entries of the suitably normalized groundstate vector of the

O(1) loop model with periodic boundary conditions on a periodic strip of size 2n is equal to
the total number of n×n alternating sign matrices. This is done by identifying the state sum
of a multi-parameter inhomogeneous version of the O(1) model with the partition function
of the inhomogeneous six-vertex model on a n × n square grid with domain wall boundary
conditions.

1. Introduction

Alternating Sign Matrices (ASM), i.e. matrices with entries 0, 1,−1, such that 1
and −1’s alternate along each row and column, possibly separated by arbitrarily many
0’s, and such that row and column sums are all 1, have attracted much attention over the
years and seem to be a Leitmotiv of modern combinatorics, hidden in many apparently
unrelated problems, involving among others various types of plane partitions or the
rhombus tilings of domains of the plane (see the beautiful book by Bressoud [1] and
references therein). The intrusion first of physics and then of physicists in the subject
was due to the fundamental remark that the ASM of size n × n may be identified
with configurations of the six-vertex model, that consist of putting arrows on the edges
of a n × n square grid, subject to the ice rule (there are exactly two incoming and
two outgoing arrows at each vertex of the grid), with so-called domain wall boundary
conditions. This remark was instrumental in Kuperberg’s alternative proof of the ASM
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conjecture [2]. The latter relied crucially on the integrability property of this model,
that eventually allowed for finding closed determinantal expressions for the total number
An of ASM of size n × n, and some of its refinements. This particular version of the
six-vertex model has been extensively studied by physicists, culminating in a multi-
parameter determinant formula for the partition function of the model, due to Izergin
and Korepin [3] [4]; some of its specializations were more recently studied by Okada [5]
and Stroganov [6]. An interesting alternative formulation of the model is in terms of
Fully Packed Loops (FPL). The configurations of this model are obtained by occupying
or not the edges of the grid with bonds, with the constraint that exactly two bonds are
incident to each vertex of the grid. The model is moreover subject to the boundary
condition that every other external edge around the grid is occupied by a bond. These
are then labeled 1, 2, . . . , 2n. A given configuration realizes a pairing of these external
bonds via non-intersecting paths of consecutive bonds, possibly separated by closed
loops.

On an apparently disconnected front, Razumov and Stroganov [7] discovered a re-
markable combinatorial structure hidden in the groundstate vector of the homogeneous
O(1) loop model, surprisingly also related to ASM numbers. The latter model may be
expressed in terms of a purely algebraic Hamiltonian, which is nothing but the sum of
generators of the Temperley–Lieb algebra, acting on the Hilbert space of link patterns π,
i.e. planar diagrams of 2n points around a circle connected by pairs via non-intersecting
arches across the disk. These express the net connectivity pattern of the configurations
of the O(1) loop model on a semi-infinite cylinder of perimeter 2n (i.e. obtained by im-
posing periodic boundary conditions). Razumov and Stroganov noticed that the entry
of the suitably normalized groundstate vector Ψn corresponding to the link pattern π
was nothing but the partition function of the FPL model in which the external bonds
are connected via the same link pattern π. A weaker version of this conjecture, which
we refer to as the sum rule, is that the sum of entries of Ψn is equal to the total number
An of ASM. The sum rule was actually conjectured earlier in [8].

Both sides of this story have been generalized in various directions since the original
works. In particular, it was observed that some choices of boundary conditions in the
O(1) model are connected in analogous ways to symmetry classes of ASM [9,10]. Con-
centrating on periodic boundary conditions, it was observed recently that the Razumov–
Stroganov conjecture could be extended by introducing anisotropies in the O(1) loop
model, in the form of extra bulk parameters [11,12].

The aim of this paper is to prove the sum rule conjecture of [8] in the case of periodic
boundary conditions, and actually a generalization thereof that identifies the partition
function of the six-vertex model with domain wall boundary conditions with the sum of
entries of the groundstate vector of a suitably defined multi-parameter inhomogeneous
version of the O(1) loop model. This proves in particular the generalizations of the sum
rule conjectured in [11,12]. Our proof, like Kuperberg’s proof of the ASM conjecture, is
non-combinatorial in nature and relies on the integrability of the model under the form
of Yang–Baxter and related equations.

The paper is organized as follows. In Sect. 2 we recall some known facts about the
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partition function Zn of the inhomogeneous six-vertex model with domain wall boundary
conditions, including some simple recursion relations that characterize it completely. In
Sect. 3, we introduce the multi-parameter inhomogeneous version of the O(1) loop
model and compute its transfer matrix (Sect. 3.1), and make a few observations on the
corresponding groundstate vector Ψn (Sect. 3.2), in particular that the sum of entries
of this vector, once suitably normalized, coincides with Zn. This section is completed
by appendix A, where we display the explicit groundstate vector of the O(1) loop model
for n = 2, 3. Section 3.3 is devoted to the proof of this statement: we first show that the
entries Ψn,π of the vector Ψn obey some recursion relations relating Ψn,π to Ψn−1,π′ ,
when two consecutive spectral parameters take particular relative values, and where π′

is obtained from π by erasing a “little arch” connecting two corresponding consecutive
points. As eigenvectors are always defined up to multiplicative normalizations, we have
to fix precisely the relative normalizations of Ψn and Ψn−1 in the process. This is
done by computing the degree of Ψn as a homogeneous polynomial of the spectral
parameters of the model, and involves deriving an upper bound for this degree (the
calculation, based on the Algebraic Bethe Ansatz formulation of Ψn, is detailed in
appendix B), and showing that no extra non-trivial polynomial normalization is allowed
by this bound. This is finally used to prove that the sum of entries of Ψn is a symmetric
homogeneous polynomial of the spectral parameters and that it obeys the same recursion
relations as the six-vertex partition function Zn. The sum rule follows. Further recursion
properties are briefly discussed. Section 3.4 displays a few applications of these results,
including the proof of the conjecture on the sum of components, and some of its recently
conjectured generalizations. A few concluding remarks are gathered in Sect. 4.

2. Six Vertex model with Domain Wall Boundary Conditions

The configurations of the six vertex (6V) model on the square lattice are obtained
by orienting each edge of the lattice with arrows, such that at each vertex exactly two
arrows point to (and two from) the vertex. These are weighted according to the six
possible vertex configurations below

a a b b c c
with a, b, c given by

a = q−1/2w − q1/2z b = q−1/2z − q1/2w c = (q−1 − q)(z w)1/2 (2.1)

and where w, z are the horizontal and vertical spectral parameters of the vertex. q is
an additional global parameter, independent of the vertex.1

1 Note that we use a slightly unusual sign convention for q, which is however convenient

here.

the electronic journal of combinatorics 12 (2005), #R6 3



A case of particular interest is when the model is defined on a square n×n grid, with
so-called domain wall boundary conditions (DWBC), namely with horizontal external
edges pointing inwards and vertical external edges pointing outwards. Moreover, we
consider the fully inhomogeneous case where we pick n arbitrary horizontal spectral
parameters, one for each row say z1, . . . , zn and n arbitrary vertical spectral parameters,
one for each column say zn+1, . . . , z2n.

The partition function Zn(z1, . . . , z2n) of this model was computed by Izergin [3]
using earlier work of Korepin [4] and takes the form of a determinant (IK determinant),
which is symmetric in the sets z1, . . . , zn and zn+1, . . . , z2n. It is a remarkable property,
first discovered by Okada [5], that when q = e2iπ/3, the partition function is actually
fully symmetric in the 2n horizontal and vertical spectral parameters z1, z2, . . . , z2n. It
can be identified [6,5], up to a factor (−1)n(n−1)/2(q−1 − q)n

∏2n
i=1 z

1/2
i which in the

present work we absorb in the normalization of the partition function, as the Schur
function of the spectral parameters corresponding to the Young diagram Yn with two
rows of length n − 1, two rows of length n − 2, . . ., two rows of length 2 and two rows
of length 1:

Zn(z1, . . . , z2n) = sYn
(z1, . . . , z2n) . (2.2)

The study of the cubic root of unity case has been extremely fruitful [2,6], allowing
for instance to find various generating functions for (refined) numbers of alternating sign
matrices (ASM), in bijection with the 6V configurations with DWBC. In particular,
when all parameters zi = 1, the various vertex weights are all equal and we recover
simply the total number of such configurations

3−n(n−1)/2Zn(1, 1, . . . , 1) = An =
n−1∏
i=0

(3i + 1)!
(n + i)!

(2.3)

while by taking z1 = (1 + q t)/(q + t), z2 = (1 + q u)/(q + u), and all other parameters
to 1, one gets the doubly-refined ASM number generating function(

q2(q + t)(q + u)
)n−1

3n(n−1)/2
Zn

(
1 + q t

q + t
,
1 + q u

q + u
, 1 . . . , 1

)
= An(t, u) =

n∑
j=1

tj−1uk−1An,j,k

(2.4)
where An,j,k denotes the total number of n × n ASM with a 1 in position j on the top
row (counted from left to right) and k on the bottom row counted from right to left).

Many equivalent characterizations of the IK determinant are available. Here we
will make use of the recursion relations obtained in [6] for the particular case q = e2iπ/3,
to which we restrict ourselves from now on, namely that

Zn(z1, . . . , z2n)
∣∣
zi+1=q zi

=
2n∏

j=1
j 6=i,i+1

(q2zi − zj) Zn−1(z1, . . . , zi−1, zi+2, . . . , z2n) . (2.5)

This recursion relation and the fact that Zn is a symmetric homogeneous polynomial
in its 2n variables with degree ≤ n − 1 in each variable and total degree n(n − 1) are
sufficient to completely fix Zn.
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3. Inhomogeneous O(1) loop model

3.1. Model and transfer matrix

We now turn to the O(1) loop model. It is defined on a semi-infinite cylinder
of square lattice, with even perimeter 2n whose edge centers are labelled 1, 2, . . . , 2n
counterclockwise. The configurations of the model are obtained by picking any of the

two possible face configurations or at each face of the lattice. We moreover

associate respective probabilities ti and 1 − ti to these face configurations when they
sit in the i-th row, corresponding to the top edge center labelled i. We see that the
configurations of the model form either closed loops or open curves joining boundary
points by pairs, without any intersection beteen curves. In fact, each configuration
realizes a planar pairing of the boundary points via a link pattern, namely a diagram
in which 2n labelled and regularly spaced points of a circle are connected by pairs via
non-intersecting straight segments.Note that one does not pay attention to which way
the loops wind around the cylinder, so that the semi-infinite cylinder should really be
thought of as a disk (by adding the point at infinity). The set of link patterns over 2n
points is denoted by LPn, and its cardinality is cn = (2n)!/(n!(n + 1)!). We may also
view π ∈ LPn as an involutive planar permutation of the symmetric group S2n with
only cycles of length 2.

We may now ask what is the probability Pn(t1, . . . , t2n|π) in random configurations
of the model that the boundary points be pair-connected according to a given link
pattern π ∈ LPn. Forming the vector Pn(t1, . . . , t2n) = {Pn(t1, . . . , t2n|π)}π∈LPn

, we
immediately see that it satisfies the eigenvector condition

Tn(t1, . . . , t2n)Pn(t1, . . . , t2n) = Pn(t1, . . . , t2n) (3.1)

where the transfer matrix Tn expresses the addition of an extra row to the semi-infinite
cylinder, namely

Tn(t1, . . . , t2n) =
2n∏
i=1

(
ti + (1 − ti)

)
(3.2)

with periodic boundary conditions around the cylinder.
Let us parameterize our probabilities via ti = q zi−t

q t−zi
, 1 − ti = q2(zi−t)

q t−zi
, where we

recall that q = e2iπ/3. Note that for zi = t e−iθi , θi ∈]0, 2π/3[, the weights satisfy 0 <
ti < 1 and one can easily check that Tn satisfies the hypotheses of the Perron–Frobenius
theorem, Pn being the Perron–Frobenius eigenvector. In particular, the corresponding
eigenvalue (1) is non-degenerate for such values of the zi. Let us also introduce the
R-matrix

R(z, w) =
z

w
=

q z − w

q w − z
+

q2(z − w)
q w − z

. (3.3)

We shall often need a “dual” graphical depiction, in which the R-matrix corresponds to
the crossing of two oriented lines, where the left (resp. right) incoming line carries the
parameter z (resp. w).
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z1

z2z2n

...

t

Fig. 1: Transfer matrix as a product of R-matrices.

Then, denoting by the index 0 an auxiliary space (propagating horizontally on the
cylinder), and i the i-th vertical space, we can rewrite (3.2) into the purely symbolic
expression (see Fig. 1)

Tn ≡ Tn(t|z1, . . . , z2n) = Tr0 (R2n,0(z2n, t) · · ·R1,0(z1, t)) (3.4)

where the order of the matrices corresponds to following around the auxiliary line, and
the trace represents closure of the auxiliary line. To avoid any possible confusion, we
note that if one “unrolls” the transfer matrix of Fig. 1 so that the vertices are numbered
in increasing order from left to right (with periodic boundary conditions), then the flow
of time is downwards (i.e. the semi-infinite cylinder is infinite in the “up” direction).

3.2. Groundstate vector: empirical observations

Solving the above eigenvector condition (3.1) numerically (see appendix A for the
explicit values of n = 2, 3), we have observed the following properties.
(i) when normalized by a suitable overall multiplicative factor αn, the entries of

the probability vector Ψn ≡ αnPn are homogeneous polynomials in the variables
z1, . . . , z2n, independent of t, with degree ≤ n− 1 in each variable and total degree
n(n − 1).

(ii) The factor αn may be chosen so that, in addition to property (i), the sum of entries
of Ψn be exactly equal to the partition function Zn(z1, . . . , z2n) of Sect. 2 above.

(iii) With the choice of normalization of property (ii), the entries Ψn,π of Ψn are such
that the symmetrized sum of monomials

∑
σ∈Sn

n∏
k=1

(zik
zjk

)σ(k)−1 (3.5)

where π = (i1j1) · · · (injn), occurs with coefficient 1 in Ψn,π , and does not occur in
any Ψn,π′ , π′ 6= π.
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... ...1z 2z 2nz

t i,j

t T

T’

ji

Fig. 2: The transfer matrix T commutes with that, T ′, of the tilted n-
dislocation O(1) loop model on a semi-infinite cylinder. The transfer ma-
trix of the latter is made of n rows of tilted face operators, followed by
a global rotation of one half-turn. Each face receives the probability ti,j
given by Eq. (3.6) at the intersection of the diagonal lines i and j, carrying
the spectral parameters zi and zj respectively as indicated. The commuta-
tion between T and T ′ (free sliding of the black horizontal line on the blue
and red ones across all of their mutual intersections) is readily obtained by
repeated application of the Yang–Baxter equation.

Note that the entries of Ψn are not symmetric polynomials of the zi, as opposed
to their sum. The entries Ψn,π thus form a new family of non-symmetric polynomials,
based on a monomial germ only depending on π ∈ LPn, according to the property (iii).

The fact that the entries of Ψn do not depend on t is due to the standard prop-
erty of commutation of the transfer matrices (3.4) at two distinct values of t, itself a
direct consequence of the Yang–Baxter equation. It is also possible to make the contact
between the present model and a multi-parameter version of the O(1) loop model on
a semi-infinite cylinder with maximum number of dislocations introduced in [12]. In
the latter, we simply tilt the square lattice by 45◦, but keep the cylinder vertical. This
results in a zig-zag shaped boundary, with 2n edges still labelled 1, 2, . . . , 2n counter-
clockwise, with say 1 in the middle of an ascending edge (see Fig.2). The two (tilted)
face configurations of the O(1) loop model are still drawn randomly with inhomoge-
neous probabilities ti,j for all the faces lying at the intersection of the diagonal lines
issued from the points i (i odd) and j (j even) of the boundary (these diagonal lines are
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wrapped around the cylinder and cross infinitely many times). If we now parametrize

ti,j ≡ t(zi, zj) =
q zi − zj

q zj − zi
(3.6)

we see immediately that the transfer matrix of this model commutes with that of ours,

as a direct consequence of the Yang–Baxter equation = . As no reference

to t is made in the latter model, we see that Ψn must be independent of t. The tilted
version of the vertex weight operator is usually understood as acting vertically on the
tensor product of left and right spaces say i, i + 1, and reads

Ři,i+1(z, w) =
wz

= t(z, w) +
(
1 − t(z, w)

)
= t(z, w)I +

(
1 − t(z, w)

)
ei

(3.7)
where t(z, w) is as in (3.6), and ei is the Temperley–Lieb algebra generator that acts on
any link pattern π by gluing the curves that reach the points i and i + 1, and inserting
a “little arch” that connects the points i and i + 1. Formally, one has Ř = PR where
P is the operator that permutes the factors of the tensor product.

In the next sections, we shall set up a general framework to prove these empirical
observations.

3.3. Main properties and lemmas

For the sake of simplicity, we rewrite the main eigenvector equation (3.1) in a form
manifestly polynomial in the zi and t, by multiplying it by all the denominators q t−zi,
i = 1, 2, . . . , 2n. By a slight abuse of notation, we still denote by R and Ř = PR all the
vertex weight operators in which the denominators have been suppressed:

R(z, w) =
z

w
= (q z − w) + q2(z − w) . (3.8)

In these notations, we now have the main equation(
Tn(t|z1, . . . , z2n) −

2n∏
i=1

(q t − zi)I

)
Ψn(z1, . . . , z2n) = 0 (3.9)

where Tn is still given by Eq. (3.4) but with R as in (3.8). As mentioned before, for
certain ranges of parameters Eq. (3.9) is a Perron–Frobenius eigenvector equation, in
which case Ψn is uniquely defined up to normalization. We conclude that the locus of
degeneracies of the eigenvalue is of codimension greater than zero and that Ψn is gener-
ically well-defined. We may always choose the overall normalization of the eigenvector
to ensure that it is a homogeneous polynomial of all the zi (the entries Ψn,π of Ψn are
proportional to minors of the matrix that annihilates Ψn, and therefore homogeneous
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polynomials). We may further assume that all the components of Ψn are coprime,
upon dividing out by their GCD. There remains an arbitrary numerical constant in the
normalization of Ψn, which will be fixed later.

Note finally that, using cyclic covariance of the problem under rotation around the
cylinder, one can easily show that

Ψn,π(z1, z2, . . . , z2n−1, z2n) = Ψn,rπ(z2n, z1, . . . , z2n−2, z2n−1) (3.10)

where r is the cyclic shift by one unit on the point labels of the link patterns (rπ(i+1) =
π(i) + 1 with the convention that 2n + 1 ≡ 1).

Our main tools will be the following three equations. First, the Yang–Baxter equa-
tion:

t

z
w

=

z w

t (3.11)

is insensitive to the above redefinitions. The unitarity condition, however, is inhomoge-
neous:

w

z

= (q z − w)(q w − z)

z

w

(3.12)

so that for example, Ři,i+1(z, w)Ři,i+1(w, z) = (q z − w)(q w − z)I. Finally, note the
crossing relation:

wz
= −q

w

q z
(3.13)

In some figures below, orientation of lines will be omitted when it is unambiguous.
We now formulate the following fundamental lemmas:

Lemma 1. The transfer matrices Tn(t|z1, . . . , zi, zi+1, . . . , z2n) and Tn(t|z1, . . . , zi+1,
zi, . . . , z2n) are interlaced by Ři,i+1(zi, zi+1), namely:

Tn(t|z1, . . . , zi,zi+1, . . . , z2n)Ři,i+1(zi, zi+1)
= Ři,i+1(zi, zi+1)Tn(t|z1, . . . , zi+1, zi, . . . , z2n) (3.14)

This is readily proved by a simple application of the Yang–Baxter equation:

zi+1 zi

zi zi+1

...... ......=
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To prepare the ground for recursion relations, we note that the space of link patterns
LPn−1 is trivially embedded into LPn by simply adding a little arch say between the
points i − 1 and i in π ∈ LPn−1, and then relabelling j → j + 2 the points j =
i, i + 1, . . . , 2n− 2. Let us denote by ϕi the induced embedding of vector spaces. In the
augmented link pattern ϕiπ ∈ LPn, the additional little arch connects the points i and
i + 1. We now have:

Lemma 2. If two neighboring parameters zi and zi+1 are such that zi+1 = q zi, then

Tn(t|z1, . . . , zi,zi+1 = q zi, . . . , z2n) ϕi

= (q t − zi)(q t − q zi) ϕi Tn−1(t|z1, . . . , zi−1, zi+2, z2n) (3.15)

The lemma is a direct consequence of unitarity and inversion relations (Eqs. (3.12)–
(3.13)). It is however instructive to prove it “by hand”. We let the transfer matrix
Tn(t|z1, . . . , z2n) act on a link pattern π ∈ LPn with a little arch joining i and i+1. Let
us examine how Tn locally acts on this arch, namely via Ri+1,0(q zi, t)Ri,0(zi, t). We
have

i i+1

= viui+1 + vivi+1 + uiui+1 + uivi+1

with ui = q zi − t and vi = q2(zi − t). The last three terms contribute to the same
diagram, as the loop may be safely erased (weight 1), and the total prefactor uiui+1 +
vivi+1+uivi+1 = 0 precisely at zi+1 = q zi. We are simply left with the first contribution
in which the little arch has gone across the horizontal line, while producing a factor
viui+1 = q2(zi − t)(q2zi − t) = (q t− zi)(q t− q zi) as q3 = 1. In the process, the transfer
matrix has lost the two spaces i and i + 1, and naturally acts on LPn−1, while the
addition of the little arch corresponds to the operator ϕi.

3.4. Recursion and factorization of the groundstate vector

We are now ready to translate the lemmas 1 and 2 into recursion relations for the
entries of Ψn. For a given pattern π, define Eπ to be the partition of {1, . . . , 2n} into
sequences of consecutive points not separated by little arches (see Fig. 3). We order
cyclically each sequence s ∈ Eπ.

Theorem 1. The entries Ψn,π of the groundstate eigenvector satisfy:

Ψn,π(z1, . . . , z2n) =

( ∏
s∈Eπ

∏
i,j∈s
i<j

(q zi − zj)

)
Φn,π(z1, . . . , z2n) (3.16)

where Φn,π is a polynomial which is symmetric in the set of variables {zi, i ∈ s} for each
s ∈ Eπ.

We start the proof with the case of two consecutive points i, i + 1 within the same
sequence s in a given π ∈ LPn, i.e. not connected by a little arch. We use Lemma 1, in

the electronic journal of combinatorics 12 (2005), #R6 10



2

3
4

56
7

8

9

15
16

1

18

14

17

10

11

12
13

Fig. 3: Decomposition of a sample link pattern into sequences of consec-
utive points not separated by little arches. The present example has five
little arches, henceforth five sequences s1 = {17, 18, 1}, s2 = {2, 3, 4, 5},
s3 = {6, 7, 8}, s4 = {9, 10, 11} and s5 = {12, 13, 14, 15, 16}.

which we set zi+1 = q zi. We first note that with these special values of the parameters
Ři,i+1(zi, zi+1 = q zi) = (q2−1)ziei, and deduce that eiT̃ = Tei where the parameters zi

and zi+1 = q zi are exchanged in T̃ (as compared to T ). Let us act with these operators
on the vector Ψ̃n in which zi+1 = q zi are interchanged (as compared to Ψn). Denoting
by Λ =

∏2n
j=1(q t − zj), we find that eiT̃ Ψ̃n = ΛeiΨ̃n = TeiΨ̃n, therefore the vector

eiΨ̃n is proportional to Ψn. This means that Ψn = aneiΨ̃n, has possibly non-vanishing
entries only for link patterns with a little arch linking i to i + 1. As we have assumed
that no little arch connects i to i + 1 in π, we deduce that Ψn,π vanishes. We have
therefore proved that the polynomial Ψn,π factors out a term (q zi−zi+1) when no little
arch connects i, i + 1 in π.

Let us now turn to the case of two points say i, i + k within the same sequence
s, i.e. such that no little arch occurs between the points i, i + 1, . . . , i + k. We now
use repeatedly the Lemma 1 in order to interlace the transfer matrices at interchanged
values of zi and zi+k.

Let

Pi,k(zi, zi+1, . . . , zi+k) = Ři+k−1,i+k(zi+k−1, zi+k)Ři+k−2,i+k−1(zi+k−2, zi+k) · · ·

· · · Ři+1,i+2(zi+1, zi+k) × Ři,i+1(zi, zi+k)Ři+1,i+2(zi, zi+1) · · · Ři+k−1,i+k(zi, zi+k−1)
(3.17)

Then we have

Tn(z1, . . . , zi, . . . , zi+k, . . . , z2n)Pi,k(zi, . . . , zi+k)
= Pi,k(zi, . . . , zi+k)Tn(z1, . . . , zi+k, . . . , zi, . . . , z2n) (3.18)
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zi zi+1 zi+2 zi+k−1 zi+k

zi+k zi+2zi+1 zi+k−1 zi

=

...

...
Fig. 4: The repeated use of Yang–Baxter equation allows to show that
the operator Pi,k intertwines T at interchanged values of zi and zi+k. This
simply amounts to letting the horizontal line slide through all other line
intersections as shown.

following from the straightforward pictorial representation of Fig.4. Let us now set
zi+k = qzi in the above, and act on Ψ̃n in which zi and zi+k = q zi are interchanged
(as compared to Ψn). We still have Ři,i+1(zi, zi+k = q zi) = (q2 − 1)ziei as before, and
P T̃ Ψ̃n = ΛP Ψ̃n = TP Ψ̃n, and the (non-vanishing) vector P Ψ̃n is proportional to Ψn.
We deduce that Ψn lies in the image of the operator P . But expanding Pi,k of Eq. (3.17)
as a sum of products of e’s and I’s with polynomial coefficients of the zi, we find that
because one of the Ř terms is proportional to ei, all the link patterns contributing to the
image of Pi,k have at least one little arch in between the points i and i+k (either at the
first place j ≤ i + k, j > i, where a term ej is picked in the above expansion, or at the
place i, with ei, if only terms I have been picked before). As we have assumed π has no
such little arch in between i and i+k, the entry of Ψn,π must vanish, and this completes
the proof that Ψn,π factors out a term (q zi−zi+k) when there is no little arch in between
i and i + k in π. Having factored out all the corresponding terms, we are left with a
polynomial Φn,π of the zi as in Eq. (3.16). To show that the latter is symmetric under
the interchange of some zi within the same sequence s, it is sufficient to prove it for con-
secutive points, say i, i+1. Let us interpret Lemma 1 by letting both sides of Eq. (3.14)
act on the groundstate vector Ψ̃n, defined as Ψn with zi and zi+1 interchanged. We find
that TŘi,i+1(zi, zi+1)Ψ̃n = Ři,i+1(zi, zi+1)T̃ Ψ̃n = ΛŘi,i+1(zi, zi+1)Ψ̃n. This shows that
Ψn ∝ Ři,i+1(zi, zi+1)Ψ̃n. Combining this with the inverse relation connecting Ψ̃n with
Ψn, we arrive at (q zi+1 − zi)Ψn = µn,iŘi,i+1(zi, zi+1)Ψ̃n, where the proportionality
factor µn,i is a reduced rational fraction with numerator and denominator of the same
degree d. If d ≥ 1, dividing out by its numerator would introduce poles in the lhs, which
are not balanced by zeros of Ψn, from our initial assumption that the components of
Ψn are coprime polynomials, i.e. without common factors. This is impossible, as these
poles cannot be balanced by the denominator of µn,i (the fraction is reduced), the only
possible source of poles. We conclude that d = 0 and that µn,i is a constant, fixed to
be 1 by the inverse relation. We finally get

(q zi+1 − zi)Ψn(z1, . . . , zi, zi+1, . . . , z2n)
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=
(
(q zi − zi+1) + q2(zi − zi+1)ei

)
Ψn(z1, . . . , zi+1, zi, . . . , z2n) (3.19)

In the case when π has no little arch connecting i, i + 1, we simply get

(q zi+1 − zi)Ψn,π(z1, . . . , zi, zi+1, . . . , z2n) = (q zi − zi+1)Ψn,π(z1, . . . , zi+1, zi, . . . , z2n)
(3.20)

hence once the two factors have been divided out, the resulting polynomial is invariant
under the interchange of zi and zi+1. This shows that Φn,π of Eq. (3.16) is symmet-
ric under the interchange of any consecutive parameters within the same sequence s,
henceforth is fully symmetric in the corresponding variables.

As a first illustration of Theorem 1, we find that in the case π = π0 of the “fully
nested” link pattern that connects the points i ↔ 2n + 1 − i, we obtain the maximal
number 2

(
n
2

)
= n(n − 1) of factors from Eq. (3.16). Up to a yet unknown polynomial

Ωn,π0 symmetric in both sets of variables {z1, . . . , zn} and {zn+1, . . . , z2n}, we may write

Ψn,π0(z1, . . . , z2n) = Ωn,π0(z1, . . . , z2n)
∏

1≤i<j≤n

(zi−q2zj)×
∏

n+1≤i<j≤2n

(zj−q zi) (3.21)

where the numerical normalization factor is picked in such a way that property (iii) of
Sect. 3.2 would simply imply that Ωn,π0 = 1. This will be proved below, but for the time
being the normalization of Ψn,π0 fixes that of Ψn. The formula (3.21) extends trivially
to the n images of π0 under rotations, r`π0, ` = 0, 1, . . . , n − 1, by use of Eq. (3.10).
Note that r`π0 has exactly two little arches joining respectively 2n− `, 2n− ` + 1, and
n − `, n − ` + 1.

An interesting consequence of Eq. (3.19) is the following:

Theorem 2. The sum over all components of Ψn is a symmetric polynomial in all
variables z1, . . . , z2n.

This is proved by writing Eq. (3.19) in components and summing over them. We
immediately get

(q zi+1 − zi)Ψn,π(z1, . . . , zi, zi+1, . . . , z2n) = (q zi − zi+1)Ψn,π(z1, . . . , zi+1, zi, . . . , z2n)

+ q2(zi − zi+1)
∑

π′∈LPn
eiπ′=π

Ψn,π′(z1, . . . , zi+1, zi, . . . , z2n) (3.22)

We now sum over all π ∈ LPn, and notice that the double sum in the last term amounts
to just summing over all π′ ∈ LPn, without any further restriction. Denoting by
Wn(z1, . . . , z2n) =

∑
π∈LPn

Ψn,π(z1, . . . , z2n), we get that Wn(z1, . . . , zi+1, zi, . . . , z2n) =
Wn(z1, . . . , zi, zi+1, . . . , z2n). This shows the desired symmetry property, as the full sym-
metric group action is generated by transpositions of neighbors.

This brings us to the main theorem of this paper, establishing recursion relations
between the entries of the groundstate vectors at different sizes n and n − 1. We have:
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Theorem 3. If two neighboring parameters zi and zi+1 are such that zi+1 = q zi, then
either of the two following situations occur for the components Ψn,π:
(i) the pattern π has no arch joining i to i + 1, in which case

Ψn,π(z1, . . . , zi, zi+1 = q zi, . . . , z2n) = 0 ; (3.23)

(ii) the pattern π has a little arch joining i to i + 1, in which case

Ψn,π(z1, . . . , zi, zi+1 = q zi, . . . , z2n) =
 2n∏

k=1
k 6=i,i+1

(q2zi − zk)


 Ψn−1,π′(z1, . . . , zi−1, zi+2, . . . , z2n) (3.24)

where π′ is the link pattern π with the little arch i, i+1 removed (π = ϕiπ
′, π′ ∈ LPn−1).

Note that Eq. (3.24) fixes recursively the numerical constant in the normaliza-
tion of Ψn, starting from Ψ1 ≡ 1. The situation (i) is already covered by Theorem 1
above. To study the situation (ii), we use the Lemma 2 above, and let both sides of
Eq. (3.15) act on Ψn−1 ≡ Ψn−1(z1, . . . , zi−1, zi+2, . . . , z2n), groundstate vector of T ′ ≡
Tn−1(t|z1, . . . , zi−1, zi+2, . . . , z2n). This gives TϕiΨn−1 = (q t−zi)(q t−q zi)ϕiT

′Ψn−1 =
(q t − zi)(q t − q zi)Λ′ϕiΨn−1 = ΛϕiΨn−1, where Λ′ = Λ/((q t − zi)(q t − zi+1)).
Note that T is evaluated at zi+1 = q zi, in which case it leaves invariant the sub-
space of link patterns with a little arch joining i, i + 1. The groundstate vec-
tor Ψn then becomes proportional to ϕiΨn−1, with a global proportionality factor
βn,i, i.e. Ψn = βn,iϕiΨn−1. The overall factors βn,i are further fixed by looking at
the component Ψn,π`

of Ψn, with link pattern π` = r`π0, having a little arch be-
tween i, i + 1. This corresponds to taking for instance ` = n − i. We find that
βn,i =

∏
k 6=i,i+1(q

2zi−zk)Ωn,πn−i
|zi+1=q zi

/Ωn−1,π′
n−i

, with π` = ϕn−`π
′
`. After possibly

reducing the fraction Ωn,πn−i
|zi+1=q zi

/Ωn−1,π′
n−i

= Un,i/Vn,i (where both Un,i and Vn,i

are polynomial) we get that Ψn/Un,i =
∏

k 6=i,i+1(q
2zi−zk)ϕiΨn−1/Vn,i is a polynomial,

hence the poles introduced by dividing out Un,i, Vn,i must be canceled by zeros of Ψn and
ϕiΨn−1 respectively, which shows that Vn,i, a polynomial of z1, . . . , zi−1, zi+2, . . . , z2n,
must divide Ψn−1, hence is a constant, by our assumption that the entries of Ψn−1 are co-
prime. Absorbing it into a redefinition of Un,i, we get Ωn,πn−i

|zi+1=q zi
= Un,iΩn−1,π′

n−i
,

for some polynomial Un,i ≡ Un(z1, . . . , zi−1, zi+2, . . . , zn|zi), and the recursion relation
for zi+1 = q zi reads

Ψn,π = Un,i

2n∏
k=1

k 6=i,i+1

(q2zi − zk)Ψn−1,π′ . (3.25)

We will now proceed and show that all polynomials Un,i = 1. To do so, we write
the recursion relation (3.25) in the particular case of π = πn made of n consecutive
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little arches joining points 2i− 1 to 2i, i = 1, 2, . . . , n. Moreover, we pick the particular
values z2i = q z2i−1, i = 1, 2, . . . , n of the zi. These allow for using Eq. (3.25) iteratively
n times, stripping each time the link pattern π from one little arch, until it is reduced to
naught. But we may do so in any of n! ways, according to the order in which we remove
little arches from π. For simplicity, we set wi = z2i−1 from now on. Upon removal of
the k-th little arch, we have

Ψπn
(w1, qw1,w2, qw2, . . . , wn, qwn) = Un(w1, w2, . . . , wk−1, wk+1, . . . , wn|wk)×( n∏

i=1
i 6=k

(qwi − wk)(wi − qwk)
)
×

Ψπn−1(w1, qw1, . . . , wk−1, qwk−1, wk+1, qwk+1, . . . , wn, qwn) (3.26)

The Ui satisfy all sorts of crossing relations, obtained by expressing removals of little
arches in different orders. We adopt the notation ŵ to express that the argument w
is missing from an expression. For instance Un(w1, . . . , ŵk, . . . , wn|wk) stands for the
above polynomial Un in which the argument wk is omitted from the list of wi in its first
n − 1 arguments. Now removing for instance the k-th and m-th little arches from π in
either order yields the relation

Un(w1, . . . , ŵk, . . . , wn|wk)Un−1(w1, . . . , ŵk, . . . , ŵm . . . , wn|wm)
= Un(w1, . . . , ŵm, . . . , wn|wm)Un−1(w1, . . . , ŵk, . . . , ŵm . . . , wn|wk)(3.27)

for all k < m. We shall now use these relations to prove the following

Lemma 3. There exists a sequence of symmetric polynomials αj(x1, . . . , xj), j =
1, 2, . . . , n, such that

Un(w1, . . . , wn−1|wn) =
n−1∏
k=0

∏
1≤i1<i2<···<ik≤n−1

αk+1(wi1 , wi2 , . . . , wik
, wn) (3.28)

where, by convention, the k = 0 term simply reads α1(wn). The other Un involved say
in Eq. (3.26) are simply obtained by the cyclic substitution wj → wj+k (with wi+n ≡ wi

for all i).

We will prove the lemma by induction. Let us however first show how to get (3.28)
in the cases n = 1, 2, 3. For n = 1, we simply define α1(w1) = U1(w1). For n = 2, there

are two ways of stripping π =
1 2

34

of its two arches, yielding

U2(w1|w2)α1(w1) = U2(w2|w1)α1(w2) (3.29)

therefore there exists a polynomial α2(w1, w2), such that U2(w1|w2) = α2(w1, w2)α1(w2)
and U2(w2|w1) = α2(w1, w2)α1(w1), which also immediately shows that α2(w1, w2) =
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α2(w2, w1). For n = 3, we compare the various ways of stripping π =
1

2

3

4

5

6

from its

three arches, resulting in:

U3(w1,w2|w3)α2(w1, w2)α1(w2)
= U3(w1, w3|w2)α2(w1, w3)α1(w3) = U3(w2, w3|w1)α2(w2, w3)α1(w3)(3.30)

We see that both polynomials B1,3 = α1(w3)α2(w1, w3) and B2,3 = α1(w3)α2(w2, w3)
divide U3(w1, w2|w3), as they are prime with B1,2 = α2(w1, w2)α1(w2) (the lat-
ter does not depend on w3). The least common multiple of B1,3 and B2,3 reads
LCM(B1,3, B2,3) = α2(w1, w3)α2(w2, w3)α1(w3); it is a divisor of U3(w1, w2|w3), which
must therefore be expressed as

U3(w1, w2|w3) = α3(w1, w2, w3)α2(w1, w3)α2(w2, w3)α1(w3)

for some polynomial α3. Finally, substituting this and its cyclically rotated versions
into (3.30), we find that α3(w1, w2, w3) = α3(w1, w3, w2) = α3(w2, w3, w1), hence α3 is
symmetric.

Let us now turn to the general proof. Assume (3.28) holds up to order n−1. Pick-
ing for instance 1 ≤ k ≤ n− 1 and m = n, Eq. (3.27) implies that Un(w1, . . . , wn−1|wn)
Un−1(w1, . . . ŵk . . . , wn−1|wk) = Un(w1, . . . ŵk . . . , wn|wk)Un−1(w1, . . . ŵk . . . , wn−1|wn).
The main fact here is that the polynomials An,k ≡ Un−1(w1, . . . ŵk . . . , wn−1|wk) and
Bn,k ≡ Un−1(w1, . . . ŵk . . . , wn−1|wn), both expressed via (3.28) at order n− 1 in terms
of products of symmetric polynomials are actually coprime. Indeed, Bn,k depends ex-
plicitly on wn (and does so symmetrically within each of its αj factors), while An,k does
not. We deduce that Bn,k must divide Un(w1, . . . , wn−1|wn), and this is true for all
k = 1, 2, . . . , n − 1, henceforth also for their least common multiple:

LCM({Bn,k}1≤k≤n−1) =
n−2∏
k=0

∏
1≤i1<i2<···<ik≤n−1

αk+1(wi1 , wi2 , . . . , wik
, wn) (3.31)

obtained by applying the recursion hypothesis to all the Bn,k, k = 1, 2, . . . , n−1. There-
fore there exists a polynomial αn(w1, w2, . . . , wn) such that Un(w1, . . . , wn−1|wn) =
αn(w1, . . . , wn)LCM({Bn,k}1≤k≤n−1), which, together with (3.31) amounts to (3.28).
The analogous expressions for the Un’s appearing in Eq. (3.26) are obviously obtained
by cyclically shifting the indices wj → wj+k for all j. Let us finally show that αn

is symmetric in its n arguments. For this, let us pick another polynomial Un occur-
ring in the recursion relation (3.26), say upon removal of the k-th little arch, namely
Un(w1, . . . ŵk . . . , wn|wk), and express it analogously as a product of αi. We find

Un(w1, . . . ŵk . . . , wn|wk) = αn(w1, . . . ŵk . . . , wn, wk)

×
n−1∏
m=0

∏
1≤i1<···<im≤n

ij 6=n−1, for all j

αm+1(wi1 , wi2 , . . . , wim
, wk)(3.32)
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Comparing the U ’s obtained by removing first the arch n, then the arch k and vice
versa leads to Eq. (3.27) with m = n. Substituting (3.32) and (3.28) into this relation,
we see that all the (symmetric) αj factors, j = 1, 2, . . . , n − 1, cancel out, and we are
finally left with just αn(w1, . . . ŵk . . . , wn, wk) = αn(w1, . . . , wn). For k = n − 1 this
gives the invariance of αn under the interchange of its last two arguments. We may now
repeat the whole process with the removal of pairs of arches with numbers (n−2, n−1),
(n− 3, n− 2), . . . , (1, 2). This yields the invariance of αn under the interchange of any
two of its consecutive arguments, henceforth αn is fully symmetric in its n arguments.

Let us now denote by aj the total degree of the polynomial αj, then by Lemma 3
the total degree dn of Un reads

dn =
n−1∑
k=0

(
n − 1

k

)
ak+1 (3.33)

while the total degree δn of Ωn is δn =
∑n

i=1 di. By direct computation, we have
obtained the vector Ψn explicitly for n = 2, 3 (see appendix A). These display Ωn = 1,
for n ≤ 3, hence all corresponding Un’s and αj’s are trivial, all with value 1. Assuming
there exists at least one non-trivial polynomial αj , then its degree is aj ≥ 1, with
j ≥ 4. By (3.33), we see that dn ≥

(
n−1
j−1

)
aj+1 for all n ≥ j. This lower bound on the

degree dn is a polynomial of n with degree j − 1 ≥ 3. In appendix B, we show that
the entries of Ψn have a degree bounded by 2n3, hence are polynomials with degree at
most cubic in n. This contradicts the lower bound on dn that we have just obtained,
as deg(Ψn) = n(n − 1) + deg(Ωn) = n(n − 1) +

∑n
i=1 di grows at least like nj , j ≥ 4.

We conclude that no polynomial αj may be non-trivial, therefore all αi, Ui and Ωi are
constants, which we fix to be 1. This completes the proof of (3.24).

Note that this fixes in turn the normalization of Ψn,π0 to be 3n(n−1)/2 when all the
parameters zj = 1, which is simply a numerical constant compared to the normalization
1 picked in earlier papers [8,7]. Futhermore, we deduce:

Theorem 4. The components of Ψn are homogeneous polynomials of total degree
n(n − 1), and of partial degree at most n − 1 in each variable zi.

The total degree has already been proved, since all components are homogeneous
of the same degree and Ψn,π0 has been written out explicitly; and since no component
is identically zero, due to the Perron–Frobenius property for some values of the zi. We
still have to show the degree n − 1 in each variable. To do so, let us denote by δn

the maximum degree of Ψn in each variable (it is the same for all variables by cyclic
covariance). Let moreover s denote the reflection on link patterns that interchanges
i ↔ 2n + 1 − i. Reflecting the picture of our semi-infinite cylinder simply amounts to
this relabeling of points, and also to a reversal of all orientations of lines in the various
operators involved, such as the transfer matrix. This in turn amounts in each R matrix
to the interchange of parameters (zi, t) → (t, zi), also equivalent up to an overall factor
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to (zi, t) → (1/zi, 1/t). We therefore deduce a relation
2n∏
i=1

zδn
i Ψn,sπ

(
1

z2n
,

1
z2n−1

, . . . ,
1
z1

)
= An(z1, . . . , z2n)Ψn,π(z1, . . . , z2n) (3.34)

where An is a rational fraction, independent of π, to be determined. As the l.h.s. of
(3.34) is a polynomial, any denominator of An should divide all Ψn,π on the r.h.s., which
contradicts our hypothesis of coprimarity of components, hence An is a polynomial.
Moreover, iterating (3.34) twice and noting that s2 = 1, we get the inversion relation

An(z1, . . . , z2n)An

(
1

z2n
,

1
z2n−1

, . . . ,
1
z1

)
= 1 . (3.35)

Note that summing (3.34) over π ∈ LPn yields
2n∏
i=1

zδn
i Wn

(
1
z1

, . . . ,
1

z2n

)
= An(z1, . . . , z2n)Wn(z1, . . . , z2n) (3.36)

which implies that An is a symmetric polynomial. The only symmetric polynomials that
solve (3.35) are of the form An(z1, . . . , z2n) = (z1z2 . . . z2n)m, but we immediately see
that m = 0 from (3.34) by definition of δn as the degree in each variable. Finally, we may
now equate the total degrees of both sides of (3.34), with the result 2nδn − n(n − 1) =
n(n − 1), hence δn = n − 1.

We may now combine the two possibilities (i) and (ii) of Theorem 3 into properties
of the sum over components Wn(z1, . . . , z2n) =

∑
π∈LPn

Ψn,π(z1, . . . , z2n). This gives
the

Theorem 5. The sum of components of Ψn is equal to the partition function of the
six-vertex model with domain wall boundary conditions:

Wn(z1, . . . , z2n) = Zn(z1, . . . , z2n) . (3.37)

The proof consists of summing over all link patterns π the equations (3.24) and
(3.23), according to whether π has a little arch i, i + 1 or not, and noticing that the
resulting recursion relation is equivalent to Eq. (2.5), satisfied by the IK determinant.
As it is moreover symmetric and has the same degree as a polynomial of the zi, we
conclude that the two are proportional, up to a numerical factor independent of n. The
proportionality factor between Wn and Zn is fixed by comparing W1(z1, z2) = 1 to
Z1(z1, z2) = 1 as well.

Finally, let us briefly describe general recursion relations. So far we have only
discussed recursion when two neighboring spectral parameters zi and zi+1 are related
by zi+1 = q zi. What happens when zj = q zi for arbitrary locations i and j? Of course,
it does not make any difference for the sum of components since it is a symmetric
function of all parameters. The components themselves, however, are not symmetric.
But lemma 1 allows us, as we have already done many times, to permute parameters.
The most general recursion obtained this way is rather formal, and is best described
graphically:
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Theorem 6. Suppose that zj = q zi. Then

Ψn

zjzi

i j

|zj=q zi
=


 ∏

j<k<i

(q2zi − zk)


 Ψn−1

ji

zj

(3.38)

(cyclic order is implied in the range of the product). Recall that each crossing
represents an R-matrix. We have oriented the arch from i to j and attached to it the
spectral parameter zj , but we could have equally well oriented it from j to i and given
it the spectral parameter zi, due to Eq. (3.13) (up to modifying the prefactor by a
numerical constant). The proof is elementary and proceeds graphically, using all three
properties of Eqs. (3.11)–(3.13). Fixing the prefactor, which was the hard part in the
proof of the Theorem 3, can now be simply obtained by summing over all components
and recovering the recursion of Zn.

Among the consequences of Theorem 6, we obtain the property (iii) of section
(3.2). Indeed to compute the coefficient of the monomial

∏n
k=1(zik

zjk
)k−1 in Ψn, where

{{i1, . . . , in}, {j1, . . . , jn}} is a (non-necessarily planar) partition of {1, . . . , 2n}, it is suf-
ficient to set zjk

= q zik
, for all k = 1, 2, . . . , n and look for the monomial

∏n
k=1 z

2(k−1)
ik

,
as the partial degree property forbids distinct degrees for zik

and zjk
. Applying itera-

tively Theorem 6 leads us to the evaluation of a certain diagram naturally associated to
the ik and jk. If we further assume that ik = π(jk), k = 1, 2, . . . , n for some (planar) link
pattern π, then the diagram can be transformed by use of Yang–Baxter and unitarity
equations to the link pattern π, and the weight of the monomial is easily computed to
be 1, thus proving the property.

A final general remark is in order, in view of the various recursion relations obtained
here. Theorem 1 shows that the complexity of the entry Ψn,π as a polynomial of the
zi grows with the number of little arches contained in the link pattern π. Indeed,
the presence of few little arches in the link patterns allows to factor out many terms
from Ψn,π , corresponding to all sequences of points not separated by little arches, thus
lowering the degree of the remaining polynomial factor to be determined. The latter is
further constrained by Theorem 3 which proves sufficiently powerful to completely fix
Ψn,π in the cases with small numbers (2, 3, 4) of little arches. This is to be compared
with the results of [13,14,15,16], where the counting of FPL configurations was obtained
up to 4 little arches. The application of recursion relations (Theorems 3 and 6) to the
actual computation of components will be described in more detail in future work.

3.5. Applications

An immediate corollary of Theorem 5 obtained by taking the homogeneous limit
where all the zj = 1 proves the conjecture that concerns the sum of entries of Ψn [8],
namely that 3−n(n−1)/2Zn(1, 1, . . . , 1) = An is the sum of all entries of the suitably
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normalized groundstate of the homogeneous O(1) loop model Hamiltonian. As men-
tioned before, Ψn is normalized by Ψn,π0 = 3n(n−1)/2, and therefore coincides with the
groundstate vector of the Hamiltonian Hn =

∑2n
i=1(I − ei) up to the factor 3n(n−1)/2.

The appearance of the Hamiltonian may be seen for instance by expanding the transfer
matrix with all zj = 1 around t = 1, so that at order 1 in (t−1) the eigenvector equation
(3.9) reduces to HnΨn = 0.

Another corollary of Theorem 5 concerns the sum rules Pn(k, t) of [12] for the case
of the O(1) loop model with k dislocations on the boundary of the semi-infinite cylinder.
Indeed, the transfer matrices of [12] are obtained by simple restrictions of the parameters
of the general transfer matrix T ′ of Fig. 2, that commutes with our matrix T . To get
the corresponding groundstate vectors, we simply have to set 2n− k parameters z to 1,
while the remaining k all take the value (1 + qt)/(q + t). The sum rules are identified
up to some simple factor to the corresponding value of the IK determinant. The same
holds for the two-parameter refinement, leading to the sum rule (2.4). More generally,
the polynomiality properties observed in [12] can be inferred from those of the present
work.

4. Conclusion

In this paper we have extended and proved a multi-parameter inhomogeneous ver-
sion of the sum rule [8] in the periodic case. On the way, we have been able to derive
recursion relations between the components of the groundstate vector, and these might
prove useful in understanding how the full Razumov–Stroganov conjecture, concerning
the individual entries of Ψn, should be generalized and hopefully proved. Note how-
ever that the refined Razumov–Stroganov conjecture made in [11] in the case of the
one-dislocation O(1) loop model with one bulk parameter t already involves partial
summations of the entries of Ψn(t) of the form

∑
` Ψn,r`π(t), where rπ is the cyclically

rotated version of π by one unit. These are necessary to ensure the cyclic covariance of
these partial sums, eventually identified with the corresponding sums of partition func-
tions in the 6V DWBC model, that connect the external bonds according to π or any
of its cyclically rotated versions. This shows in the simplest case that multi-parameter
generalizations of the full Razumov–Stroganov conjecture, if any exist, must be subtle.

The line of proof followed here should be applicable to other types of boundary
conditions, in relation to the versions of the 6V model with DWBC corresponding to
other symmetry classes of ASM, namely with the square grid possibly reduced to a
smaller fundamental domain, with accordingly modified boundary conditions. Indeed
determinant or pfaffian formulae also exist in these cases [17,5].

Another model of interest is the crossing O(1) loop model, whose Hamiltonian
on a semi-infinite cylinder of perimeter n is expressed in terms of generators of the
Brauer algebra [18], and for which some entries of the groundstate vector were iden-
tified with degrees of algebraic varieties including the commuting variety. Preliminary
investigations show that simple inhomogeneous (one-parameter) generalizations of the
model produce a degree 2n − 2 groundstate vector with non-negative integer vector
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coefficients, and suggest the existence of multi-parameter generalizations with a nice
polynomial structure and recursion relations extending those of the present paper for
the entries of the groundstate vector. This will be pursued elsewhere.

Acknowldegments We thank M. Bauer, D. Bernard, V. Pasquier, Y. Stroganov for
discussions, and J.-B. Zuber for a thorough reading of the manuscript.

Appendix A. The vector Ψn(z1, . . . , z2n) for n = 2, 3

We give below the explicit expressions for the vector Ψn for n = 1, 2, 3 as obtained
directly by solving the eigenvector equation (3.9). For n = 1, the vector has a unique
component, equal to 1. For n = 2, we find

Ψ2,

1 2

34

= q2(z2 − q z1)(q z3 − z4) (A.1a)

Ψ2,

1 2

34

= q2(z3 − q z2)(q z4 − z1) (A.1b)

The normalization is such that Ψ2 = 3(1, 1) when all zi = 1. For n = 3, we have

Ψ3,

1

2

3

4

5

6

= (z2 − q z1)(z3 − q z2)(z3 − q z1)(q z4 − z5)(q z5 − z6)(q z4 − z6)(A.2a)

Ψ3,

1

2

3

4

5

6

= (z3 − q z2)(z4 − q z3)(z4 − q z2)(q z5 − z6)(q z6 − z1)(q z5 − z1)(A.2b)

Ψ3,

1

2

3

4

5

6

= (z4 − q z3)(z5 − q z4)(z5 − q z3)(q z6 − z1)(q z1 − z2)(q z6 − z2)(A.2c)

Ψ3,

1

2

3

4

5

6

= (q z2 − z3)(q z4 − z5)(z1 − q z6)×
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×
(
(q z1 − z2)(q z3 − z4)(q z5 − z6) + (q z4 − z1)(q z2 − z5)(q z6 − z3)

)
(A.2d)

Ψ3,

1

2

3

4

5

6

= (q z3 − z4)(q z5 − z6)(z2 − q z1)×

×
(
(q z2 − z3)(q z4 − z5)(q z6 − z1) + (q z5 − z2)(q z3 − z6)(q z1 − z4)

)
(A.2e)

The normalization is such that Ψ3 = 27(1, 1, 1, 2, 2) when all zi = 5.
The reader will easily check the properties (i) or (ii) of Theorem 3 on the vectors

(A.1) and (A.2). For illustration of the property (ii), at n = 3, if we set z6 = q z5 and

strip the link pattern
1

2

3

4

5

6

from its little arch 5, 6, the corresponding component of

Ψ3 degenerates into

Ψ3,

1

2

3

4

5

6

|z6=q z5 = (q z2 − z3)(q z4 − z5)(z1 − q2z5)(q z4 − z1)(q z2 − z5)(q2z5 − z3)

=(q2z5 − z1)(q2z5 − z2)(q2z5 − z3)(q2z5 − z4)Ψ2,

1 2

34

(A.3)

which is nothing but Eq. (3.24) for i = 5.

Appendix B. Algebraic Bethe Ansatz and upper bound on the degree of Ψn

In this appendix we construct the eigenvector Pn using the Algebraic Bethe Ansatz.
As a corollary, we show that with a proper normalization, its components Ψn,π are
polynomials of the inhomogeneities zi of total degree less or equal to 2n3.

To introduce the Algebraic Bethe Ansatz, we need to recall how the Temperley–
Lieb loop model can be recast in the framework of the six-vertex model. In much the
same way as the Temperley–Lieb loop Hamiltonian is equivalent to the twisted XXZ
spin chain Hamiltonian in a particular sector, (see e.g. [19]), here our inhomogeneous
transfer matrix is equivalent to the twisted inhomogeneous six-vertex transfer matrix
acting on the very same sector. We now introduce these objects.

The “physical space” of the six-vertex model consists of 2n copies of C2; the aux-
iliary space is also C2. The matrix Ri,0 = R(zi, t) acts on the tensor product of the ith
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space and the auxiliary space, and is given by: (in the so-called homogeneous gradation)

R(z, t) =




q t − q−1z 0 0 0
0 t − z (q − q−1)z 0
0 (q − q−1)t t − z 0
0 0 0 q t − q−1z


 (B.1)

The monodromy matrix is

Mn(t|z1, . . . , z2n) = R2n,0(z2n, t) · · ·R1,0(z1, t) (B.2)

It can be thought of as a 2 × 2 matrix of operators acting on the physical space:

Mn(t) =
(

An(t) Bn(t)
Cn(t) Dn(t)

)
(B.3)

The transfer matrix is the trace of the monodromy matrix over the auxiliary space, but
with a special twist:

Tn(t) = −q An(t) − q−1Dn(t) (B.4)

Consider then the following embedding of the space of link patterns into (C2)⊗2n.
To each π ∈ LPn we associate a vector obtained by taking the tensor product over the
set of arches of π, of the vectors q1/2

(
1
0

)
j
⊗
(

0
1

)
k
− q−1/2

(
0
1

)
j
⊗
(

1
0

)
k
, where the indices

j < k are the endpoints of the arch, and indicate the numbers of the pair of spaces C2

in which these vectors live. Noting that

Ř = PR = (q t − q−1z)I + (t − z)e e ≡




0 0 0 0
0 −q 1 0
0 1 −q−1 0
0 0 0 0


 (B.5)

and identifying e with the usual Temperley–Lieb generator, we see that the R-matrix
reproduces, up to a factor of −q2, the R-matrix introduced in the text (cf Eq. (3.8)).
It can then be easily shown that Tn leaves the subspace generated by the π stable, and
that via the embedding above its restriction is exactly q−4n times our transfer matrix
(3.2).

The Algebraic Bethe Ansatz is the following Ansatz for eigenstates of T :

Pn =
k∏

i=1

Bn(ti) ·
(

1
0

)⊗2n

(B.6)

where the ti are some complex parameters to be determined. Note that the matrices
B(t) commute for distinct values of t. In the present situation, we set k = n.
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A classical calculation shows that a sufficient condition for Pn to be an eigenvector
of Tn(t) is that the ti satisfy the Bethe Ansatz Equations (BAE). They can be recovered
by writing the corresponding eigenvalue Tn(t) of the transfer matrix:

Tn(t)
k∏

i=1

(t−ti) = −q
2n∏
i=1

(q t−q−1zi)
k∏

i=1

(q−1t−q ti)−q−1
2n∏
i=1

(t−zi)
k∏

i=1

(q t−q−1ti) (B.7)

and setting t = ti in it. Note that given Tn(t), Eq. (B.7) can be considered as a functional
equation for the function Qn(t) ≡

∏k
i=1(t − ti) (so-called T–Q equation).

We now set q = e2iπ/3, k = n and seek a function Qn(t) which satisfies Eq. (B.7)
for which the eigenvalue has the form Tn(t) =

∏2n
i=1(q

2t − q zi). Following Stroganov
[6], we notice that if we introduce the function

Fn(t) =
2n∏
i=1

(t − q2zi)
n∏

i=1

(t − ti) (B.8)

then one can rewrite Eq. (B.7) under the form:

Fn(t) + qFn(q t) + q2Fn(q2t) = 0 (B.9)

for all t. Since Fn(t) is a polynomial of degree 3n, one can expand it in powers of t and
one finds that Eq. (B.9) is equivalent to

Fn(t) =
3n∑
i=0

ait
i ⇒ a3k+2 = 0 k = 0, . . . , n − 1 (B.10)

Only remain 2n unknown coefficients ai (a3n = 1 by normalization), which are
fixed by requiring that wi ≡ q2zi be roots of Fn(t). This leads to a system of linear
equations for the ai, which is readily solved. One finds

Fn(t) =

det




1 · · · 1 1
w1 · · · w2n t
...

...
...

w3k
1 · · · w3k

2n t3k

w3k+1
1 · · · w3k+1

2n t3k+1

...
...

...
w3n

1 · · · w3n
2n t3n




det




1 · · · 1
w1 · · · w2n
...

...
w3k

1 · · · w3k
2n

w3k+1
1 · · · w3k+1

2n
...

...
w3n−2

1 · · · w3n−2
2n




(B.11)
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We can identify these determinants with numerators in the Weyl formula for GL(N)
characters. More explicitly, Qn is a ratio of two Schur functions:

Qn(t) =
sỸn

(w1, . . . , w2n, t)
sYn

(w1, . . . , w2n)
(B.12)

where Yn is the already introduced Young diagram with two rows of length n − 1, two
rows of length n− 2, . . ., two rows of length 1, and Ỹn is Yn with an extra row of length
n added.

It is easy to check that Tn is generically a simple eigenvalue, so that the vector
Pn we have just constructed (for sYn

6= 0, which is also generically true) must belong
to the subspace of arches and identify via the embedding above to the eigenvector Pn

of Eq. (3.1) (up to multiplication by a scalar). Let us now examine the dependence
of the coefficients of Pn as (rational) functions of the zi. Noting that the coefficients
of the change of basis from the arches to the spin up/spin down are constants and in
particular independent of the zi, we define the degree of a vector-valued polynomial (in
any given set of variables) to be the (maximum) degree of its components in either basis.
We start from Eq. (B.6). Each operator Bn(t) is homogeneous of total degree 2n in all
variables zi and t. Therefore, as a function of the zi and of the ti, Pn is homogeneous of
total degree 2n2, and is of partial degree 2n in each ti. Furthermore it is a symmetric
function of the ti by construction, due to commutation of the Bn(ti). Therefore, it can
be formally written as

Pn =
∑

λ,|λ|≤2n2,λ1≤2n

pλ(z1, . . . z2n)sλ(t1, . . . , tn) (B.13)

where |λ| denotes the number of boxes of the Young diagram λ, λ1 is the length of
its first row, and pλ is some vector-valued homogeneous polynomial in the zi, of total
degree 2n2 − |λ|.

Now we assume that the ti are given by Eq. (B.12), so that Pn is the eigenvector
of interest. We can build the sλ(t1, . . . , tn) out of the elementary symmetric func-
tions ek(t1, . . . , tn), whose generating function is precisely Qn(t) =

∏n
i=1(t − ti) =∑n

k=0 tn−k(−1)kek(t). Each sλ is a sum of products of no more than λ1 eki
with∑

ki = |λ| (indeed, the so-called Giambelli identity expresses the Schur function as a
determinant: sλ = det(eλ′

i
−i+j)1≤i,j≤λ1 , where the λ′

i are the lengths of columns of λ).
As λ1 ≤ 2n, this means that

sλ(t1, . . . , tn) =
qλ(w1, . . . , w2n)

sYn
(w1, . . . , w2n)2n

(B.14)

for some homogeneous symmetric polynomial qλ of total degree 2n2(n − 1) + |λ|.
Finally, combining Eqs. (B.13) and (B.14) and substituting back wi = q2zi, we find

that sYn
(z1, . . . , z2n)2nPn is a homogeneous polynomial of the zi, of total degree 2n3.

Ψn must divide it, hence the announced upper bound on the degree of Ψn.
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