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Abstract

A permutation π is said to avoid the permutation τ if no subsequence in π
has the same order relations as τ . Two sets of permutations Π1 and Π2 are Wilf-
equivalent if, for all n, the number of permutations of length n avoiding all of the
permutations in Π1 equals the number of permutations of length n avoiding all of
the permutations in Π2. Using generating trees, we complete the problem of finding
all Wilf-equivalences among pairs of permutations of which one has length 3 and the
other has length 5 by proving that {123, 32541} is Wilf-equivalent to {123, 43251}
and that {123, 42513} is Wilf-equivalent to {132, 34215}. In addition, we provide
generating trees for fourteen other pairs, among which there are two examples of
pairs that give rise to isomorphic generating trees.

1 Introduction

1.1 Pattern Avoidance and Wilf-Equivalence

We denote a permutation π of the numbers {1, 2, . . . , n} by π = π1π2 · · ·πn, where πi =
π(i) for 1 ≤ i ≤ n. For permutations π = π1π2 · · ·πn and τ = τ1τ2 · · · τm, we say that π
contains τ if there exist indices 1 ≤ i1 < i2 < · · · < im ≤ n such that πik < πil if and only
if τk < τl. If no such indices exist, then we say that π avoids τ .

For a set of permutations Π, we let Sn(Π) denote the set of permutations of length
n avoiding all of the permutations τ ∈ Π, and we let sn(Π) denote the cardinality of
Sn(Π). Two sets Π and Σ are said to be Wilf-equivalent if sn(Π) = sn(Σ) for all n.
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Wilf-equivalence defines an equivalence relation on sets of permutations, and we call the
resulting equivalence classes Wilf-classes.

The problem of counting the permutations avoiding a given permutation or set of
permutations is a rich one. One of the oldest and most famous results in the area is a
theorem of Erdős and Szekeres [3], which states that sn(12 · · ·k, (l)(l − 1) · · ·1) = 0 for
n > (k − 1)(l − 1). The field has experienced rapid growth in the last twenty years,
beginning with Simion and Schmidt’s proof that {123} and {132} are Wilf-equivalent
[14]. Since then, all permutations of length 7 and less have been Wilf-classified (see [15]),
as well as all sets of two permutations both of length 4 or less (see [6], [14], and [18]). In
2004, Marcus and Tardos proved the Stanley-Wilf conjecture, which states that for any
set Π, sn(Π) grows at most exponentially in n [13]. The study of permutation avoidance
has also found applications to a variety of other problems in combinatorics, as well as
areas of algebraic geometry and computer science (see [4] and [15]).

1.2 Overview of Results

In Sections 2.1 and 2.2, we prove the two Wilf-equivalences

sn(123, 32541) = sn(123, 43251) and sn(123, 42513) = sn(132, 34215),

completing the Wilf-classification of all pairs of permutations having lengths 3 and 5
(referred to as 3-5 pairs). These results have been derived independently by Mansour,
who currently has no plans to publish them (from personal communication, [8]).

Combined with previous results (see [7], [10], and [12]), we find that there are seven
Wilf-classes of 3-5 pairs containing at least two pairs that are non-trivially Wilf-equivalent
(that is, not by symmetry; see Section 1.4). Of the seven Wilf-classes, the largest is the
class of pairs Π such that sn(Π) = (3n−1+1)/2, which contains a total of twenty-nine pairs
(including some that are Wilf-equivalent by symmetry; see [7] and [10]). In Section 3.1,
we give (without complete proofs) the generating trees for fourteen 3-5 pairs that have
already been proven to belong to this large class. We find two instances in which two 3-5
pairs give rise to isomorphic trees, a stronger equivalence than Wilf-equivalence.

Finally, we include an example of a generating tree for a 3-6 pair in Section 3.2 and
we conclude with a discussion of a few ideas for related open problems in Section 4.

1.3 Definitions and Conventions

In figures depicting permutations, πi will be to the left of πj if i < j and πi will be higher
than πj if πi > πj . The πi will often be referred to as elements of the permutation.

If π contains τ , with πi1πi2 · · ·πim having the same order relations as τ , then we say
that πi1πi2 · · ·πim is a subsequence of π of type τ and that πi1πi2 · · ·πim is an occurrence
of τ in π. We will often say that πik plays the τk in the subsequence of type τ .

We will refer to permutations τ as patterns in the context of being contained in or
avoided by longer permutations π.

By convention, s0(Π) = 1 for any set Π.
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1.4 Symmetries

Given a permutation π = π1π2 · · ·πk, we define the following three operations:

The reverse of π is πkπk−1 · · ·π1.
The complement of π is (k + 1 − π1)(k + 1 − π2) · · · (k + 1 − πk).
The inverse of π is π−1(1)π−1(2) · · ·π−1(k).

If we view permutations as matrices, then π avoids the pattern τ if and only if the
permutation matrix for π does not contain the matrix for τ as a minor. Note that the
three operations defined above correspond to reflections of permutation matrices about
vertical, horizontal, and upper-left-to-lower-right-diagonal axes. By symmetry, then, it is
clear that π avoids the set of patterns Γ if and only if f(π) avoids the set {f(γ) | γ ∈ Γ},
where f is any composition of the reversal, complementation, and inversion operations.
Thus, sets of the form Γ and {f(γ) | γ ∈ Γ} are trivially Wilf-equivalent.

1.5 3-5 Pairs

The symmetry arguments in Section 1.4 considerably reduce the problem of determining
the Wilf-equivalences among all 720 3-5 pairs. Any 3-5 pair is trivially Wilf-equivalent to a
pair of the form {123, τ} or {132, τ} for some τ of length 5, so we may restrict our attention
to these 240 pairs. Also, if τ contains 123, for example, then Sn(123, τ) = Sn(123), because
any permutation that avoids 123 also avoids τ . There are forty-two permutations of length
5 that avoid 123 and forty-two that avoid 132, so we need only consider the corresponding
eighty-four pairs. Finally, these pairs can be divided into forty-two Wilf-classes by further
symmetry arguments; for example, sn(123, 43251) = sn(123, 53214) because 123 is the
inverse of 123 and 53214 is the inverse of 43251.

In [10], Mansour and Vainshtein derive the generating function

∞∑

n=0

sn(132, τ)xn

for any pattern τ avoiding 132. For τ of length 5, their results lead to the following
nontrivial Wilf-equivalences:

sn(132, 12345) = sn(132, 21345) = sn(132, 23145) = sn(132, 23415)

= sn(132, 23451) = sn(132, 32415) = sn(132, 32451)

= sn(132, 34125) = sn(132, 34251) = sn(132, 34512)

= sn(132, 42351) = sn(132, 43512) =
3n−1 + 1

2
;
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sn(132, 34521) = sn(132, 43521) = sn(132, 52341) = sn(132, 53241);

sn(132, 34215) = sn(132, 42315);

sn(132, 32145) = sn(132, 43251);

sn(132, 45231) = sn(132, 45312); and

sn(132, 45321) = sn(132, 53421).

It is easy to verify by computation that these pairs belong to six distinct Wilf-classes.
Before this paper, the only non-trivial Wilf-equivalence known (see [7], [9], [11], [12])

for 3-5 pairs of the form {123, τ} was

sn(123, 15432) = sn(123, 21543) = sn(123, 32514) =
3n−1 + 1

2
.

By computing s10, we find that the only other possible Wilf-equivalences among 3-5
pairs are

sn(123, 32541) = sn(123, 43251) and sn(123, 42513) = sn(132, 34215).

The generating functions
∑∞

n=0 snxn are already known for the pairs {123, 43251} and
{132, 34215} ([16] and [10]).

1.6 Generating Trees

The most important tools we will use to study 3-5 pairs are generating trees. A generating
tree is a rooted, labeled tree, together with a set of rules, called the succession rules of
the tree, that uniquely specify the number and labels of the children of any node given
its label. A tree is often specified by its root and succession rules, as in this example [18],
having a single rule:

Root: (1)
Rule: (k) → (k + 1)(1)k−1.

In this generating tree, a node with label (k) has k children, one labeled (k +1) and k−1
labeled (1). We will divide our trees into rows, with the root-node in row 1, its children
in row 2, and so on. It is easy to see that the tree above has 2n−2 nodes in row n for
n > 1. The first four rows are shown in Figure 1.

Two trees having the same root and the same succession rules are said to be isomorphic.
Generating trees are useful in many counting problems. They were first used by Chung

et al. in [2] to count Baxter permutations and have been applied to the study of pattern-
avoiding permutations on numerous occasions (see, for example, [1], [5], [16], [17], and
[18]).

In the context of pattern avoidance, the nodes in a generating tree correspond to
the permutations avoiding a certain set of patterns Π, with permutations of length m
corresponding to the nodes in row m. The root, in particular, always corresponds to
the length-1 permutation. Succession rules are derived by considering the active sites
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Row 1

(2)

(3)

(4) (1) (1)

(1)

(2)

Row 2

Row 3

Row 4

(1)

Figure 1: A generating tree with 2n−2 nodes in row n for n > 1. The root of the tree is
(1), and the succession rule is (k) → (k + 1)(1)k−1.

of a permutation, the spaces between two adjacent elements where we may insert a new,
largest element in order to create a permutation that is one element longer and still avoids
Π. The term child will be used to refer both to a new permutation formed in this way
and to the node in the tree corresponding to it.

Thus, a node corresponding to a permutatation π of length n−1 with k active sites will
have k children in a generating tree. These k nodes will correspond to the permutations
of length n formed by inserting the element n in one of the active sites in π. Overall,
for each n, row n of a tree will contain exactly one node for each of the permutations in
Sn(Π).

We will often choose the label for a node in a manner that reflects the number and/or
positions of the active sites in the corresponding permutation. For instance, for our
purposes, the length-1 permutation will always have two active sites, and the root of a
tree will usually be given the label (2).

2 New Wilf Equivalences

In this section, we determine sn(123, 32541) and sn(123, 42513) by analyzing the structures
of permutations avoiding each pair and considering their active sites, allowing us to derive
generating trees and finally generating functions for the sequences sn. Using a result
of Vatter [16] and a result of Mansour and Vainshtein [10], we show that, for all n,
sn(123, 32541) = sn(123, 43251) and sn(123, 42513) = sn(132, 34215) (Theorems 1 and 2).

2.1 Sn(123, 32541)

We begin by defining three classes of permutations that avoid 123 and 32541 and proceed
to find their active sites and determine the succession rules for the generating tree. By
counting the number of nodes in the tree, we prove the following theorem.
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πh+1

πn−1

. . .π1

π2

. . .
πh−1

πh

Figure 2: A permutation π in class 1 (that is, h > 2 and π2 < πl for all l ≥ h) avoiding
123 and 32541. Inserting n anywhere between π2 and πh−1 creates a permutation in class
2, since π2 > πh−1 and these two elements will be on opposite sides of n.

Theorem 1. The generating function for the sequence sn(123, 32541) is

∞∑

n=0

sn(123, 32541)xn =
−2x5 + 10x4 − 16x3 + 14x2 − 6x + 1

(1 − x)4(x2 − 3x + 1)
,

which is the same as the generating function for the sequence sn(123, 43251), using a result
of Vatter [16]. Hence {123, 32541} is Wilf-equivalent to {123, 43251}.
Proof. First, note that if π = π1π2 · · ·πn−1 is any permutation, and inserting a new largest
element n into π creates a new occurrence of some pattern τ of length k, then the n in the
new permutation must play the role of the k in τ , as it is larger than all other elements.

Let π = π1π2 · · ·πn−1 be a permutation of length n − 1 avoiding 123 and 32541, and
suppose that π1 > π2 > · · · > πh−1 is the maximal initial decreasing subsequence, in the
sense that πh−1 < πh or h = n. The only possible active sites are those to the left of πh,
by 123-avoidance. If π = (n − 1)(n − 2) · · ·21, then we use the label (n) for the node
corresponding to π in our generating tree; π has n active sites. If π1 < πl for all l ≥ h,
then we say that π is in class 0 and we use the label (h, 0). Here, π has h active sites,
since there is no element to the right of πh to play the 1 in a new subsequence of type
32541.

Next, if π is not in class 0 but has h > 2 and satisfies π2 < πl for all l ≥ h, then we
say that π is in class 1 and we use the label (h, 1); again, π has h active sites, by similar
reasoning. If h = 2, we use the label (2, 2), and if there exists l ≥ h with π2 > πl, we use
the label (k, 2), where k is the number of active sites in π. These permutations are said
to be in class 2.

For permutations not in class 2, inserting n in an active site other than the leftmost one
or the rightmost one creates a permutation in class 2 (see Figure 2). Moreover, this new
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permutation will only have two active sites, either because n was inserted immediately
after π1 or because inserting (n + 1) anywhere between π2 and n in the new permutation
would create a subsequence π1π2(n+1)nπh−1 of type 32541. Inserting n before π1 creates
a permutation with one more active site than π (and possibly in a different class), while
inserting n immediately to the left of πh creates a permutation with the same number of
active sites.

For a permutation in class 2 with the label (k, 2), first note that inserting n at the
beginning forms a permutation with label (k + 1, 2). If there are any other active sites,
then inserting n in one of them creates, by an argument similar to the one in the previous
paragraph, a permutation with label (2, 2). Thus we have our generating tree:

Root: (2)
Rules: (k) → (k + 1)(k, 0)(2, 2)k−2

(k, 0) → (k + 1, 1)(k, 0)(2, 2)k−2

(k, 1) → (k + 1, 2)(k, 1)(2, 2)k−2

(k, 2) → (k + 1, 2)(2, 2)k−1.

Rows 1-4 of the tree are as follows:

(2) → (3)(2, 0) → (4)(3, 0)(2, 0)(3, 1)(2, 2) →
(5)(4, 0)(3, 0)(2, 0)(4, 1)(3, 1)2(4, 2)(3, 2)(2, 2)5.

It is easy to show by induction that row m contains one node labeled (m + 1), one
node labeled (k, 0) for each k ≤ m, and, for m ≥ 3 and each 3 ≤ k ≤ m, exactly m−k+1
nodes labeled (k, 1). Among these three types, then, there are a total of (m2 − m + 2)/2
nodes in row m, having a total of (m3 + 6m2 − 7m + 12)/6 children. Note that a node
with label (k, 2) has 3k−1 grandchildren, while any other node with k children has 4k−3
grandchildren. Thus, counting the nodes in row m + 2, we have

sm+2(123, 32541) = 3sm+1(123, 32541)− sm(123, 32541)

+
m3 + 6m2 − 7m + 12

6
− 2

m2 − m + 2

2

= 3sm+1(123, 32541)− sm(123, 32541) +
m3 − m

6
.

This recurrence relation can be solved with generating functions, yielding

∞∑

n=0

sn(123, 32541)xn =
−2x5 + 10x4 − 16x3 + 14x2 − 6x + 1

(1 − x)4(x2 − 3x + 1)
,

which matches the generating function for the sequence sn(123, 43251) [16]. Because the
first few values of sn(123, 32541) are the same as the first few values of sn(123, 43251), we
have proven Theorem 1.
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2.2 Sn(123, 42513)

We begin with a few definitions in Section 2.2.1. In Section 2.2.2, we determine the
active sites in permutations π that avoid 123 and 42513, which allows us to formulate
the succession rules for the generating tree in Section 2.2.3. Finally, in Section 2.2.4, we
count the nodes in the tree and arrive at the following result.

Theorem 2. The generating function for the sequence sn(123, 42513) is

∞∑

n=0

sn(123, 42513)xn =
(1 − 2x)2(1 − x)

x4 − 9x3 + 12x2 − 6x + 1
,

which is the same as the generating function for the sequence sn(132, 34215), as determined
by Mansour and Vainshtein [10]. Thus {123, 42513} is Wilf-equivalent to {132, 34215}.

2.2.1 Preliminary Definitions

We begin our proof by defining certain forms of permutations π that avoid 123 and 42513
and assigning labels to the corresponding nodes in our generating tree.

If π = π1π2 · · ·πn−1 avoids 123, its structure can be placed into one of two categories.
If πi = n−1 for some i > 1, then we say that π is of form 1. We call the region to the left
of πi region 1, including the space between πi−1 and πi; region 1 contains i − 1 elements.

If π1 = n − 1, we say that π is of form 2. In this case, we let i be the largest integer
such that πi = n − i. If π 6= (n − 1)(n − 2) · · ·21, then we define j to be the integer such
that πi+j = n − i − 1 and we call the region to the left of πi+1 region 0 and the region
between πi+1 and πi+j region 1. The space between πi and πi+1 and the space between
πi+j−1 and πi+j are considered to be part of region 1.

By 123-avoidance, the elements in regions 0 and 1 of π are in decreasing order from
left to right, and all of the sites to the right of region 1 are inactive.

Now, suppose π avoids 123 and 42513 and is of form 1. If π has no occurrence of 2413
with the element playing the 2 in region 1, then we use the label (k, 1A) for the node
corresponding to π, where k is the number of active sites in π, and we say that π is of
form 1A. If π has an occurrence of 2413 with the element playing the 2 in region 1 and π
has k active sites, then we use the label (k, 1B) and say that π is of form 1B. Note that
there must be an occurrence of 2413 with πi playing the role of the 4, since any occurrence
of 2413 must have its 4 to the right of region 1.

If π is of form 2, we determine its label by ignoring region 0, finding the label (l, 1A) or
(l, 1B) of the resulting permutation, and then assigning to π the label (k, 2A) or (k, 2B),
respectively, where k is the number of active sites in π. We will refer to π as being of
form 2A or of form 2B.

Finally, if π = (n − 1)(n − 2) · · ·21, then we use the label (n).

2.2.2 Active Sites

Claim 2.2(a). A permutation π of form 2A has i+2 active sites: the site between πi+j−1

and πi+j and the leftmost i+1 sites in the permutation. All of the children obtained from
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π are of form 1A except the one resulting from inserting n to the left of π1, which is of
form 2A.

Proof. Inserting n anywhere to the left of πi+1 cannot create an occurrence of 42513, as
there would be no element to play the 3. Placing n to the left of π1 creates a permutation
of form 2A with one additional element in region 0, while placing n elsewhere to the left
of πi+1 creates a permutation of form 1A, with anywhere from 1 to i elements in region 1.

Next, if inserting n between πi+j−1 and πi+j created an occurrence of 42513, then
because πi+j could play neither the 1 (no element to its right is larger) nor the 3 (there
needs to be a 1 between the 5 and the 3), π would have to have contained 2413, using the
elements playing the 2, 1, and 3 in the new occurrence of 42513, plus πi+j (after the 2).
This contradicts the assumption that π is of form 2A. Note that inserting n between πi+j−1

and πi+j creates a permutation of form 1A; it cannot create a subsequence of type 2413,
as that would imply that π already contained 2413 (using πi+j in place of n). The new
permutation formed will have π1 = n− 1, π2 = n− 2, . . . , πi = n− i, and πi+1 6= n− i− 1.

Finally, if πi+1 and πi+j−1 are distinct and both in region 1, then inserting n anywhere
between them creates an occurrence of 42513 via π1πi+1nπi+j−1πi+j , so there are no active
sites between them.

Definition. For a permutation π of form 1A with πi = n−1, let k be the smallest integer
such that there exists some l > i for which π1 > πl > πk. If no such k exists for k < i,
then we take k = i − 1.

Claim 2.2(b). A permutation of form 1A has k +1 active sites: the leftmost k sites and
the site immediately to the left of πi. One child is of form 1A, one is of form 2A, and the
others are of form 1B.

Proof. First, the site immediately to the left of πi is active; if inserting n there created a
subsequence πi1πi2nπi3πi4 of type 42513, then πi1πi2(n − 1)πi3πi4 would be of type 42513
as well, which is a contradiction (see Figure 3 for an example). Inserting n in this site
creates a permutation again of form 1A. Next, the elements to the left of πk form a string
of consecutive numbers, so all sites to the left of πk are active, as there would be no
element to play the 3 in a 42513-type subsequence. Inserting n to the left of π1 creates a
permutation of form 2A, while inserting it elsewhere to the left of πk creates a permutation
of form 1B, due to the subsequence π1nπi−1πi of type 2413. Finally, inserting n between
πk and πi−1 creates the type-42513 subsequence π1πknπi−1πl, where l > i is such that
π1 > πl > πk.

Claim 2.2(c). If π is of form 1B or 2B, then the elements in region 1 form a string of
consecutive numbers.

Proof. To show this, we shall make reference to Figure 4. Because the element playing
the 2 in 2413 must be in region 1, we can ignore region 0 in our analysis. As a result, we
need only consider the case in which π is of form 1B.
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(3, 2A) (3, 1B) (5, 1A)(4, 1B)

×

Figure 3: An illustration of the active sites in π = 876329541, which has k = 4 and is
labeled (5, 1A). Arrows denote active sites, and the labels are shown for the length-10
permutations that would result from inserting a 10 in these sites. The underlined elements
show, by 42513-avoidance, that the site between the 3 and the 2 is inactive.

��
��
��

��
��
��

†

††

n − 1

Region 1

πi1

πi1+1

πi2

Figure 4: An element πi2 as shown cannot exist if the permutation contains 2413. See the
proof of Claim 2.2(c).
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Suppose we had πi1 > πi2 > πi1+1 with πi1 and πi1+1 in region 1 and πi2 to the right of
πi = n − 1. There must be at least one additional element to the right of n − 1 in order
for there to be an occurrence of 2413. By 123-avoidance, this element cannot be in one
of the lightly shaded regions, and by 42513-avoidance, it cannot be in the darkly shaded
region. Let πl be the element corresponding to the 2 in 2413. If πl ≥ πi1 , then there would
need to be two elements in the region marked †, in increasing order from left to right, but
this would create a subsequence of type 123 using πi1+1. If πl ≤ πi1+1, then there would
need to be two elements in the region marked ††, one larger than πl and one smaller, with
the smaller one to the left of the larger one, but this would create a subsequence of type
42513 with πi1 , πl, and n − 1. Either way, we have a contradiction.

Claim 2.2(d). The active sites in a permutation π of form 2B are precisely the leftmost
i + 1 sites. One child is of form 2B, and the others are of form 1A.

Proof. First, inserting n in one of the leftmost i+1 sites in π cannot create an occurrence
of 42513, because there would be no element to play the 3. Placing n in any of these sites
creates a permutation of form 1A, unless n is placed in the leftmost site, in which case
the new permutation is of form 2B.

Because we are assuming that π contains 2413, we may suppose that πi+1πi+jπi3πi4

is of type 2413 for some i3, i4 > i + j, as the 2 in the 2413-type subsequence must
be in region 1, and the elements in region 1 are consecutive numbers by Claim 2.2(c).
Inserting n anywhere in region 1 aside from the leftmost site, then, creates the subsequence
π1πi+1nπi3πi4 of type 42513 and so is not allowed. Thus we have accounted for all of the
active sites in π.

Claim 2.2(e). A permutation π of form 1B has i active sites. One of its children is of
form 2B, while the others are all of form 1B.

Proof. By Claim 2.2(c), the elements in region 1 are all consecutive numbers. Thus
all sites in region 1 are active, as in Claim 2.2(d). Inserting n to the left of π1 creates a
permutation of form 2B, while inserting n anywhere else in region 1 creates a permutation
of form 1B (using π1 and the elements playing the 4, 1, and 3 in the original occurrence
of 2413).

2.2.3 Succession Rules

Having analyzed the active sites in our permutations, we are now able to write down the
succession rules for the generating tree.

The only permutation π with the label (k) is π = (k−1)(k−2) · · ·21, so it is not hard
to see that

(k) → (k + 1)(2, 1A)(3, 1A) · · · (k, 1A).

For a permutation of form 2A, we may insert n before π1, somewhere else before πi+1,
or between πi+j−1 and πi+j , giving the following rule:
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(i + 2, 2A) → (i + 3, 2A)(2, 1A)(3, 1A) · · · (i + 1, 1A)(i + 2, 1A).

For a permutation of form 2B, we may place n before π1 or elsewhere before πi+1,
giving the rule

(i + 1, 2B) → (i + 2, 2B)(2, 1A)(3, 1A) · · · (i + 1, 1A).

For a permutation of form 1B, we may insert n anywhere in region 1, so that

(i, 1B) → (2, 2B)(2, 1B)(3, 1B) · · · (i − 1, 1B)(i, 1B).

Lastly, for a permutation of form 1A, inserting n before π1 yields a permutation of
form 2A, inserting n between πi−1 and πi yields a permutation of form 1A having the
same value of k as π, and inserting n elsewhere before πk creates a permutation of form
1B. This leads to the rule

(k + 1, 1A) → (3, 2A)(k + 1, 1A)(2, 1B)(3, 1B) · · · (k, 1B).

We change notation to make the tree clearer, replacing the labels (h), (h, 2A), and
(h, 2B) with (h) (the succession rules are functionally identical for these forms), the labels
(h, 1A) with (h), and the labels (h, 1B) with (h, 2). This gives us the tree

Root: (2)
Rules: (h) → (h + 1)(2)(3) · · · (h)

(h) → (3)(2, 2)(3, 2) · · · (h − 1, 2)(h)
(h, 2) → (2)(2, 2)(3, 2) · · · (h, 2)

The tree specified in this way will be referred to as Tree T.

2.2.4 Generating Function

The task still remains of determining sn(123, 42513). Rows 1-6 of the generating tree are
as follows:

(2) → (3)(2) → (4)(3)(3)(2)2 → (5)(4)(3)3(4)(3)3(2)4(2, 2) →
(6)(5)(4)3(3)8(2)(5)(4)3(3)8(2)9(3, 2)(2, 2)5 →

(7)(6)(5)3(4)8(3)22(2)6(6)(5)3(4)8(3)21(2)23(4, 2)(3, 2)5(2, 2)18.

Because bold labels (4) and higher are only generated via the first rule in Tree T, the
sequence {bi}i≥0 = 1, 1, 3, 8, 22, . . ., defined such that, for m > 1, row m of the tree has
b0 nodes labeled (m + 1), b1 nodes labeled (m), . . . , and bm−2 nodes labeled (3), is well-
defined. Similarly, let {ci}i≥0 = 1, 3, 8, 21, . . . denote the sequence whose first m−2 terms
are the numbers of nodes labeled (m), (m − 1), . . . , (3) in row m (for all m > 2). By
considering the parent nodes of the nodes (k) in some row, we can see by induction that
this sequence is well-defined, as
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cm+1 = b0 + b1 + · · ·+ bm+1 + cm,

regardless of the row number. Finally, we may define {di}i≥0 = 1, 5, 18, . . . to be the
analagous sequence for the labels (·, 2), including (2, 2). By similar reasoning, using the
recurrence relation

dm+1 = c0 + c1 + · · ·+ cm+1 + d0 + d1 + · · · + dm,

we see that the sequence {di}i≥0 is well-defined.
We need a few more facts in order to be able to count the number of nodes in the tree.

First, nodes with label (2) (aside from the root) are only generated via the third rule in
Tree T, so there are d0 + d1 + · · · + dm−5 such nodes in row m for m ≥ 5. Write sn for
sn(123, 42513), with s0 = 1. Every node has one child with a bold label, so, counting the
bold labels in row m + 2, we have

sm+1 = b0 + b1 + · · ·+ bm + d0 + d1 + · · ·+ dm−3.

From the first two rules in Tree T, we see that the exponent of (2) in row m is equal to
the total number of bold labels in rows 1 through m − 1, or s0 + s1 + · · · + sm−2. This
allows us to determine the exponent of (3) in any row and so compute that

bm+1 = d0 + d1 + · · · + dm−3 + s0 + s1 + · · · + sm + c0 + c1 + · · ·+ cm−1.

This gives us four independent recurrence relations in the four sequences {bi}, {ci}, {di},
and {si}, which can be converted into equations in terms of the sequences’ generating
functions and solved simultaneously. In particular, this allows us to compute the gener-
ating function for the sequence {si}. We find that the generating function is

∞∑

n=0

sn(123, 42513)xn =
(1 − 2x)2(1 − x)

x4 − 9x3 + 12x2 − 6x + 1
,

which is the same as the generating fuction for the sequence sn(132, 34215), as determined
by Mansour and Vainshtein [10]. This completes the proof of Theorem 2.

�

3 Further Results

3.1 More Generating Trees

The fourteen generating trees in Section 3.1.2 below are for 3-5 pairs {σ, τ} that have
all previously been proven to belong to the large Wilf-class of pairs with sn(σ, τ) =
(3n−1 + 1)/2, as described in Sections 1.2 and 1.5 (see [7] and [10]). We omit the full
derivations of the trees and the proofs that the trees contain (3n−1 + 1)/2 nodes in row
n. We have only been able to complete these proofs for the first nine pairs, though we
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have checked that the first several rows of the last five trees contain the proper number
of nodes.

3.1.1 Preliminaries and 132-Avoiding Permutations

We keep in mind all observations made until this point about 123-avoiding permutations,
including the definitions of regions 0 and 1 and forms 1 and 2 from Section 2.2.1.

For permutations π avoiding 132, active sites are precisely the sites such that all
elements to the left are greater than all elements to the right. We will divide a 132-
avoiding permutation π into nonempty blocks of adjacent elements in such a way that the
spaces between blocks are exactly the active sites of π. When we refer to sites or spaces
of a permutation that avoids 132, we mean spaces between adjacent blocks. Note that
inserting a new largest element n into π preserves the block structure of the elements to
the right of n and collapses the elements from π1 though n into a single block.

The following two technical claims about 132-avoiding permutations are used exten-
sively in the derivation of the trees that follow; we present them here without proof.

Claim 3.1(a). If π avoids 132, then each block in π either contains 213 or has its elements
in increasing order from left to right.

Claim 3.1(b). If π avoids the two patterns 132 and τ = τ1τ2τ3τ45, with τ4 6= 4, then no
single block in π contains the pattern τ1τ2τ3τ4.

3.1.2 The Trees

We now present the fourteen additional generating trees for 3-5 pairs. In writing succession
rules, we use the convention that strings of labels of the form (k)(k−1) · · · (l) are ignored
when k < l.

A few general observations can be made about the trees below. First, there are
two pairs of isomorphic tress: those for {123, 32154} and {123, 32514} and those for
{132, 32451} and {132, 32415}. Isomorphisms, when they occur, allow us to construct
bijections between the sets of permutations of length n avoiding each pair, by identifying
permutations corresponding to equivalent nodes in the trees. For our two cases, though,
the bijections are not uniquely defined, due to the repetition of labels among the children
of a single node.

There are also some pairs give rise to trees that, while not isomorphic, are quite
similar: {132, 34125}, {132, 34512}, and {123, 31542}; {132, 45213}, {132, 42135}, and
{123, 42153}; and {132, 52134} and {132, 21345}. In general, it seems as though 3-5
pairs for which the length-5 patterns are the children of the the same length-4 pattern
have similar generating trees (for instance, {123, 32514} and {123, 32154}), whereas pairs
that can be proven to be Wilf-equivalent by symmetry often have quite different trees
(for instance, {132, 32415} and {132, 42135}). It would be interesting to see if these
observations could be explained systematically.

1. {123, 32514} : Root: (2)
Rule: (k) → (k + 1)(2)(3)k−2.
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The label (k) is used for a permutation π with k active sites, which are the leftmost
two sites in region 1, the rightmost site in region 1, and all sites in region 0.

2. {123, 32154} : Root: (2)
Rule: (k) → (k + 1)(2)(3)k−2.

Again, the label (k) is used for a permutation with k active sites, which are the
leftmost three sites in region 1 and all sites in region 0, or all sites for the permutation
π = (k − 1)(k − 2) · · · 21.

3. {123, 32415} : Root: (2)
Rule: (k) → (k + 1)(k)(2)k−2.

The label (k) is used for a permutation with k active sites, which are the sites to the
left of the leftmost block that contains 213 and the site immediately to the right of this
block.

4. {123, 32451} : Root: (2)
Rule: (k) → (k + 1)(k)(2)k−2.

Again, the label (k) is used for a permutation π with k active sites, which are now the
rightmost site in π and the sites to the left of the leftmost block that contains 213.

5. {123, 43215} : Root: (2)
Rules: (2) → (2)(3)

(3) → (2)(3)(4)
(4) → (2)(3)(4)(4).

Here, the label (k) is used for a permutation with k active sites, which are the leftmost
k sites in the permutation.

6. {123, 31542} :

Root: (2, 0)
Rules: (k, l) → (k + 1, l)(0, k + 1)l(0, k)(0, k − 1) · · · (0, 2) for k > 0

(0, l) → (1, l)(0, l)(0, l − 1) · · · (0, 2).

The label (k, l) is used for a permutation π with k + l active sites, which are the leftmost
k + l sites in π; (k, 0) is for π = (k − 1)(k − 2) · · ·21, and otherwise k is the number of
elements in region 0.

7. {132, 34512} :

Root: (2, 0)
Rules: (k, l) → (k + 1, l)(0, l)k+1(0, l − 1)(0, l − 2) · · · (0, 2) for l > 0

(k, 0) → (k + 1, 0)(0, k)(0, k − 1) · · · (0, 2).

Here, if π = (k − 1)(k − 2) · · · 21, then we use the label (k, 0), and otherwise a label (k, l)
is used for a permutation with its first k and last l−2 blocks consisting of single elements.
The active sites are the leftmost k + 1 and rightmost l − 1 sites.

8. {132, 34125} :

Root: (2, 0)
Rule: (k, l) → (k + 1, l)(1, k − 1)(1, k − 2) · · · (1, 1)(1, l)(1, l − 1) · · · (1, 1).
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The label (k, l) is for a permutation whose first k − 1 blocks are single elements, followed
by a multiple-element block, followed by l− 1 single-element blocks; the label (k, 0) is for
π = (k − 1)(k − 2) · · · 21. The active sites are the k + l leftmost sites.

9. {123, 42153} : Root: (2,0)
Rules: (k, 0) → (k + 1, 0)(k)(k − 1) · · · (2)

(k, 2) → (k + 1, 2)(k + 2)(k + 1) · · · (2)
(k) → (1, 2)(k)(k − 1) · · · (2).

If π is of form 1, it is given the label k if it has k−1 elements in region 1; the leftmost k
sites are all active. If π is of form 2, with k elements in region 0, then its leftmost k+2 sites
are active and we use the label (k, 2). The label (k, 0) is used for π = (k−1)(k−2) · · ·21.

10. {123, 42135} : Root: (2)
Rules: (k) → (k + 1)(k)(k − 1, 2)(k − 2, 2) · · · (2, 2)

(k, 2) → (2)(k, 2)(k − 1, 2) · · · (2, 2).
If the leftmost block in π does not contain 213, then we use the label (k) for π, where

the first k−1 blocks in π avoid 213 and the active sites are the first k sites. If the leftmost
block in π contains 213 and the next k − 2 blocks are single elements, then we use the
label (k, 2); the leftmost k sites are active.

11. {132, 45213} :

Root: (2, 0)
Rules: (k, 0) → (k + 1, 0)(k, 0)(k − 2, 1)(k − 3, 1) · · · (1, 1)

(k, 1) → (k, 1)2(k − 1, 1)(k − 2, 1) · · · (1, 1).

If π has k−1 blocks, none of which contain 213, then we use the label (k, 0); π has k active
sites. Otherwise, if there are k − 1 blocks to the right of the rightmost block containing
213, then we use the label (k, 1). In this case, π has k + 1 active sites: the rightmost k
spaces between blocks and the space to the left of π1.

12. {132, 21345} :

Root: (2, 0)
Rules: (k, l) → (k + 1, l)(k, l)(1, 0)l(1, k + l − 2)(1, k + l − 3) · · · (1, l + 1)

(for k > 2)
(1, l) → (2, l)(1, 0)l

(2, l) → (3, l)(2, l)(1, 0)l.

If the (k + l)th block from the left is the leftmost block in π containing 2134, then π has
k + l active sites, which are the sites to the left of this block. If no block contains 2134,
then all spaces between blocks are active. We use the label (k, l) if the kth block from
the left is the first containing 213 and the label (k, 0) if no block contains 213.

13. {132, 52134} :

Root: (2, 0)
Rule: (k, l) → (k + 1, l)(k, l)(1, k + l − 2)(1, k + l − 3) · · · (1, l + 1)

(0, l)(0, l − 1) · · · (0, 1).
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In this succession rule, the term (k +1, l) is only included when k > 0, and the term (k, l)
is only included when k > 1. The sequence of terms (1, k + l− 2)(1, k + l− 3) · · · (1, l +1)
is only included when k > 2, and the sequence (0, l)(0, l − 1) · · · (0, 1) is only included
when l > 0.

If none of the k + l − 1 blocks in π contain 2134, then we use the label (k, l) if the

leftmost block containing 213 is the kth block from the left (or (k, 0) if π avoids 213);
all k + l sites are active. If some block contains 2134, then we use the label (0, l) if the

rightmost block containing 2134 is the lth block from the right; the rightmost l sites are
active.

14. {132, 23415} :

Root: (2, 0)
Rules: (k, l) → (k + 1, l)(1, 1)l(1, k + l − 1)(1, k + l − 2) · · · (1, l + 1)

(for k > 1)
(1, l) → (2, l)(1, 1)l.

If π = (k − 1)(k − 2) · · ·21, we use the label (k, 0). Otherwise, suppose the kth block
from the left is the leftmost one containing more than one element. If π has k + l blocks
in total, none of which contain 123, then we use the label (k, l), and all sites are active.

If the (k + l − 1)th block from the left is the leftmost one containing 123, then there are
k + l active sites, and we use the label (k, l).

3.2 3-6 Pairs

We include one generating tree for a 3-6 pair, {123, 362514}, below, along with a sketch
of its derivation.

There are sixty-four 3-6 pairs that have been proven to be Wilf-equivalent with∑∞
n=0 sn(·, ·)xn = (1 − 4x + 3x2)/(1 − 5x + 6x2 − x3) (see [7], [9], [10], [11], and [12]).

Numerical evidence shows that the only other 3-6 pair that could belong to this Wilf-class
is {123, 362514}. We have not been able to prove that it belongs, but from computer data,
we know that sn(123, 362514) does match the others through at least n = 11, and the
first seven rows of the tree below have been checked.

Root: (2, 0)
Rules: (k) → (1, k)(k)(2)k−2

(k, l) → (k + 1, l)(k + l)(2)(3) · · · (k + 1)(k + 2)l−2 for l > 1
(k, 0) → (k + 1, 0)(2)(3) · · · (k).

Let π be a permutation avoiding 123 and 362514. If π = (k − 1)(k − 2) · · ·21, we use the
label (k, 0), and π has k active sites.

If π 6= (k − 1)(k − 2) · · ·21, then we note first that all sites in region 0 are active. If
there are any inactive sites in region 1, they must be between the elements playing the 3
and the 2 in an occurrence of 3214 having the 3 and 2 in region 1 and the 1 and 4 to the
right of region 1. We use the label (k) for a permutation of form 1 with k active sites and
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the label (k, l) (for l > 0) for a permutation of form 2 with k elements in region 0 and l
active sites in region 1.

4 Some Ideas for Future Work

Eventually, it would be interesting to see if the work in this paper, perhaps extended to
3-6 pairs or other sets of patterns, could be used to help derive more general results about
Wilf-equivalence. For example, perhaps relationships could be found among generating
trees that would allow for a more systematic method for deriving them (see the beginning
of Section 3.1.2). Also, while the Wilf-classification of 3-5 pairs is now complete, no
explicit bijections are known between any two of the sets Sn(τ, σ). Finally, it would be
useful to obtain a compact formula to calculate the generating function

∑∞
n=0 sn(123, τ)xn

for pairs {123, τ} with τ as general as possible, as Mansour and Vainshtein did for all pairs
{132, τ} in [10].
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