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Abstract

An (nk) configuration is a collection of points and straight lines, usually
in the Euclidean plane, so that each point lies on k lines and each line passes
through k points; such a configuration will be called symmetric if it possesses
non-trivial geometric symmetry. Although examples of symmetric (n3) con-
figurations with continuous parameters are known, to this point, all known
connected infinite families of (n4) configurations with non-trivial geometric
symmetry had the property that each set of discrete parameters describing the
configuration corresponded to a single (n4) configuration. This paper presents
several new classes of highly symmetric (n4) configurations which have at least
one continuous parameter; that is, the configurations are movable.

1 Introduction

A geometric (pq, nk) configuration is a collection of points and straight lines, usually
in the Euclidean plane, so that every point lies on q lines and every line passes
through k points. By counting incidences (the number of point-line incidences must
be equal to the number of line-point incidences), if p = n then q = k. Usually, an
(nk, nk) configuration is abbreviated as (nk). Although (n3) configurations have been
studied since the late 1800s, (n4) configurations have been studied for a much shorter
time, initially in a series of papers by Branko Grünbaum [10, 11, 13]. Recently, there
has been a flurry of activity concerning various kinds of geometric (n4) configurations
(e.g., [2, 3, 5, 6, 7, 8] ).

There exist connected symmetric (n3) configurations (for example, astral (n3)
configurations with dihedral symmetry) describable by a set of discrete and con-
tinuous parameters [9, 12]. However, all of the connected (n4) configurations with
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non-trivial rotational symmetry described previously in the literature (see, for exam-
ple, [5, 6, 10]) have the property that for a single set of discrete parameters, there is
only a single configuration corresponding to those parameters. This paper presents
a large family of (n4) configurations with non-trivial rotational symmetry—they all
have m-fold rotational symmetry for some m ≥ 8—where a single set of discrete
parameters corresponds to uncountably many (n4) configurations. That is, the con-
figurations are movable, meaning that they admit a continuous family of realizations
fixing four points in general position but moving at least one other point.

It should be noted that it is straightforward to construct highly non-symmetric
(nk) configurations—that is, configurations with no non-trivial geometric symmetry–
with a continuous parameter by taking k copies of an (nk) configuration, each with
the same single line removed, translating them in a direction different from those
determined by any line of the configuration, and then connecting the points which
lie on the removed line with k new lines. Figure 1 shows a (964) configuration formed
by translating four copies of a (244) configuration with a single line deleted from each
copy and adding four new lines connecting the necessary points. Parts of the resulting
(964) configuration corresponding to the original modified (244) configurations may
be moved (translated) independently.

Figure 1: A non-symmetric movable (964) configuration, formed by translating four
modified copies (each missing a single line) of a (244) configuration (with red and
blue lines) and appropriately connecting the four copies with four parallel (green)
lines. The copies of the configuration may be moved back and forth along the green
lines.

the electronic journal of combinatorics 13 (2006), #R104 2



1.1 Preliminary definitions

Label the vertices of a regular convex m-gon consecutively as w0, . . . , wm−1. A di-
agonal of the m-gon is of span c if it connects vertices wi and wi+c, where indices
are taken modulo m. Given a regular polygon and a diagonal of span c, label the
intersection points of the diagonal with other span c diagonals as c1, c2, . . . , cbm

2
c,

counted from the midpoint of the diagonal and travelling in one direction (usually,
to the left). Following Grünbaum [8], any point on a span si line which is the ti-th
intersection (that is, the intersection point with label siti) is given the label [[si, ti]].
For an example of this labelling, see Figure 2.

[[4,5]]

[[4,3]]

[[4,2]]

[[4,1]]

[[4,4]]

Figure 2: An example of the notation [[si, ti]]. Here, m = 12 and si = 4.

2 Celestial configurations

All of the movable configurations which will be constructed later in the paper are
based on a class of (n4) configurations, originally developed by Branko Grünbaum
[12] and further studied by Marko Boben and Tomaž Pisanski [6] and Grünbaum
[8], which have the property that every point has precisely two lines from each of
two symmetry classes passing through them, and if there are m points in a symme-
try class, then the configuration has the dihedral symmetries of an m-gon. These
are such a useful class of configurations that having a name to call them would
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be helpful; I propose calling them celestial configurations. To date, celestial con-
figurations were just discussed by referring to their symbol; in [8] Grünbaum uses
the symbol m#(s1, t1, s2, t2, . . . , sh, th), while in [6], the symbol C4(m, (s1, s2, . . . , sh),
(t1, t2, . . . th), t) corresponds to the same configuration. In this paper I am using a
modification of the symbol from [8], m#(s1, t1; s2, t2; . . . ; sh, th), to refer to a celes-
tial configuration. Note that a celestial configuration m#(s1, t1; s2, t2; . . . ; sh, th) is
an (mh4) configuration. The earliest drawing of a celestial configuration appeared in
a paper by Grünbaum and Rigby [13], where they presented a (214) configuration;
other early drawings of celestial configurations appeared as examples in a paper by
Marušič and Pisanksi [14].

The following description of celestial configurations is closely based on that given
in [8], although it differs slightly in some choices of labelling and point of view. For
the sequence (s1, t1; . . . ; sh, th) to be valid, no two consecutive elements can be equal
(and s1 6= th also).

To construct a celestial configuration m#(s1, t1; s2, t2; . . . ; sh, th) do the following:

1. Begin with m points forming the vertices of a regular m-gon; these vertices will
be labelled v0,0, v0,1 . . . , v0,m−1. Collectively, these vertices will be referred to
as v0.

2. Draw in lines L0,1, L0,2, . . . , L0,m−1 of span s1 connecting these points, so that
L0,j connects points v0,j and v0,j+s1

. These lines will be known collectively as
L0.

3. Choose the t1-st intersection of the span s1 lines, counting from the center
and moving to the left. Label these vertices as v1,0, v1,1, . . . , v1,m−1, collectively
known as v1, where v1,0 is the t1-st intersection point on line L0,0. Note that
each of the points v1 has symbol [[s1, t1]].

4. The points v1 form the vertices of a regular m-gon; using these vertices, draw
in diagonals of span s2 and label them as L1,0, L1,1, . . . , L1,m−1 as above (and
collectively as L1).

5. Choose points on these lines which are the t2-nd intersection of the span
s2 lines, counting from the center (with label [[s2, t2]]) and label them as
v2,0, v2,1, . . . , v2,m−1, or collectively as v2, with v2,0 the t2-nd intersection point
on line L1,0.

6. Continue in this fashion until lines of span sh are constructed using points with
label vh; if the symbol correctly identifies an (n4) configuration, then the points
vh with label [[sh, th]] will coincide with the original m points labelled v0.
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It is important to note that several symbols may correspond to the same geometric
configuration, although the labelling of the points and lines depends on the precise
choice of symbol. For an example of this, see Figure 3. In particular, the points
labelled v0 need not be the outermost ring of points, as in Figure 3(b).

v2,5

v2,4

v2,3

v2,2

v2,1

v2,0

v2,7

v2,6

v1,0

v1,7

v1,6

v1,5v1,4

v1,3

v1,2

v1,1

v0,7

v0,6

v0,5

v0,4

v0,3

v0,2

v0,1

v0,0

v1,6

v1,5

v1,4

v1,3

v1,2

v1,1

v1,0

v1,7

v0,1

v0,0

v0,7

v0,6v0,5

v0,4

v0,3

v0,2

v2,2

v2,1

v2,0

v2,7

v2,5

v2,4

v2,3

v2,6

(a) (b)

Figure 3: Two symbols corresponding to the same celestial configuration, with labels.
(a) 8#(2, 1; 3, 2; 1, 3); (b) 8#(3, 2; 1, 3; 2, 1). In each configuration, lines L0 are blue,
L1 are red, and L2 are green.

In [8] and [6] it is shown that given a symbol m#(s1, t1; s2, t2; . . . ; sh, th), reversing
the sequence or cyclically permuting the sequence (s1, t1; s2, t2; . . . ; sh, th) using per-
mutations that advance the sequence an even number of places leads to an equivalent
configuration, while advancing an odd number of places yields a polar configuration.
Grünbaum listed two conditions, labelled (*) and (**) below, that must hold in order
for a celestial configuration to exist (taken from [8]):

s1 + t1 + s2 + t2 · · ·+ sh + th is even (*)

cos
(

πs1

m

)

cos
(

πt1
m

) ·
cos

(

πs2

m

)

cos
(

πt2
m

) · · · · ·
cos

(

πsh

m

)

cos
(

πth
m

) = 1 (**)

In addition, for the configuration to be connected, if m, s1, s2, . . . sh, t1, t2, . . . th
have a common factor f , then the symbol

m

f
#

(

s1

f
,
t1

f
; . . . ;

sh

f
,
th

f

)

must not satisfy conditions (*) and (**) (***)
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(or else the original configuration consists of f concentric copies of the smaller con-

figuration m
f
#

(

s1

f
, t1

f
; . . . ; sh

f
, th

f

)

, rotated so the copies are evenly spaced).

Of particular utility are the trivial configurations, where the unordered set of
sj’s is the same as the unordered set of tj’s, so that conditions (*) and (**) are
automatically satisfied; the configuration in Figure 3 is a trivial configuration.

3 Removing half of a symmetry class

The movable (n4) configurations will be constructed by “nesting” modified celestial
configurations so that two sets of vertices of one configuration lie on the two sets of
lines of a second configuration. However, simply nesting two configurations in this
fashion would lead to sets of points with five lines passing through them and sets of
lines with five points on them. In order to end up with an (n4) configuration, we
must delete half the points in one symmetry class of one configuration and half the
lines in one symmetry class in the second configuration.

Note that to be able to remove half the objects in a symmetry class, the number
of objects, namely m, must be even!

It is helpful to analyze carefully the notation for celestial configurations presented
in the previous section. Consider a configuration m#(s1, t1; s2, t2; . . . ; sh, th). It has
points v0 = [[sh, th]], v1 = [[s1, t1]], . . . , vh−1 = [[sh−1, th−1]]. It also has lines L0,
L1, . . . , Lh−1, where each class of lines Li contains points with label vi and vi+1,
so each point vi has lines Li and Li−1 passing through it, of spans as presented in
Table 1.

point line span line span
v0 L0 s1 Lh−1 th
v1 L1 s2 L0 t1
...

...
...

...
...

vi−1 Li−1 si Li−2 ti−1

vi Li si+1 Li−1 ti
...

...
...

...
...

vh−1 Lh−1 s0 Lh−2 th−1

Table 1: Spans of lines, with their labels, passing through points vi, from the point
of view of that class of points.

When considering how to delete half the points or lines in a particular symmetry
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class, we will look at the interaction of points and lines carefully, from the point of
view of different classes of points and lines.

The statement “half the lines in a symmetry class may be removed” means that
if the lines in the symmetry class are labelled Li,0, Li,1, . . . , Li,m−1, where each line
has four points lying on it, then removing the every other line in the symmetry
class—for example, removing lines Li,0, Li,2, . . . with even index— leaves one line of
the symmetry class passing through each point in the symmetry class vi+1, rather
than some points having two lines of the symmetry class incident and others having
none.

Lemma 1. Half of the lines of span si passing through the points labelled [[si, ti]]
may be removed precisely when si and ti are both odd.

Proof. Following the notation in the section on celestial configurations, label the
vertices [[si−1, ti−1]] as vi−1,0, vi−1,1, . . . , vi−1,m−1, and label the lines of span i as
Li,0, Li,1, . . . , Li,m−1; note that Li,j contains points vi−1,j and vi−1,j−si

. Label the
vertices [[si, ti]] as vi,0, vi,1, . . . , vi,m−1, where vi,0 is the ti-th intersection of line Li,0

with other span si lines. Then line Li,j also contains points vi,j and vi,j−ti; that is,
they are span ti lines with respect to the vi,j.

Suppose that lines Li,0, Li,2, . . . are removed. Point vi−1,j contains lines Li,j and
Li,j−si

. If si is even, then whenever j is even, both lines Li,j and Li,j−si
will be

removed from point vi,j. On the other hand, if si is odd, then each vi−1,j will have
a single line Li removed. Similarly, considering the lines Li to be lines of span ti
passing through the points vi, each vi,j will have a single line Li passing through it
precisely when ti is odd.

Therefore, if lines Li,0, Li,2, . . . are removed, the points vi−1,j and vi,j will each
have a single line Li passing through them when both si and ti are odd.

A similar argument holds if lines with odd index Li,1, Li,3, . . . are removed.

The statement “half the points in a symmetry class may be removed” means the
following: Choose one symmetry class of points [[si, ti]]; they have labels vi,0, vi,1,
. . . , vi,m−1. Each point has four lines passing through it, two of span ti and two of
span si+1. We wish to remove every other point in a symmetry class—for example,
points vi,0, vi,2, . . . with even index—in such a way that each of the lines of span ti−1

and span si have a single point labelled vi,j, rather than some lines having two points
labelled vi,j and some lines having none.

Lemma 2. Half the points in the symmetry class [[si, ti]] may be removed precisely
when ti and si+1 are both odd.
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Proof. Consider the points [[si+1, ti+1]]. Label them vi+1,0, vi+1,1, vi+1,2, . . . , vi+1,m−1.
The vi+1 lie on lines of span si+1, labelled as Li+1, where line Li+1,j contains points
vi+1,j and vi+1,j−si+1

. Now remove the points vi+1,q where q is even. If si+1 is even,
then in line Li+1,j if j is even, both points vi+1,j and vi+1,j−si+1

will be removed, while
if j is odd, neither point will be removed. On the the other hand, if si+1 is odd, in
line Li+1,j, exactly one of the points vi+1,j or vi+1,j−si+1

will be removed, since their
indices are of different parity. Similarly, in the situation where points vi+1,q where q

is odd, are removed, if si+1 is odd, then in line Li+1,j , exactly one of the points vi+1,j

or vi+1,j−si+1
will be removed, while if si+1 is even, both points or neither point will

be removed.
The points vi+1 also lie on lines Li, as the ti-th intersection of span si lines. From

the point of view of the points vi+1, the lines Li are span ti lines; that is, the points
vi+1 are the si-th intersection of the span ti lines. Using this point of view, the
previous argument shows that half of these points may be removed from the span ti

lines, leaving only one point labelled vi+1 on each line, precisely when ti is odd.

The method of constructing movable configurations which will be presented here
will begin with one modifed celestial configuration C which has a symmetry class
of points, called S, with half its points removed, and a second modified celestial
configuration D, with the same value for m, which has had half of an appropriate
symmetry class of lines removed. These configurations must be chosen so that when
an arbitrary point is placed on a line in C containing points in S and then rotated to
form an m-gon, and D is constructed using these points as its starting m-gon, one
of the symmetry classes of points in D lies on a class of lines in C.

In Figure 4, diagonals of span 2 and span 3 are shown (in blue and red, respec-
tively), along with an arbitrary point placed on a blue line and rotated around to
form another 10-gon, and a set of green lines which are diagonals of span 3 for the
second 10-gon. Note that the second intersection point of the green lines with each
other lies on the red lines.

Theorem 3. Given a regular m-gon with vertices u0, u1, . . . , um−1 and diagonals of
span a and span b, suppose that w0 is an arbitrary point on the 0-th diagonal of span
a, which joins u0 and ua and is denoted by 〈u0, ua〉, and the other wi are formed
by rotating w0 by 2πi

m
. Let qi be the intersection of the line 〈wi, wi+b〉 with the span

b diagonal 〈ui, ui+b〉, and let q′i be the intersection of the lines 〈wi−a, wi−a+b〉 and
〈ui, ui+b〉. Then qi = q′i.

That is, if you begin with a set of diagonals of span a and span b of an m-gon M ,
construct another m-gon N whose vertices are the rotated images of a point placed
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[4,5]

[4,3]

[4,2]

[4,1]

[4,4]

Figure 4: Beginning with a regular m-gon with diagonals of span a (blue lines) and b

(red lines), constructing a second m-gon with diagonals of span b (green lines) whose
vertices are the rotated images of a point placed arbitrarily on a diagonals of span
a leads to these diagonals of span b intersecting the original diagonals of span b. In
this figure, m = 10, a = 2 and b = 3.

arbitrarily on a diagonal of span a, and construct diagonals of span b using N , then
these diagonals intersect the span b diagonals of M , and the intersection points are
precisely the points labelled [[b, a]] in N .

To prove this lemma, I will need two geometric results.

Lemma 4. If quadrilateral �QRST has the property that ∠RQS =
∠RTS, then the points Q, R, S, and T are concyclic.

S

R
Q

T

This lemma is a well-known result from Euclidean geometry; see, for example, [1,
p. 127]

Lemma 5. Let M and N be two concentric m-gons with center O and vertices
u0, u1, . . . , um−1 and w0, w1, . . . , wm−1, respectively. Let `1 be the line 〈u0, us〉, a
diagonal of M of span s, and let `2 be the line 〈wi, wi+s〉, a diagonal of N of span
s. Let q be the intersection of `1 and `2. Then the four points u0, wi, O and q are
concyclic.

Proof. See Figure 5(a) for an illustration. Let Mu be the midpoint of u0us and let
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Mw be the midpoint of wiwi+s. Then

∠u0OMu =
πs

m
, ∠wiOMw =

πs

m
, ∠u0MuO =

π

2
, and ∠wiMwO =

π

2
,

since the angle between endpoints of a segment of span s is 2πs
m

and the segments
MuO and MwO are perpendicular to the diagonals `1 and `2 respectively. It follows
that ∠Muu0O = ∠MwwiO. But q lies on `1 and `2, so ∠qu0O = ∠qwiO. By Lemma
4, q, wi, u0 and O are concyclic.

We will apply this result several times to prove Theorem 3; see Figure 5(b).

Mw

Mu

q

w i+s

us

O u0

w i

q0

w -a

wb

wb-a

ub

ua

O
u0

w0

q' 0

(a) (b)

Figure 5: Illustrations for the proofs of (a) Lemma 5 and (b) Theorem 3.

Proof of Theorem 3. Let M be an m-gon with center O, vertices u0, u1, . . .um−1 and
diagonals of span a and span b, let w0 be an arbitrary point on line 〈u0, ua〉, and
let the other wi be formed by rotating w0 by 2πi

m
. Let qi be the intersection of line

〈wi, wi+b〉 with the span b diagonal 〈ui, ui+b〉, and let q′i be the intersection of the
lines 〈wi−a, wi−a+b〉 and 〈ui, ui+b〉.

By symmetry, it suffices to show that q0 = q′0. Since q0 is the intersection of
〈w0, wb〉 and 〈u0, ub〉, by Lemma 5, q0, w0, u0 and O are concyclic. Similarly, q′0
lies on the same circle as O, u0, and w−a, since it lies on the intersection of span b

diagonals 〈w−a, w−a+b〉 and 〈u0, ub〉. Finally, since the lines 〈w−a, w0〉 and 〈u0, ua〉 are
both of span a and intersect at the point w0, it follows that the points w0, w−a, u0,
and O are concyclic as well, again by Lemma 5. Since a circle is uniquely determined

the electronic journal of combinatorics 13 (2006), #R104 10



by three points, the points q0, q
′
0, w0, w−a, u0 and O all lie on the same circle, C. Since

the line 〈u0, ub〉 can intersect C only twice, with one of the intersections at u0, and
since both q0 and q′0 lie on C and the line 〈u0, ub〉 and are not u0, it follows that
q0 = q′0.

4 Movable configurations

This section will present several interesting classes of movable configurations, along
with explicit examples. The basic movable configuration is constructed from two
modified celestial configurations (which are no longer configurations, since not all
points lie on the same number of lines), one with half the points of a symmetry
class of points removed and one with half the lines of a symmetry class of lines
removed, so that two of the symmetry classes of points of one modified configuration
lie arbitrarily on two symmetry classes of lines of the other modified configuration.

4.1 The combined symbol

We will use a combined symbol to represent a potential movable configuration con-
structed from two modified celestial configurations.

We will call a configuration modifiable if it contains two consecutive odd numbers
in its sequence. If the consecutive odd numbers are of the form ti; si+1 then the con-
figuration is point-modifiable, meaning that one half of the corresponding symmetry
class of points vi+1 with label [[si, ti]] (either with even index or with odd index) may
be removed, by Lemma 2. If the consecutive odd numbers are of the form si, ti then
we shall call the configuration line-modifiable, meaning that half of the correspond-
ing symmetry class of lines, Li−1, may be removed (again, using either even or odd
index), by Lemma 1.

To indicate that half the points [[si, ti]] of a point-modifiable configuration have
been removed, we place an asterisk in front of ti; for example, the modified con-
figuration 8#(2, ∗1; 3, 2; 1, 3) shown in Figure 6(a) refers to a configuration with
half of the points labelled [[2, 1]] removed. Similarly, an asterisk in front of si in a
line-modifiable configuration indicates that half the lines with label Li−1 have been
removed; in 8#(∗3, 1; 2, 3; 1, 2), shown in Figure 6(b), half the lines L0 have been
removed. In general, we permute the sequences as necessary so that the asterisk cor-
responding to the removed points is in the second position in the sequence, and the
asterisk indicating the removed lines is in the first position in the sequence, although
in more complicated constructions (see Section 5) this is not always possible.
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(a) (b)

Figure 6: Modified configurations. (a) The modified configuration 8#(2, ∗1; 3, 2; 1, 3),
with half the points labelled [[2, 1]] removed; (b) the modified configuration
8#(∗3, 1; 2, 3; 1, 2), with half the (blue) lines L0 removed.

Given a point-modifiable configuration C = m#(s1, ∗t1; . . . ; sh, th), with half the
points labelled [[s1, t1]] removed, and a line-modifiable configuration
D = m#(∗q1, r1; . . . ; qk, rk), with half the lines L′

0 removed, we can write down the
combined symbol

m#(s1, ∗t1; . . . ; sh, th)$(∗q1, r1; . . . ; qk, rk),

which represents a potential configuration that is constructed from the two modified
configurations as follows:

1. Construct C = m#(s1, ∗t1; . . . ; sh, th)

2. Place an arbitrary point v′
0,0 on line L0,0 of C, and create m − 1 copies by

rotating it by 2iπ
m

, where i = 1, . . . , m − 1.

3. Label these points as v′
0,i, and use them as the starting m-gon to create the

modified configuration D = m#(∗q1, r1; . . . ; qk, rk).

We call a combined symbol

m#(s1, ∗t1; . . . ; sh, th)$(∗q1, r1; . . . ; qh, rh)
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admissible if the points v′
1 of the modified configuration m#(∗q1, r1; . . . ; qk, rk) lie

on the lines L1 of the modified configuration m#(s1, ∗t1; . . . ; si, ti; . . . ; sh, th). If the
combined symbol is admissible, we will say the two component configurations are
compatible.

Theorem 6. Admissible combined symbols correspond to movable (n4) configura-
tions.

Proof. Consider the collection of points and lines corresponding to an admissible
combined symbol

m#(s1, ∗t1; . . . ; sh, th)$(∗q1, r1; . . . ; qk, rk)

that is formed by following steps 1 - 3 above. To show this collection of points
and lines is an (n4) configuration, we need to show that every point has four lines
passing through it and every line has four points lying on it. The modified con-
figuration C = m#(s1, ∗t1; . . . ; sh, th) has had half of the points [[s1, t1]] that lie
on lines L0 and L1 removed. In the construction of the modified configuration
D = m#(∗q1, r1; . . . ; qk, rk), new points v′

0 were placed on the lines L0, so now
each line L0 contains two points with label v0, one point with label v1, and one point
with label v′

0. All the other lines Li of C, with the exception of the lines L1, have
not been modified and so still contain four points, and all the points that lie on C,
with the exception of the new points labelled v′

0, contain four lines.
Since D has had half of its lines labelled L′

0 removed, when it is constructed using
the v′

0, each v′
0 will have passing through it one line labelled L0 (from C), one line

labelled L′
0, and two lines labelled L′

1 (from D). All the other points in D lie on two
lines from D, with the exception of the points labelled v′

1. Since the points v′
1 lie on

the lines L′
0, half of which were removed, they only have three lines from D passing

through them. However, if the points labelled v′
1 also lie on the lines labelled L1 from

C, because the combined symbol was assumed to be admissible, then every point will
lie on four lines and every line will pass through four points, as is necessary for the
(n4) configuration to exist.

Finally, the points v′
0 may move at will along the lines L0 while the modified

configuration C is stationary, so the configuration corresponding to the combined
symbol has a single degree of freedom.

Note that the configuration corresponding to an admissible symbol

m#(s1, ∗t1; . . . ; sh, th)$(∗q1, r1; . . . ; qk, rk),

is a (2m(h + k)4) configuration.
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Figures 7 and 8 show two movable configurations with admissible combined sym-
bols. The next section will present some constraints on the sequences of the under-
lying celestial configurations that correspond to admissible combined symbols. The
configuration shown in Figure 7 has combined symbol

8#(2, ∗1; 3, 2; 1, 3)$(∗3, 1; 2, 3; 1, 2).

The yellow point indicated in this figure by v′
0 may move freely along the thick blue

line. In this figure, as in all figures in the rest of the paper, line segments, rather
than lines, are used in order to reduce clutter in the diagram, but the intention is to
indicate that a point placed on a line may move anywhere along the entire line (even
beyond the end of the pictured segment). It is critical in the subsequent analysis that
the configurations are thought of as being composed of lines rather than segments.
Note that for a discrete number of positions, as the point v ′

0 moves along a line L1,
unwanted coincidences will occur, yielding for that position a representation of the
underlying combinatorial configuration rather than a realization.

Interestingly, it is possible to combine two configurations which have different
numbers of symmetry classes! Figure 8 shows a movable configuration constructed
from 12#(4, 3; 1, 2; 3, 4; 2, 1), which has four symmetry classes of points and lines,
and 12#(1, 3; 5, 1; 3, 5), which has only three symmetry classes of points and lines.

4.2 A class of movable configurations

A large class of movable configurations may be constructed by combining two celestial
configurations m#(s1, t1; s2, t2; . . . ; sh, th) and m#(s2, t1; q2, r2; . . . ; qk, rk), where t1
and s2 are both odd.

Theorem 7. If t1 and s2 are both odd, then the combined symbol

m#(s1, ∗t1; s2, t2; . . . , sh, th)$(∗s2, t1; q2, r2, . . . ; qk, rk)

is admissible.

Proof. Let C = m#(s1, t1; s2, t2; . . . , sh, th) and D = m#(s2, t1; q2, r2, . . . ; qk, rk).
Since t1 and s2 are both odd, C is point-modifiable and D is line-modifiable.

Note that in the construction of the collection of points and lines corresponding
to the combined symbol, we place new points v′

0 on the lines L0, which are of span
s1. From the point of view of the points v1, the lines L0 are of span t1; the second
class of lines passing through the points v1 are L1, which are of span s2 with respect
to the v1.

the electronic journal of combinatorics 13 (2006), #R104 14



v ’
0

Figure 7: A movable configuration with symbol 8#(2, ∗1; 3, 2; 1, 3)$(∗3, 1; 2, 3; 1, 2).
The modified configuration 8#(2, ∗1; 3, 2; 1, 3) is shown with thick lines, and the
modified configuration 8#(∗3, 1; 2, 3; 1, 2) is shown with thin lines.
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Figure 8: A movable configuration with symbol

12#(4, 3; ∗1, 2; 3, 4; 2, 1)$(∗1, 3; 5, 1; 3, 5).

The modified configuration 12#(4, 3; ∗1, 2; 3, 4; 2, 1) is shown with thin lines, and the
modified configuration 12#(∗1, 3; 5, 1; 3, 5) is shown with thick lines.
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To show that the combined symbol is admissible, we must show that the modi-
fied configuration constructed using the points v′

0 has the symmetry class of points
labelled v′

1 lying on the lines L1 of the original configuration. The points v′
0 contain

lines L′
0, of span s2, and in the construction of the second configuration, the t1-th

intersection points of the lines L′
0 are precisely the points v′

1.
Consider the points v1 and the lines L0 and L1 of C, and the points v′

0, v′
1 and

the lines L′
0 of D. With respect to the v1, the L0 have span t1 and the L1 have span

s2.We place the v′
0 arbitrarily on the lines L0, and then we construct the lines L′

0

in D, which are also of span s2. By applying Theorem 3, it follows that the lines
L′

0 must intersect the lines L1, and the intersection point is precisely the point with
label [[s2, t1]], namely, v′

1.
Therefore, the combined symbol is admissible.

4.3 Using trivial three-ring celestial configurations

One very easy class of movable configurations to construct is based on trivial three-
ring celestial configurations m#(a, b; c, a; b, c). Using Theorem 7, the movable con-
figuration

m#(a, ∗b; c, a; b, c)$(∗c, b; a, c; b, a)

may be constructed whenever b and c are both odd; note that m#(a, b; c, a; b, c) and
m#(c, b; a, c; b, a) represent the same geometric configuration, but the labelling is
reversed. The smallest such example is given in Figure 7.

4.4 Using two astral (n4) configurations

In [5], astral (n4) configurations — that is, (n4) configurations with precisely two
symmetry classes each of points and lines — were completely characterized. Some
astral (n4) configurations, called type 1 in [2, 3, 4], are celestial configurations. An
important result from [5], originally conjectured by Branko Grünbaum in [10], was
to prove the following (modified slightly to use the current notation for celestial
configurations):

Theorem 8. All celestial astral (n4) configurations are listed in the following: there
are two infinite families, Family, 1: (6k)#(3k− j, |3k−2j|, j, 2k) for j = 1, . . . , 2k−
1, j 6= k and j 6= 3k

2
; and Family 2: (6k)#(3k− 2j, j, 2k, 3k− j), for j = 1, . . . , k− 1,

for k = 2, 3, 4, . . .. There are 27 sporadic configurations, with m = 30, 42, and 60,
where a configuration is sporadic if it is not a member of one of the infinite families.
Finally, there are multiples of the sporadic configurations.
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Table 2: The sporadic celestial astral (n4) configurations.

m = 30

30#(4, 1; 6, 7) 30#(6, 1; 4, 7) 30#(6, 1; 10, 11)
30#(6, 2; 6, 8) 30#(7, 2; 11, 12) 30#(8, 1; 12, 13)
30#(10, 1; 6, 11) 30#(10, 6; 10, 12) 30#(10, 7; 12, 13)
30#(11, 2; 7, 12) 30#(11, 6; 13, 14) 30#(12, 1; 8, 13)
30#(12, 4; 12, 14) 30#(12, 7; 10, 13) 30#(13, 6; 11, 14)

m = 42

42#(6, 1; 12, 13) 42#(11, 6; 17, 18) 42#(12, 1; 6, 13)
42#(12, 5; 18, 19) 42#(17, 6; 11, 18) 42#(18, 5; 12, 19)

m = 60

60#(9, 2; 21, 22) 60#(12, 5; 24, 25) 60#(14, 3; 26, 27)
60#(21, 2; 9, 22) 60#(24, 5; 12, 25) 60#(26, 3; 14, 27)

The sporadic configurations with m = 30, 42, and 60 are listed in Table 2. A
necessary condition for an astral celestial (n4) configuration to exist is that n =
12k, for some natural number k. Here, a multiple refers to taking some number of
concentric copies of a configuration, rotated so that they are equally spaced. Note
that in the notation of [3, 4, 5, 9, 10], a celestial astral (n4) configuration was denoted
as m#ab cd, which corresponds to the configuration m#(a, b; d, c) in the notation of
this paper. Finally, a remark: in the first infinite family, since j can be as large as
2k − 1, it is possible for the quantity 3k − 2j to become negative, hence the need
for the absolute value. The quantity 3k − 2j in family 2 must always be positive, as
j < k in that family.

Of particular interest in the construction of movable configurations are the two
infinite families, since inspection shows that none of the sporadic configurations (or
any multiples of those) is point- or line-modifiable.

In Family 1, (6k)#(3k − j, 3k − 2j; j, 2k), by Lemma 1, half the lines in the
symmetry class L0 may be removed when 3k − j and 3k − 2j are both odd, which
happens when j is even and k is odd. In Family 2, (6k)#(3k − 2j, j; 2k, 3k − j),
half the lines in symmetry class L0 may be removed when 3k − 2j and j are both
odd, which happens when j and k are both odd. (Since 2k is always even, the lines

the electronic journal of combinatorics 13 (2006), #R104 18



labelled L1 can never have half of them removed.) Similarly, using Lemma 2, half the
points labelled v1 of a configuration in Family 1 may be removed when j and k are
both odd, while in Family 2 half the points labelled v0 may be removed when k is odd
and j is even. In particular, we will not be able to construct movable configurations
in the case that k is even!

Notice that if k is odd, 3k
2

is never an integer, so there are 2(k− 1) configurations
in Family 1 (since j 6= k) and k − 1 configurations in Family 2. Each configuration,
modified appropriately, may participate as half of a movable configuration. In order
to determine important characteristics of these movable configurations, we need to
carefully investigate the relationship between members of the infinite families; in
particular, it is helpful to determine which configurations are polars of which others.

In [8], it is shown that the polar of a celestial configuration m#(s1, t1; . . . ; sh, th)
may be obtained by permuting the sequence (s1, t1; . . . ; sh, th) an odd number of
steps (and by reversals of such permutations). We can use this to analyze the polarity
relationships among the astral celestial (n4) configurations which are members of the
inifinte families.

Theorem 9. The polar of the configuration 6k#(3k − 2j, j; 2k, 3k − j) in Family
2 is the configuration 6k#(3k − j, 3k − 2j; j, 2k) in Family 1, where j < k. The
polar of the configuration 6k#(3k − j, 3k − 2j; j, 2k) in Family 1 where j > k is the
configuration 6k#(j, 3k − 2j; 3k − j, 2k), also in Family 1 with j > k.

Proof. In Family 2, where j = 1, 2, . . . , k − 1, cyclically permuting the sequence
(3k − 2j, j; 2k, 3k − j) one step forward yields (3k − j, 3k − 2j; j, 2k), and 6k#(3k −
j, 3k − 2j; j, 2k) is a member of Family 1, with j < k.

This leaves the other k − 1 members of Family 1 unaccounted for, where j =
k + 1, k + 2, . . . , k + (k − 1) = 2k − 1. Let j = k + q, and suppose q < k

2
; then

6k#(3k − j, |3k − 2j|; j, 2k) = 6k#(2k − q, |k − 2q|, k + q, 2k)

= 6k#(2k, k + q; k − 2q, 2k − q).

On the other hand, if j = 2k − q and q < k
2
, then

6k#(3k − j, |3k − 2j|; j, 2k) = 6k#(k + q, | − (k − 2q)|, 2k − q, 2k)

= 6k#(k + q, k − 2q, 2k − q, 2k),

which is clearly the polar of 6k#(2k, k + q; k − 2q, 2k − q), since the sequence is
cyclically shifted by a single step. Unsubstituting j = k + q, we see that the polar of
6k#(3k − j, |3k − 2j|; j, 2k) is 6k#(j, |3k − 2j|; 3k − j, 2k).
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We can use Theorem 7 and the results on polar pairs of astral configurations
to completely determine all movable configurations formed using two astral celestial
configurations.

Theorem 10. The only movable (n4) configurations obtained from two astral celestial
configurations are the following:

1. 6k#(2k, ∗3k − j; 3k − 2j, j)$(∗3k − j, 3k − 2j; j, 2k), for j even, k odd, and
j ≤ k − 1;

2. 6k#(3k − j, ∗3k − 2j; j, 2k)$(∗3k − 2j, j; 2k, 3k − j), for j and k both odd, and
j ≤ k − 1;

3. 6k#(3k−j, ∗3k−2j; j, 2k)$(∗j, 3k−2j; 3k−j, 2k), for j and k odd and j ≥ k+1;

4. 6k#(j, ∗3k − 2j; 3k − j, 2k)$(∗3k − j, 3k − 2j; j, 2k), for j even, k odd, and
j ≥ k + 1;

where k is at least 3. Movable configurations obtained in this way are, in general,
distinct. In addition, the two factors form a polar pair of astral celestial configura-
tions, and every polar pair of astral celestial configurations which are not sporadic
gives rise to a movable configuration.

Proof. We will analyze several cases, corresponding to when astral configurations
are point- or line-modifiable, and given a point-modifiable configuration, we will
determine another factor that is line-modifiable and which produces an admissible
combined symbol. Note that since no sporadic configurations are point- or line-
modifiable, it is sufficient to consider only the infinite families of astral configurations.

Case 1: j is even, k is odd and j ≤ k − 1. In this case, the Family 2 configura-
tion

6k#(3k − 2j, j; 2k, 3k − j) = 6k#(2k, 3k − j; 3k − 2j, j)

is point-modifiable into 6k#(2k, ∗3k − j; 3k − 2j, j), since 3k − j and 3k − 2j
are both odd. Theorem 7 says that a configuration whose symbol is of the form
(3k−2j, 3k−j;−,−) will be a compatible line-modifiable configuration. Using
Theorem 9, the polar to the configuration, namely

6k#(3k − j, 3k − 2j; j, 2k) = 6k#(j, 2k; 3k − j, 3k − 2j)

= 6k#(3k − 2j, 3k − j; 2k, j)
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has such a beginning and is a compatible line-modifiable configuration. Thus,
every configuration in Family 2 where j is even, k is odd, and j < k participates
in the movable configuration

6k#(2k, ∗3k − j; 3k − 2j, j)$(∗3k − 2j, 3k − j; 2k, j).

By construction, the component configurations form a polar pair.

These configurations account for half of the configurations from Family 2, and
one quarter of the configurations from Family 1. The smallest such configura-
tion, 18#(6, ∗7; 5, 2)$(∗7, 5; 2, 6), is shown in Figure 9.

Case 2: j and k are both odd, and j ≤ k − 1. If j and k are both odd, and j <

k, then configurations in Family 1 are point-modifiable, since 3k − 2j and j

are both odd. Theorem 7 says that we need to find a configuration that is
compatible with 6k#(3k − j, ∗3k − 2j; j, 2k); that is, we need a configuration
with sequence of the form (j, 3k − 2j;−,−). The polar of the configuration, a
member of Family 2, again will work, since

6k#(3k − 2j, j; 2k, 3k − j) = 6k#(2k, 3k − j; 3k − 2j, j)

= 6k#(j, 3k − 2j; 3k − j, 2k).

That is, all configurations in Family 1 and 2 with j and k odd and j < k

participate in a movable configuration of the form

6k#(3k − j, ∗3k − 2j; j, 2k)$(∗j, 3k − 2j; 3k − j, 2k).

Note that these configurations account for the other half of the configurations
from Family 2 and another quarter of the configurations from Family 1. The
smallest such configuration, 18#(8, ∗7; 1, 6)$(∗1, 7; 8, 6), is shown in Figure 10.

Case 3: k is odd, j is odd and j ≥ k + 1. If j is odd, then 3k − 2j and j are
both odd. If we consider the configuration in Family 1 with symbol 6k#(3k −
j, 3k − 2j; j, 2k), which is point-modifiable, Theorem 7 says that a compatible
configuration will have a sequence of the form (j, 3k − 2j;−,−). The polar
configuration m#(j, 3k − 2j; 3k − j, 2k) works nicely. That is, if j is odd, we
can construct the movable configuration

6k#(3k − j, ∗3k − 2j; j, 2k)$(∗j, 3k − 2j; 3k − j, 2k).

The smallest such configuration, 18#(4, ∗1; 5, 6)$(∗5, 1; 4, 6), is shown in Figure
11.
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Figure 9: 18#(6, ∗7; 5, 2)$(∗7, 5; 2, 6), the smallest movable configuration constructed
from two astral (n4) configurations satisfying the situation of Case 1 in the proof of
Theorem 10.
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Figure 10: 18#(8, ∗7, 1, 6)$(∗7, 1, 6, 8), the smallest movable configuration con-
structed from two astral (n4) configurations satisfying the situation of Case 2 in
the proof of Theorem 10.
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Figure 11: 18#(4, ∗1; 5, 6)$(∗5, 1; 4, 6), the smallest movable configuration con-
structed from two astral (n4) configurations satisfying the situation of Case 3 in
the proof of Theorem 10
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Case 4: k is odd, j is even, and j > k. If j is even, 6k#(3k − j, 3k − 2j; j, 2k)
is not point-modifiable; however, it is line-modifiable, since 3k − j and 3k −
2j are both odd. Again applying Theorem 7, we see that the configuration
6k#(j, 3k − 2j; 3k − j, 2k), which is now point-modifiable, will be compatible,
so if j is even, we can construct the movable configuration

6k#(j, ∗3k − 2j; 3k − j, 2k)$(∗3k − j, 3k − 2j; j, 2k).

Cases 3 and 4 account for the rest of the configurations in Family 1, those with
j > k.

Note that if k = 3, there are only two configurations where j > k, so Case 3 and
Case 4 produce the same movable configuration. The smallest movable configurations
which are different in Case 3 and 4 are

30#(8, ∗1; 7, 10)$(∗7, 1; 8, 10) (in case 3)

and
30#(6, ∗3; 9, 10)$(∗9, 3; 6, 10) (in case 4).

It follows that all astral (n4) configurations in the infinite families participate in
some movable configuration, and the configurations produced are distinct, as long as
k is larger than 3. By construction, the two factors in each movable configuration
form a polar pair.

5 More complicated movable configurations

It is possible to construct movable configurations with multiple degrees of freedom.
To do this, we will need to generalize the notion of admissible combined symbols:
we call a combined symbol

m#(s1, t1; . . . ; si, ∗ti; . . . ; sh, th)$(∗q1, r1; . . . ; qh, rh)

admissible if when the points v′
0 of the second modified configuration

m#(∗q1, r1; . . . ; qk, rk) are placed on the lines Li−1 of the first modified configu-
ration m#(s1, t1; . . . ; si, ∗ti; . . . ; sh, th), then the points v′

1 of the second modified
configuration lie on the lines Li of the first modified configuration. These general-
ized admissible combined configurations again correspond to (n4) configuration; the
proof is a straightforward generalization of the proof of Theorem 6.

the electronic journal of combinatorics 13 (2006), #R104 25



5.1 Multiply-nested configurations

Note that in
m#(a, ∗b; c, a; b, c)$(∗c, b; a, c; b, a),

through the points labelled v′
0 we have lines labelled L′

0 of span c (of which half have
been removed) and a (with label L′

1).
Consider the sequence (c, b; a, ∗c; b, a). This indicates that we should place new

points v′′
0 on the lines L′

1 of span a (with respect to the points v′
2) and delete half

the points with symbol v′
2. According to Lemma 2, this is possible since c and b

are both odd. Using Theorem 7, the modified configuration m#(c, b; a, ∗c; b, a) is
compatible with the configuration m#(∗b, c; a, b; c, a). The combination of these two
configurations does not involve the lines L′

0, half of which have been deleted, so in fact,
the configuration m#(∗b, c; a, b; c, a) is compatible with the movable configuration
m#(a, ∗b; c, a; b, c)$(∗c, b; a, c; b, a)! That is, we can construct the admissible extended
combined symbol

m#(a, ∗b; c, a; b, c)$(∗c, b; a, ∗c; b, a)$(∗b, c; a, b; c, a),

which has two degrees of freedom. An example of such a configuration,

8#(2, ∗1; 3, 2; 1, 3)$(∗3, 1; 2, ∗3; 1, 2)$(∗1, 3; 2, 1; 3, 2),

is given in Figure 12.
These configurations may be nested as deeply as one wishes: The extended com-

bined symbol in general is of the form

m#(s1,1, ∗t1,1; . . . ; s1,h1
,t1,h1

)$(∗s2,1, t2,1; . . . ; s2,j1, ∗t2,j1; . . . ; s2,h2
, t2,h2

)

· · ·

$(∗sn−1,1, tn−1,1; . . . ; si,jn−1
, ∗ti,jn−1

; . . . ; sn−1,hn−1
, tn−1,hn−1

)

$(∗sn,1, tn,1; . . . ; sn,hn
, tn,hn

),

where
(∗si,1, ti,1; . . . ; si,ji

, ∗ti,ji
; . . . ; si,hi

, ti,hi
),

indicates that the configuration m#(∗si,1, ti,1; . . . ; si,ji
, ∗ti,ji

; . . . ; si,hi
, ti,hi

) has been
modified by removing half the lines labelled L0 and half the points labelled [[si,ji

, ti,ji
]].

Each consecutive pair of configuration sequences must correspond to compatible
configurations.
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Figure 12: A (1444) movable configuration

8#(2, ∗1; 3, 2; 1, 3)$(∗3, 1; 2, ∗3; 1, 2)$(∗1, 3; 2, 1; 3, 2),

with two degrees of freedom. Each of the component modified configurations is shown
with different colored vertices (black, yellow, and blue).
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5.2 Multiple configurations nested on a single configuration

As long as the entries are far enough apart, so that new vertices v ′
0 and v′′

0 are placed
on different lines and the new intersections appear on different lines, it is possible to
nest multiple celestial configurations on a single initial configuration.

As an explicit example, consider the trivial four-ring celestial configuration
m#(a, b; c, d; b, a; d, c), where a, b, c and d are all distinct.

Using the instructions in Theorem 7, we can straightforwardly construct several
movable configurations from this original configuration: if b and c are odd,

m#(a, ∗b; c, d; b, a; d, c)$(∗c, b; a, d; b, c; d, a)

is admissible, while if a and d are odd,

m#(a, b; c, d; b, ∗a; d, c)$(∗d, a; b, c; a, d; c, b),

is admissible, among others. The first movable configuration has the points v ′
0 placed

on the lines L0 with new intersections on the lines L1; the second movable configu-
ration has the points v′′

0 placed on the lines L2 with new intersections on the lines
L3.

Therefore, we can construct a movable configuration using both these new con-
figurations by beginning with the modified configuration m#(a, ∗b; c, d; b, ∗a; d, c),
which has half the points v1 of label [[a, b]] and v3 of label [[b, a]] removed, and si-
multaneously placing new points v′

0 on lines L0 and v′′
0 on lines L2. These new points

are then used to construct the configurations m#(∗c, b; a, d; b, c; d, a) beginning with
the v′

0 and m#(∗d, a; b, c; a, d; c, b) beginning with the v′′
0 . Half the points with label

v1 and v3 are removed, so each line Li has one point vj removed for some choice of j,
and each line Li has one new point, either v′

j or v′′
j , again, for an appropriate value

of j, added.
Notation for such a configuration is

m#(s1, ∗t1; . . . ; si1 , ∗ti1; . . . ; siq , ∗tiq ; . . . ; sh, th)$











(∗s1,1, t1,1; . . . ; s1,h1
, t1,h1

)
...

(∗sq,1, tq,1, . . . , sq,hq
, tq,hq

)

where the j-th modified configuration after the brace, with sequence
(∗sj1, tj1; . . . ; sjhj

, tjhj
), is to be constructed using points v

(j)
0 placed on lines Li−1 of

the configuration before the brace, indicated by ∗tij in that configuration. Clearly,
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arbitrarily many configurations may be nested in this fashion if the original configu-
ration has enough rings (h is large enough in the configuration before the brace); k

configurations may be nested if h is at least 4k (and the parities of the si and ti are
appropriate in all the configurations).

For example, the smallest of these configurations has m = 16 (since we need a,
b, c, and d to be odd). One such configuration is

16#(7, ∗5; 3, 1; 5, ∗7; 1, 3)$

{

(∗3, 5; 7, 1; 5, 3; 1, 7)

(∗1, 7; 5, 3; 7, 1; 3, 5)
;

unfortunately, the resulting configuration is too complicated to display intelligibly in
this paper.

Some open questions

By a symmetric configuration I mean a configuration with non-trivial geometric
symmetry. The discovery of highly symmetric (n4) configurations with non-trivial
degrees of freedom was quite unexpected; it highlights the fact that general (n4)
configurations—even those with relatively high degrees of symmery, as these mov-
able configurations have—are much stranger than might have been anticipated when
celestial configurations and astral configurations were the only infinite classes of
highly symmetric (n4) configurations that were well understood.

Question 1. Are there symmetric (n4) configurations with a continuous parameter
where the number of points in a single symmetry class is odd?

Question 2. Is there some N so that for all n ≥ N , there exists a movable (n4)
configuration (symmetric or not)?

There exist highly symmetric (in fact, astral) classes of movable (n3) configura-
tions.

Question 3. Does there exist a symmetric, movable (pq, nk) configuration, where
one of q and k is at least 4? If so, are there infinite families of such configurations?

Interactive examples of the movable configurations shown in this paper are avail-
able from the author’s website:
http://webpages.ursinus.edu/lberman/MovableConfigurations.html .
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[12] Grünbaum, B. Configurations. Unpublished manuscript/class notes. 1991.
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