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Abstract

We prove the nonexistence of several four-dimensional codes over GF(8) that
meet the Griesmer bound. The proofs use geometric methods based on the analysis
of the weight structure of subcodes. The specific parameters of the codes ruled
out are: [111, 4, 96], [110, 4, 95], [102, 4, 88], [101, 4, 87], [93, 4, 80], and the sequence
[29 − j, 4, 24 − j], for j = 0, 1, 2.

1 Introduction

An [n, k, d]q code is a linear code of length n and dimension k over the finite field GF(q), for
which the minimum distance between different codewords is d. Such a code is traditionally
called “optimal” if n is as small as possible among linear codes with the same k and d.
The famous Griesmer bound asserts that the minimum value nq(k, d) of n satisfies

n ≥ gq(k, d) = d +

⌈
d

q

⌉
+ . . . +

⌈
d

qk−1

⌉
,

and codes meeting this bound are called Griesmer codes. Optimal codes have been
the object of research for some time. As with many combinatorial problems dealing
with structures meeting bounds, optimal codes often exhibit special properties. These
generally relate to the geometrical setting for linear codes that is commonly invoked. The
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important theorem of Belov says that if q and k are fixed, then Griesmer codes exist for
large enough d. Its proof can be framed in a natural way with the geometric setting.

The two survey articles by Hill [5] and Hill and Kolev [6] present background material
and elaborate on the concepts just described. Hirschfeld’s comprehensive book [7] contains
a nutshell view of the geometric aspect of codes. A web server maintained by Brouwer
[2] gives lower and upper bounds on d in terms of n and k for q = 2, 3, 4, 5, 7, 8, 9, from
which a range on nq(k, d) can be inferred. In a paper [11] directly relevant to ours, Maruta
presents some ranges for d in terms of general q for which nq(4, d) = gq(4, d) or gq(4, d)+1,
along with ranges for which it is certain that nq(4, d) > gq(4, d).

In this paper we shall deal with some possible Griesmer codes over GF(8). As might
be expected, the larger the field, the more involved the problem. Partly in response, we
address certain codes that could exhibit divisibility properties. A linear code is divisible
if all of its word weights share a common divisor larger than 1. Optimal codes are often
divisible, and this is especially true of Griesmer codes; the paper [13] surveys some of the
results in this direction. The advantage of divisibility is evident: the number of possi-
bilities for word weights is diminished and the investigation of the code correspondingly
simplified.

Our work aims at showing certain Griesmer codes do not exist. One sad consequence
is that the geometric patterns that arise must evaporate with the disappearance of the
codes! Perhaps the patterns could be employed in a positive way in another context.

2 Preliminaries

Before specializing to the main subject of this paper, four-dimensional codes over GF (8),
we shall give some introductory comments and set the geometric stage that will be used.

Let C be a linear code of length n and dimension k over the field GF(q). The support
supp(c) of a word c in C is the set of coordinate positions at which c has nonzero entries;
and the weight wt(c) is |supp(c)|. The support of C itself is the union of the supports of
the members of C, and the support length n(C) is the size of this support. Code C can
be modified in two standard ways: a punctured code arises from deleting a given set S of
coordinates from all the codewords (and being mindful of the fact that the resulting code
may have lower dimension); and a shortened code is the punctured code of the subcode
comprising the words having zeros at the positions in S. (These codes are obtained by
puncturing or shortening at S.) In particular, we have the residual code Res(C, c) of C
at a chosen codeword c, the code obtained by puncturing C at supp(c).

Lemma 1 [4] Let C be an [n, k, d]q code, and let c be a member of C. Let w = wt(c) and
suppose that w < qd/(q − 1). Then Res(C, c) is an [n − w, k − 1, d − w + dw/qe]q code.

This lemma is key in inductive arguments: if no code with the residual parameters exists
for a given value of w then there can be no word of weight w in C.

The MacWilliams identities are of paramount importance and we use them in the
following form: for a code C of length n and dimension k over GF(q), let Ai be the
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number of words of weight i in C and Bj the number of words of weight j in the dual C⊥

of C (if the code needs specifying, we write things like Ai(C)). Then for 0 ≤ m ≤ n,

n∑
i=m

(
i

m

)
Ai = qk−m

m∑
j=0

(
n − j

m − j

)
(q − 1)m−j(−1)jBj

(see, for example, [8, Section 7.2, equation (M2)]). An application of the MacWilliams
identities involves the observation that if b is a word in C⊥ with wt(b) = j, and we
shorten C at supp(b), the resulting code has length n− j but dimension at least k− j +1.
Consequently, if it is known that no [n − j, k − j + 1, d]q code exists, we can conclude
that Bj = 0 [5, Lemma 3.3]. If Bj = 0 for the values j = 1, . . . , m, then the first m + 1
MacWilliams identities have right-hand sides expressed by the parameters n, k, q alone.
They thus give a collection of equations satisfied by the Ai independent of the particular
code.

The ray c determined by a nonzero codeword c is the set of nonzero scalar multiples
of c, that is, the nonzero members of the span of c. These multiples all have weight wt(c)
and that common weight is declared to be the weight wt(c) of the ray. If c is a nonzero
codeword in a ray c, we speak of Res(C, c) as the residual at c, since Res(C, c) depends
only on supp(c). We shall often refer to rays simply by their weights: “a 92-ray” or just
“a 92” means a ray of weight 92. Rays can be construed as the points of the projective
space C determined by C. We shall adopt a geometric language in what follows, except
that “ray” will be used in place of “point.” In general, the projective set that comprises
the rays in a subspace D of C will be denoted by the matching boldface symbol, D. We
set ai = Ai/(q − 1) and bj = Bj/(q − 1); these are the numbers of rays of weight i in C
and j in C⊥, respectively, and we refer to the ai as forming the weight distribution of C
itself. The MacWilliams identities can be divided by q−1 to give corresponding identities
connecting the ai and the bj (on making allowance for A0 = B0 = 1):

n∑
i=1

ai =
qk − 1

q − 1

n∑
i=m

(
i

m

)
ai = qk−m

{(
n

m

)
(q − 1)m−1 +

m∑
j=1

(
n − j

m − j

)
(q − 1)m−j(−1)jbj

}

with m > 0 in the second line. The case m = 1 is singled out as the Average Weight
Equation (AWE ). Here b1 is the number of coordinate positions at which all words in C
show zeros. Traditionally one sets b1 = z, making n(C) = n − z. Then AWE reads:

n∑
i=1

iai = qk−1(n − z) = qk−1n(C). (AWE)

Suppose that C is an [n, k, d]q code with b1 = b2 = 0, as will be the case for the main
codes to be discussed. Define the displacement δ(c) of a ray c by δ(c) = wt(c) − d.
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Then for given α and β, the first three of the MacWilliams identities can be combined to
produce the quadratic relation

∑n−d
δ=0 (δ − α)(δ − β)aδ+d =

qk − 1

q − 1
αβ −

{
qk−1n − d

qk − 1

q − 1

}
(α + β)

+qk−2n((q − 1)n + 1) − 2dqk−1n

+d2 qk − 1

q − 1

(1)

If we set Q(δ) = (δ − α)(δ − β), the summation is
∑

c Q(δ(c)), taken over C. We shall
denote the right side by Q(C).

From here on, we shall take q = 8 and omit the subscript “8” on the code parameters.
We need the weight distributions of some potential residual codes, all of them Griesmer.
They are readily obtained from the MacWilliams identities and are tabulated here:

Code parameters Weight Distribution
[10, 3, 8] a8 = 45, a10 = 28
[9, 3, 7] a7 = 36, a8 = 9, a9 = 28
[8, 3, 6] a6 = 28, a7 = 16, a8 = 29
[7, 3, 5] a5 = 21, a6 = 21, a7 = 31
[6, 3, 4] a4 = 15, a5 = 24, a6 = 34
[5, 3, 3] a3 = 10, a4 = 25, a5 = 38
[4, 3, 2] a2 = 6, a3 = 24, a4 = 43
[3, 3, 1] a1 = 3, a2 = 21, a3 = 49

(2)

This result on divisibility will be applied frequently:

Lemma 2 [13, Proposition 13] If C is a Griesmer code over GF(8) whose minimum
weight is a multiple of 8, then C is an even code: all of its word weights are divisible by
2.

The quadratic relation (1) will often be used in conjunction with an analysis of ray
weights for a line. Suppose that the nine rays ci of a line L in an [n, k, d] code have
displacements δi = δ(ci), ray c0 being singled out. Then by AWE,

δ0 + d +
8∑

i=1

(δi + d) = 8(n − z),

where z = z(L) is the number of coordinate positions at which all nine rays show 0s.
Thus

8∑
i=1

δi = 8n − 9d − δ0 − 8z. (3)

This relation serves to restrict the possibilities for the values of the δi. Notice that L
projects onto a ray of weight n − d − δ0 − z in the residual at c0.

the electronic journal of combinatorics 13 (2006), #R43 4



3 Two non-existent Griesmer codes

The preceding results provide the initial steps of the investigation of the codes to be dealt
with in the paper. Here is an algorithm to be followed for an [n, 4, d] code:

Algorithm 3

1. From implied residual parameters, eliminate selected values as potential codeword
weights. Let ∆ be the displacement set, the set of allowed displacements remain-
ing after this step.

2. Rule out further members of ∆ one at a time by taking one as δ0 and showing that
equation (3) cannot be satisfied with the δi coming from ∆.

3. Having trimmed ∆ as far as possible and having shown that b1 = b2 = 0, apply the
quadratic relation (1) for well-chosen α and β either to arrive at a contradiction or
to obtain further restrictions on the weight enumerator.

In presenting the analysis for a particular code, we may skimp on details.

3.1 On the [111,4,96] code

Suppose that C is a [111, 4, 96] code. Since C is a Griesmer code and the minimum weight
is a multiple of 8, Lemma 2 implies that C is an even code. Following the algorithm we
have:

1. For the code C, ai = 0 for i = 98, 100,106, and 108: by Lemma 1, the residuals
for words of these weights have parameters [13, 3, 11], [11, 3, 9], [5, 3, 4], and [3, 3, 2],
and all of these are ruled out by the Griesmer bound. The displacement set is now
∆ = {0, 6, 8, 14}.

2. We have a102 = a110 = 0 for the code C: equation (3) becomes

8∑
i=1

δi = 8 × 111 − 9 × 96 − δ0 − 8z = 24 − δ0 − 8z.

For a ray c of weight 102, there must be a line with z = 2 containing c, namely
the preimage of a ray of weight 7 in the residual at c. But δ0 = 6 and z = 2
requires

∑8
i=1 δi = 2, which is not feasible with the δi in ∆. Thus a102 = 0 and the

displacement set shrinks to {0, 8, 14}. Similarly, a line with z = 1 on a ray of weight
110 also requires

∑8
i=1 δi = 2, still not possible.

3. At this point the displacement set is just {0, 8}. The Griesmer bound prohibits
[110, 4, 96] and [109, 3, 96] codes, so b1 = b2 = 0. The quadratic relation (1) applies
with α = 0 and β = 8 to give∑

δ=0,8

δ(δ − 8)aδ+96 = 1152.
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But the left side is 0, and we have a contradiction. Thus:

Theorem 4 There is no [111, 4, 96] code.

3.2 On the [102,4,88] code

A [102, 4, 88] code is Griesmer and even, by Lemma 2. The Griesmer bound rules out
[101, 4, 88] and [100, 3, 88] codes, so that b1 = b2 = 0.

1. In a [102, 4, 88] code, a90 = a98 = a100 = 0: the needed residual codes with parame-
ters [12, 3, 10], [4, 3, 3] and [2, 3, 1] do not exist. Thus ∆ = {0, 4, 6, 8, 14}.

2. Further, a94 = a102 = 0. For a ray of weight 94 on a line with z = 2 required by
the [8, 3, 6] residual, (3) reads

∑8
i=1 δi = 2, not allowed by ∆. Likewise, a line on

a ray of weight 102, necessarily with z = 0, requires
∑8

i=1 δi = 10, but now using
∆ = {0, 4, 8, 14}. Again, this is not possible.

3. Our displacement set is now {0, 4, 8}, and we use the quadratic relation (1) with
α = 0, β = 8 to see that (4− 0)(4− 8)a92 = −16a92 = 384, which cannot be. Hence

Theorem 5 No [102, 4, 88] code exists.

4 Corresponding punctured codes

We next show that there are no [110, 4, 95] or [101, 4, 87] codes, using a modification of
step 2 of Algorithm 3. The quadratic relation (1) with α = β = 0 becomes the square
relation

∑
c

δ(c)2 = qk−2n((q − 1)n + 1) − 2dqk−1n + d2 qk − 1

q − 1
= S(C). (4)

With q = 8 and k = 4, we have

S(C) = 64n(7n + 1) − 1024nd + 585d2. (5)

Let c0 be a fixed ray with δ(c0) = δ0, and for a line L on c0 put S(L) =
∑

c∈L−{c0} δ(c)2.

Then
∑

L S(L) = S(C) − δ2
0, the sum over the lines L containing c0. We sort these lines

by the corresponding values of z. When the residual at c0 is three-dimensional and a′
j

is the number of rays of weight j in it, there are a′
n−d−δ0−z such lines (lower dimensional

cases will be dealt with separately). If δ0 and δ1, . . . , δ8 are the displacements of the
rays on a line L, and z = z(L), the δi are related by (3):

∑8
i=1 δi = 8n − 9d − δ0 − 8z.

Let Sz be the maximum of
∑8

i=1 δ2
i subject to this relation, with the δi coming from the

current displacement set. Then
∑

L S(L) ≤ ∑
j a′

jSn−d−δ0−j . If this last sum falls short of

S(C)−δ2
0 in the square relation, then we have a contradiction, and no ray of displacement

δ0 exists.
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For reference, the inequality needing to be established is∑
j

a′
jSn−d−δ0−j < S(C) − δ2

0 = 64n(7n + 1) − 1024dn + 585d2 − δ2
0 (6)

(again with modifications for residuals of dimension smaller than 3).
Examination of the partitions

∑8
i=1 δi = 8n−9d−δ0−8z for the maximum of

∑8
i=1 δ2

i

is expedited by the fact that if δi ≥ δj and ε > 0, then (δi +ε)2 +(δj −ε)2 > δ2
i +δ2

j . There
will generally be only a few “extremal” partitions in which one cannot move to another
legitimate one (the δi in the displacement set) having higher

∑8
i=1 δ2

i using one or more
changes of pairs from δi, δj to δi + ε, δj − ε. From these, the one with largest

∑8
i=1 δ2

i is
then Sz.

4.1 On the [110, 4, 95] code

For a [110, 4, 95] code, b1 = b2 = 0 as for the others. Equation (3) becomes

8∑
i=1

δi = 8 × 110 − 9 × 95 − δ0 − 8z = 25 − δ0 − 8z.

We have S(C) = 6665 in (5).

1. The Griesmer bound applied to residual parameters rules out rays of weight 97, 98,
99, 105, 106, 107, and 108 in C. The displacement set is then

∆ = {0, 1, 5, 6, 7, 8, 9, 14, 15}.

2. In this step, we rule out weights 110, 109, and 104.

110: Here δ0 = 15, and z can only be 0. Then
∑8

i=1 δi = 10. The extremal partition
is 9 + 1 + 6 × 0, and S0 = 82. As 73 × 82 = 5986 < 6665 − 152 = 6440, weight 110
is ruled out.

109: Now δ0 = 14 and ∆ = {0, 1, 5, 6, 7, 8, 9, 14}. The residual is one-dimensional,
so there are 64 lines with z = 0 and 9 with z = 1 on a ray of weight 109. The
equation for z = 0 is

∑8
i=1 δi = 11, with extremal partitions 9 + 2 × 1 + 5 × 0 and

6+5+6×0, making S0 = 83. At z = 1, we just need
∑8

i=1 δi = 3; the only partition
is 3 × 1 + 5 × 0, and S1 = 3. The comparison for (6) is

64 × 83 + 9 × 3 = 5339 < 6665 − 142 = 6469.

This inequality rules out 109.

104: ∆ = {0, 1, 5, 6, 7, 8, 9} and δ0 = 9. For the [6, 3, 4] residual, a4 = 15, a5 = 24,
and a6 = 34. When z = 0, we need

∑8
i=1 δi = 16. The extremal partition is

9 + 7 + 6 × 0, giving S0 = 130. At z = 1,
∑8

i=1 δi = 8, the extremal partition is
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8 + 7 × 0, and S1 = 64. Finally, for z = 2, the partition is 8 × 0, making S2 = 0.
Our inequality is

34 × 130 + 24 × 64 = 5956 < 6665 − 92 = 6584,

which eliminates 104.

3. The displacement set is now ∆ = {0, 1, 5, 6, 7, 8}. This time put Q = (δ − 4)2,
making Q(C) = 10065. The largest value of δ2 in ∆ is 64, so that

∑
c Q(c) ≤

585 × 16 = 9360. As that is too small, we have arrived at

Theorem 6 There is no [110, 4, 85] code.

4.2 On the [101, 4, 87] code

As ever, b1 = b2 = 0 for a [101, 4, 87] code. The line equation (3) still requires

8∑
i=1

δi = 8 × 101 − 9 × 87 − δ0 − 8z = 25 − δ0 − 8z;

and S(C) = 6489.

1. The residual step in Algorithm 3 eliminates the weights 89, 90, 97, 98, and 99,
making ∆ = {0, 1, 4, 5, 6, 7, 8, 9, 13, 14}.

2. We eliminate weights step-by-step again:

101: For z = 0, the only case,
∑8

i=1 δi = 11; the two extremal partitions are
9 + 1 + 1 + 5× 0 and 7 + 4 + 6× 0, so that S0 = 83. With δ0 = 14, the comparison
(6) is just

73 × 83 = 6059 < 6489 − 142 = 6293,

and 101 is eliminated.

100: Here δ0 = 13. As before, z = 0 for 64 lines; we need
∑8

i=1 δi = 12, and the
two extremal partitions are 9 + 3× 1 + 4× 0 and 8 + 4 + 6 × 0. Thus S0 = 84. For
the remaining nine lines with z = 1,

∑8
i=1 δi = 4, for which we have 4 + 7 × 0 and

S1 = 16. Once again, we have a contradiction:

64 × 84 + 9 × 16 = 5520 < 6489 − 132 = 6320.

From here on, we work up through lower weights. The details for the various weights
are much the same, and we shall simply tabulate values.

91: δ0 = 4 and ∆ = {0, 1, 4, 5, 6, 7, 8, 9}.
z # lines

∑8
i=1 δi = extremal partitions Sz

0 28 21

{
2 × 9 + 3 × 1 + 3 × 0

9 + 8 + 4 + 5 × 0
165

1 0
2 45 5 5 + 7 × 0 25
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The eliminating inequality reads

28 × 165 + 45 × 25 = 5745 < 6489 − 42 = 6473.

92: δ0 = 5 and ∆ = {0, 1, 5, 6, 7, 8, 9}.

z # lines
∑8

i=1 δi = extremal partitions Sz

0 28 20 2 × 9 + 2 × 1 + 4 × 0 164

1 9 12

{
9 + 3 × 1 + 4 × 0

7 + 5 + 6 × 0
84

2 36 4 4 × 1 + 4 × 0 4

Eliminating inequality:

28 × 164 + 9 × 84 + 36 × 4 = 5492 < 6489 − 52 = 6464.

93: δ0 = 6 and ∆ = {0, 1, 6, 7, 8, 9}.

z # lines
∑8

i=1 δi = extremal partitions Sz

0 29 19 2 × 9 + 1 + 5 × 0 163
1 16 11 9 + 2 × 1 + 5 × 0 83
2 28 3 3 × 1 + 5 × 0 3

Eliminating inequality:

29 × 163 + 16 × 83 + 28 × 3 = 6139 < 6489 − 62 = 6453.

At this point, no further eliminations succeed.

3. The displacement set is now {0, 1, 7, 8, 9}, and the weight enumerator, with a95 and
a96 as parameters, is

a87 =
4048

7
− a95 − 16

7
a96

a88 = −385

3
+

4

3
a95 + 3a96

a94 =
2836

21
− 4

3
a95 − 12

7
a96

Integrality implies that a96 6= 0. For the residual of a 96, a′
5 = 38. With δ0 =

96− 87 = 9, the line equation is
∑8

i=1 δi = 16− 8z, so that only for z = 0 can there
be a 9 among the δi, and then at most one. This all means that 0 < a96 ≤ 38+1 = 39.
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To rule out the code, we could apply an extension theorem of Maruta [12, Theorem
1.5] to provide an additional restriction on the ai. Since the code does not extend to a
[102, 4, 88] code (because that doesn’t exist!), Maruta’s theorem requires that∑

i6≡87 (mod 8/2)

Ai = A88 + A94 + A96 ≥ 84−2(2 × 8 − 1) − 1 = 959.

From the weight enumerator, this inequality is 47 + 16a96 ≥ 959, or a96 ≥ 57–an incon-
sistency.

However, here is a “stand-alone” proof drawing on the circle of ideas in [13] that
involves the same computation as in Maruta’s theorem: if λ1, . . . , λ101 are the coordinate
functionals of the code, then for a codeword c, wt(c) ≡ ∑

λi(c)
7 (mod 2). When the

hypothetical code C is viewed as a space over GF(2), the sum on the right is a polynomial
function of degree at most 3; so too is the function c → 1+wt(c) (mod 2). As the GF(2)
dimension of C is 12, this function defines a word w in the Reed-Muller code R(3, 12) (see,
for example, [9, Chapters 13, 15]). The weight wt(w) of w is 1+A88+A94+A96 = 48+16a96.
Since a96 ≤ 39, wt(w) ≤ 672. The minimum weight of R(3, 12) is 212−3 = 512, so that
512 ≤ wt(w) < 2 × 512; in particular, 48 + 16a96 ≥ 512 and a96 ≥ 29. By the theorem of
Kasami and Tokura [9, Chapter 15, Theorem 11], wt(w) then has the form 1024(1−2−h).
Now 1024(1 − 2−h) ≤ 672 forces h = 1, and w is a word of minimum weight in R(3, 12).
Consequently w is the characteristic function of a 9-flat in C as a GF(2)-space [9, Chapter
13, Theorem 5]; the flat is actually a subspace, because the zero word is in it. But since
wt(αc) = wt(c) for α ∈ GF(8), this subspace is a GF(8)-subspace of C. That is: the
words of even weight in C form a 3-dimensional subcode of C.

Thus we see a [101, 3, 88] code with nonzero word weights 88, 94, 96. It is a Griesmer
code and for it, b1 = 0. The MacWilliams identities give a88 = 199

3
+ 1

3
a96, a94 = 20

3
− 4

3
a96.

But then a96 ≤ 5, incompatible with a96 ≥ 29.

Theorem 7 No [101, 4, 87] code exists.

5 On the code sequence [29 − j, 4, 24 − j]8, j = 0, 1, 2

We include–or rather, exclude–these three codes for the record. They would all be Gries-
mer and would form a sequence of codes obtained by successive puncturings. Thus if the
lowest one, [27, 4, 22], does not exist, none of them do. For a hypothetical [27, 4, 22] code,
equation (3) at z = 2 for a ray of weight 25 reads∑

δi = 8 × 27 − 9 × 22 − 3 − 2 × 8 = −1,

so that A25 = 0 (the residual dimension is only 2, and a line with z = 2 is required). As the
three successive shortenings [26, 4, 22], [25, 3, 22], and [24, 2, 22] all violate the Griesmer
bound, B1 = B2 = B3 = 0, by Lemma 1. But then the MacWilliams identities give the
disconcerting result that A23 = −1008 − 5A27; so the code does not exist.
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6 On the [93, 4, 80]8 code

6.1 Initial results

For the rest of the discussion, let C be a hypothetical [93, 4, 80] code, with corresponding
projective space C. As will become apparent, a more intricate analysis is needed now.
Such a code would meet the Griesmer bound, so that by [13, Proposition 13] the weights
of the codewords in C are multiples of 2. Residuals rule out all weights except 80, 84,
86, 88, and 92, making the displacement set ∆ = {0, 4, 6, 8, 12}. If there were an 86-ray,
δ0 = 6, the preimage of a 5-ray from the residual would be a line on the 86-ray with z = 2.
The line equation (3) would read

8∑
i=1

δi = 8n − 9d − δ0 − 8z = 24 − 6 − 16 = 2,

and that cannot be completed from the members of ∆.
Again the Griesmer bound prohibits [92, 4, 80] and [91, 3, 80] codes, so that b1 = b2 = 0.

Then the MacWilliams identities give the following weight distribution, with a92 as a
parameter:

a80 = 471 − a92, a84 = 24 + 3a92, a88 = 90 − 3a92, b3 = 982 − 8a92.

6.2 Lines

As with the previous codes, we use an analysis of the lines, but in rather more detail. The
displacement set is ∆ = {0, 4, 8, 12}, and the line equation is

8∑
i=0

δi = 24 − 8z.

Let the type of line L be the sequence a0a4a8a12, where aδ is the number of rays c on L
with δ(c) = δ. We refer to L as an a0a4a8a12-line, or as a z(L)-line if we don’t need the
specific type. Then the possibilities for the types are:

type z(L) type z(L)
9000 3 3600 0
7200 2 4410 0
8010 2 5220 0
5400 1 5301 0
6210 1 6030 0
7020 1 6111 0
7101 1 7002 0

(7)

Let labcd be the number of abcd-lines in C. Then we get a set of equations by counting
rays and pairs of rays by their weights, according as to how many lines they lie in. There

the electronic journal of combinatorics 13 (2006), #R43 11



are
(84 − 1)(84 − 8)

(82 − 1)(82 − 8)
= 4745

lines altogether, and each ray is in (83 − 1)/(8 − 1) = 73 lines; each pair of distinct rays
is in one line. For example,

73a88 = l8010 + l6210 + 2l7020 + l4410 + 2l5220 + 3l6030 + l6111

a84a88 = 2l6210 + 4l4410 + 4l5220 + l6111(
a92

2

)
= l7002

Two more equations come from the weight distributions of the residual codes in (2): the
preimage of a 7-ray in an 84 residual must be a 7200-line. Thus each 84 is on 36 such
lines. As each line is counted twice by its 84s, l7200 = 18a84. Similarly, l8010 = 10a88. The
whole set of equations can be solved with a92, l6030, and l7020 as parameters; but we shall
only need a few of the results:

l5400 = −1071 + 42a92 + l7020
l4410 = −6a2

92 + 333a92 − 4590 + 3l6030 + 2l7020
l3600 = 2a2

92 − 121a92 + 1837 − l6030 − l7020

(8)

We know from 0 ≤ a88 = 90 − 3a92 that a92 ≤ 30 to begin with. As

0 ≤ 3l3600 + l4410 + l5400 = 12a92 − 150,

we infer that a92 ≥ 13. Similarly,

0 ≤ l5400 + l3600 + l6030 = 2a2
92 − 79a92 + 766 ≈ 2(a92 − 17.09)(a92 − 22.41).

Thus we obtain

Condition 8 Either 13 ≤ a92 ≤ 17 or a92 ≥ 23.

6.3 Planes

To refine the results, we consider subcodes P of C of dimension 3, corresponding to
(projective) planes P in C.

6.3.1 Short planes

First suppose that P is a shortening of C, necessarily a [92, 3, 80] code by the Griesmer
bound. The plane P will be called a short plane. Since 7002-lines have z = 0, a
short plane P contains no such line and a92(P) = 0 or 1. In what follows, we shall
use the parameters e = a88(P) and f = a92(P) when dealing with planes. Solving the
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MacWilliams equations with B1(P ) = 0 gives a80(P) = 61+e+2f , a84(P) = 12−2e−3f .
With the restriction f = 0, 1, these distributions result:

a80(P) = 63 67 66 65 64 63 62 61
a84(P) = 9 0 2 4 6 8 10 12
a88(P) = 0 6 5 4 3 2 1 0
a92(P) = 1 0 0 0 0 0 0 0

Now do line counting in P. There are just seven possibilities for line types, those with
z = 1, 2, or 3: 9000, 7200, 8010, 5400, 6210, 7020, and 7101. Let mabcd stand for the
number of abcd-lines in P, and create the same sorts of equations as for the labcd. This
time there are 73 lines and each ray is in 9. When f = 1, there is just the one solution,
given in the table below. For f = 0, the solution of the equations is

m9000 = 2e + 22
m7200 = 8(6 − e)
m8010 = 4e

m5400 =
1

2
(e − 1)(e − 6)

m6210 = e(6 − e)

m7020 =
1

2
e(e − 1)

m7101 = 0

(9)

Then m7200 ≥ 0 implies that e ≤ 6; but 0 ≤ m5400 = (e− 1)(e− 6)/2 shows that if e < 6,
then in fact e = 0 or 1. Thus there are only four possibilities for the weight distribution
of P and the corresponding mabcd. The type of each plane will be taken as the type abcd
of 1-line that the plane contains, and we shall refer to the plane as an abcd short plane.

number of planes = s5400 s6210 s7020 s7101

a80 = 61 62 67 63
a84 = 12 10 0 9
e = 0 1 6 0
f = 0 0 0 1

m9000 = 22 24 34 28
m7200 = 48 40 0 36
m8010 = 0 4 24 0
m5400 = 3 0 0 0
m6210 = 0 5 0 0
m7020 = 0 0 15 0
m7101 = 0 0 0 9

(10)

Codes with each of these parameters exist, although they may not all appear in C. Each
1-line occurs in exactly one short plane, and it follows that l5400 = 3s5400, l6210 = 5s6210,
l7020 = 15s7020, and l7101 = 9s7101; of course s7101 = a92. The new ingredient is the
divisibilities of the l-values. In particular l7020 has to be a multiple of 15 with

−42a92 + 1071 ≤ l7020 ≤ 2a2
92 − 121a92 + 1837,
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by the nonnegativity of the labcd in (8). When a92 = 17 this reads 357 ≤ l7020 ≤ 358, with
no room for a multiple of 15; consequently

Condition 9 For the hypothetical code C, a92 = 17 is ruled out.

Counting all rays in C, we obtain these equations for the sabcd, observing that a ray
of weight w appears in 93 − w of the short planes:

93 = s5400 + s6210 + s7020 + s7101

13a80 = 61s5400 + 62s6210 + 67s7020 + 63s7101

9a84 = 12s5400 + 10s6210 + 9s7101

5a88 = s6210 + 6s7020

a92 = s7101

Their solution is
s5400 = 5s7020 + 14a92 − 357
s6210 = −6s7020 − 15a92 + 450
s7101 = a92

(11)

Substituting l7020 = 15s7020 into (8) gives a fresh parameterization:

l5400 = 42a92 + 15s7020 − 1071
l4410 = −6a2

92 + 333a92 + 30s7020 + 3l6030 − 4590
l3600 = 2a2

92 − 121a92 + 1837 − 15s7020 − l6030

(12)

6.3.2 Long planes

Consider now long planes, three-dimensional subcodes P with z = 0, and do sort of line
analysis as for the short planes. On solving the MacWilliams identities with n = 93 and
b1 = 0, again with a88(P) = e and a92(P) = f , we obtain the values a80(P) = 45 + e + 2f
and a84(P) = 28− 2e− 3f . All line types are possible in the equations giving numbers of
rays and ray pairs in terms of line counts. From the solution we retain two key equations:

m5301 = f(9 − e − f)

m5400 =
1

2
(9 − e − f)(14 − e − 3f) − 3m3600 − m4410

(13)

The nonnegativity of m5301 and m5400 then imply that f(9 − e − f) ≥ 0 and (9 − e −
f)(14 − e − 3f) ≥ 0. In addition, a84(P) ≥ 0 gives 2e + 3f ≤ 28. These inequalities
produce the following bounds:

Lemma 10 Let e = a88(P) and f = a92(P), for a long plane P. If f = 0, then either
0 ≤ e ≤ 9 or e = 14. If e = 0, then either f = 9 or 0 ≤ f ≤ 4. Moreover, e + f ≤ 9
except when e = 14.
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Lemma 11 Let c be a 92 in C. Then the numbers of lines containing c are these:

line type: 7101 5301 6111 7002
number containing c: 9 2a92 − 25 90 − 3a92 a92 − 1

The short plane containing c is a 7101-plane and it contains all nine 7101-lines on c.

Proof. Ray c is on 73 lines, necessarily of the four types tabulated. The 7002-lines are
the lines joining c to the a92 − 1 other 92s, and the 6111-lines join c to the 88s. Thus if
there are x 7101-lines and y 5301-lines on c, then

x + y = 73 − (a92 − 1) − a88 = 2a92 − 16

x + 3y = a84 − a88 = 6a92 − 66,

whence the totals. The statement about the short plane follows from the compositions in
(10).

The following result avoids later nuisances:

Lemma 12 For the code C, a92 ≤ 29.

Proof. Suppose that a92 = 30, the case to be ruled out. Then a88 = 90 − 3a92 = 0,
so that long planes have e = 0 and either f = 9 or 0 ≤ f ≤ 4, by Lemma 10. Picture
a 7002-line and the nine planes on it, all of them long; we might speak informally of
“fanning” the 7002-line. Outside the 7002-line, the nine planes contain 28 of the 92s
among them. Suppose that x of the planes have f = 9. By the possibilities for f , it
follows that 7x + 2(9 − x) ≥ 28, or x ≥ 2. Thus each 7002-line is on at least two planes
with f = 9. Each such plane contains

(
9
2

)
= 36 of the 7002-lines. If we take one of the

planes with f = 9, we see at least 36 more covering the 7002-lines in it; so there are at
least 37 planes with f = 9. Two of these meet in at most one 7002-line, so there are at
least 37× 36− (

37
2

)
= 666 7002-lines (the partial sums in the inclusion-exclusion formula

alternately over-estimate and under-estimate, the import of the Bonferroni inequalities
[3, Section 4.7]). But from the line type list (7), the only lines containing two 92s are
7002-lines. Thus l7002 =

(
30
2

)
= 435 < 666, a beastly inconsistency.

At this point we have

Condition 13 For the hypothetical code C, 13 ≤ a92 ≤ 16 or 23 ≤ a92 ≤ 29,

by Condition 8, Condition 9, and Lemma 12.

6.3.3 Octoplanes

The [9, 3, 7] residual at an 84 contains nine words of weight 8, and they are the nonzero
words of a two-dimensional subcode. The preimage of this in the projective space C of
our hypothetical [93, 4, 80] code is a long plane containing the 84 that will be called the
octoplane of the 84; the 84 is an octoray for the plane. Each 84 is an octoray for just
one octoplane, but it is conceivable that a plane is the octoplane for more than one 84.
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If p is an 84 contained in a line L, the image of L in the residual code of p has weight
9 − z(L). Thus the 1-lines containing p are the nine lines containing p in the octoplane
of p. On the other hand, if p is in a long plane P that is not the octoplane of p, then the
image of P in the residual at p is a two-dimensional code containing four rays of weight
7, one of weight 8, and four of weight 9 (the only other possible ray weight distribution
for such a subcode). Examination of the line types (7) yields:

Lemma 14 Let p be an 84 in a long plane P. If P is the octoplane of p, then all the
lines in P containing p are 1-lines, of types 5400, 6210, or 7101. These are all the
1-lines of C that contain p. But if p is not an octoray for P, then of the lines in P that
contain p, four are 7200-lines; one is a 5400-line, a 6210-line, or a 7101-line; and four
have types from the list 3600, 4410, 5220, 5301, 6111.

Proposition 15 There is exactly one octoray for an octoplane.

Proof. Let O be an octoplane and suppose p and q are two distinct octorays for O.
Then the line pq is either a 6210-line or a 5400-line. There cannot be a 92 in O. For if
t is such a ray, then pt and qt are two 7101-lines through t. By Lemma 11, pt and qt
determine the short plane on t, not a long plane like O.

All the 84s on O must be octorays for O. To see that, suppose that r is an 84 not
on pq. Then pr and qr are two 1-lines through r, and r is necessarily an octoray for O,
by Lemma 14. Moreover, if s is a further 84 on pq, then s is also an octoray by virtue of
ps (= qs) and rs. If there is no 84 in O outside pq, then O cannot contain a 7200-line,
as one of its 84s would not be on pq. Thus any further 84 on pq is not on a 7200-line,
and so it must be an octoray for O.

It follows that O contains no line of type 7200, 3600, 4410, 5220, or 5301, and, as
we said, no 92. Now augment all the long plane line equations (used at the beginning of
this subsection) by those declaring these counts to be 0, and solve. With e = a88(O), as
usual, and m6030 for a parameter, we find

m9000 = 10 − 2e + 2m6030

m8010 = 3m6030 − 4e

m7020 =
1

2
e(e − 1) − 3m6030

m6210 = e(14 − e)

m5400 =
1

2
(e − 9)(e − 14)

and all other line counts equal to 0. From m7020 ≥ 0 and m8010 ≥ 0 we get

4e ≤ 3m6030 ≤ 1

2
e(e − 1), (14)

making e(e − 9) ≥ 0. Then Lemma 10 imply that e = 0, 9, or 14. But with f = 0 and
e = 14 we have a84(O) = 28 − 2e − 3f = 0, which is not consistent with O’s being an
octoplane. Thus e = 0 or 9.
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First suppose that e = 0. Then m6030 = 0 also, and the counts for lines in O are
just m9000 = 10 and m5400 = 63. As each 5400-line is on a 5400 short plane, we have
63 ≤ s5400 = 5s7020 +14a92−357; we also have 0 ≤ −6s7020−15a92 +450, both inequalities
by (11). Eliminating s7020, we get a92 ≥ 30. Thus, in fact, a92 = 30; but that possibility
has been ruled out in Proposition 12.

If e = 9, then (14) becomes 36 ≤ 3m6030 ≤ 36, making m6030 = 12 and m7020 = 0.
Hence each 88 in O is on four of the 6030-lines. The nine 88s and the twelve 6030-lines
now form an affine plane of order 3. But by [1, Theorems 5.2 and 6.1], that plane does
not embed in our projective plane of order 8.

Corollary 16 Each 1-line is on as many octoplanes as the number of 84s on the line.

Proof. The octoplane of each 84 on the line contains the line, by Lemma 14, and by the
proposition the octoplanes for different 84s are distinct.

Corollary 17 The 92-lines of an octoplane are either 7020-lines or the lines through the
octoray.

Proof. If a 1-line L is not a 7020-line, it contains an 84, say p. If p is not the octoray,
p is on a 1-line M through the octoray. Then if L 6= M, ray p is on the two 1-lines L
and M and so an octoray for the plane, by Lemma 14. But now the octoplane has two
octorays, contradicting the proposition.

6.4 The inequality a92 < 23

The key result for the rest of the discussion is a consequence of the facts on octoplanes.

Proposition 18 An 88 in C is on at most two 6210 short planes.

Proof. Suppose that p is an 88 on three type 6210 short planes, S1, S2, and S3. Then
p is the only 88 in each of them, by the table (10). Since the lines containing an 88
in these planes have types 8010 and 6210, with z = 2 and z = 1, respectively, the
intersections Si ∩ Sj of different planes are 8010-lines. The five 6210-lines in S1 are on
ten octoplanes, by Corollary 16. These must meet S2 and S3 in 8010-lines, because an
88 in an octoplane is on just one 6210-line in it—namely, the line joining the 88 to the
octoray—by Corollary 17. At most five of the octoplanes can meet S2 and S3 in S2 ∩ S3,
one from each 6210-line in S1; otherwise, two octoplanes would contain S2 ∩ S3 and the
same 6210-line and so coincide. None of the octoplanes contains S1 ∩S2 or S1 ∩S3 (since
none is S1 itself); so the five or more not containing S2 ∩ S3 meet S2 in one of its two
8010-lines different from S1 ∩ S2 and S2 ∩ S3. Likewise, these octoplanes meet S3 in one
of two 8010-lines. But there can only be four such planes, one for each pairing of an
8010-line from S2 with an 8010-line from S3.

This result implies that a92 < 23.
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Proposition 19 For the hypothetical code C, it must be that a92 < 23. Thus 13 ≤ a92 ≤
16.

Proof. By the proposition, each 88 is on at most two 6210 short planes; such planes
contain just one 88. Thus s6210 ≤ 2a88. From (11), this becomes 6s7020 ≥ 270− 9a92. On
the other hand, with

l3600 = 2a2
92 − 121a92 + 1837 − 15s7020 − l6030

from (12), l3600 ≥ 0 gives 15s7020 ≤ 2a2
92 − 121a92 + 1837. Sandwiching s7020 leads to

another quadratic inequality:

0 ≤ 2a2
92 −

197

2
a92 + 1162 ≈ 2(a92 − 19.59)(a92 − 29.66).

Hence a92 ≤ 19 or a92 ≥ 30. By the established restrictions on a92 in Condition 13, it
follows that 13 ≤ a92 ≤ 16.

6.5 Ruling out the code

As a preliminary for the final step, we need an analogue of Lemma 11:

Lemma 20 Let p be an 88 in C. Then we have the following counts for the lines on p:

line type 8010 6210 7020 4410 5220 6030 6111
count 10 5s6 5s7 x1 x2 x3 a92

Here s6 is the number of 6210 short planes that p is on and s7 the number of 7020 short
planes containing p. We have the relations

s7 = 5 − s6

x1 = 2a92 − 26 − 5s6 + x3

x2 = 64 − 3a92 + 5s6 − 2x3.

Proof. Ray p is on 93 − 88 = 5 short planes of types 6210 and 7020. By the data in
(10) and the values in (7) and (2), p is on four 8010-lines and five lines with z = 1 in
each short plane. This gives the first three counts and the si relation. The count a92 for
6111-lines just reflects the lines connecting p to the 92s. For the xj , we have that the
total number of lines is 73, and the total number of 88s appearing is a88 = 90 − 3a92.
Thus

10 + 25 + x1 + x2 + x3 + a92 = 73

a88 − 1 = 89 − 3a92 = 5s7 + x2 + 2x3.

The solutions, parameterized by s6 and x3, are as listed.
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We recall the three values in (12):

l5400 = 42a92 + 15s7020 − 1071

l4410 = −6a2
92 + 333a92 + 30s7020 + 3l6030 − 4590

l3600 = 2a2
92 − 121a92 + 1837 − 15s7020 − l6030.

The nonnegativity of the labcd implies that

15s7020 ≥ 1071 − 42a92

15s7020 + l6030 ≤ 2a2
92 − 121a92 + 1837

15s7020 +
3

2
l6030 ≥ 3a2

92 −
333

2
a92 + 2295.

These inequalities then lead to the following parameter values or ranges:

a92 = 13 14 15 15 16
s7020 = 35 33 31 30 27
l6030 = 75 to 77 38 to 40 5 to 7 15 to 22 0 to 8

a88 + a92 = 64 62 60 60 58
s6210 = 45 42 39 45 48

(15)

Now fan a 6030-line: outside the line there are a88+a92−3 88s and 92s on the nine planes
(all long) through the 6030-line. As a88 + a92 − 3 ≥ 55 in all the cases, and 55/9 > 6, at
least one of these planes has e + f > 9. But such a plane can only be a 14-plane, that
is, one with e = 14 and f = 0, by Lemma 10. Thus the 6030-line must be on at least one
14-plane.

Lemma 21 Let F be a 14-plane. Then a80(F) = 59 and a84(F) = 0. The line counts are
parameterized by m6030 and they are:

line type 9000 8010 7020 6030
number 38 − m6030 3m6030 − 56 91 − 3m6030 m6030

Here 19 ≤ m6030 ≤ 30, and all other line counts are 0. Moreover, an 88 in F is on four,
five, or six 6030-lines.

Proof. The line types listed are the only ones possible for F. As for the more general
long plane, counting 88s gives m8010 +2m7020 +3m6030 = 9×14 and counting pairs of 88s
gives 91 = m7020 +3m6030; from this one gets all the line counts. If an individual 88 is on
y1 8010-lines, y2 7020-lines, and y3 6030-lines, then y1 + y2 + y3 = 9 and y2 + 2y3 = 13
(the count of 88s). Thus y1 = y3 − 4 and y2 = 13− 2y3, from which the limits 4 ≤ y3 ≤ 6
follow.

Nonnegativity also implies that 19 ≤ m6030 ≤ 30. (The planes correspond to [14, 3, 11]8
codes by the 88s, and these codes have been classified by Marcugini, Milani, and Pam-
bianco [10]. Their results show that m6030 ≤ 26, in fact.)
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With these preliminaries we deal with the four remaining values for a92:

a92 = 13: In this case, each 6030-line is actually on at least two 14-planes: since a88 +
a92 = 64, the eight planes other than a 14-plane on a 6030-line contain 64− 14 = 50 88s
and 92s not on the 6030-line. As before, 50/8 + 3 = 9.25 shows that at least one of the
eight planes has e + f > 9 and so is a 14-plane.

There are at most four 14-planes: if there were a set of five, they would contain at
least 5 × 19 − (

5
2

)
= 85 6030-lines, more than allowed by (15). On the other hand, if

we take one 14-plane, then each of the 6030-lines on it is in another 14-plane. Thus one
would see at least 1 + 19 = 20 14-planes.

a92 = 14: Here 38 ≤ l6030 ≤ 40, from (15), so there must be just two 14-planes, F1,F2.
As a88 = 48, there are at least 20 88s not on them. If p is one of these 88s, then p is not
on a 6030-line. By Lemma 20, x1 = 2 − 5s6 for p, so that s6 = 0; that is, p is not on a
6210 short plane. Similarly, if p is an 88 on just one of the Fi, then x3 ≤ 6, by Lemma
21, and 0 ≤ x1 ≤ 8 − 5s6, so that p is on at most one 6210 short plane. Finally, if p is
an 88 on F1 ∩F2, then x3 ≤ 12, and x1 ≤ 14− 5s6 implies that p is on at most two 6210
short planes.

If F1 ∩ F2 contains q 88s, then q ≤ 3 (maximized when F1 ∩ F2 is a 6030-line). It
follows that

s6210 ≤ (28 − q) × 1 + q × 2 = 28 + q ≤ 31;

however, s6210 = 42, by (15).

a92 = 15: The argument is similar to that for a92 = 14. This time 5 ≤ l6030 ≤ 22, from
(15); so there is one 14-plane, F. For an 88 not in F, x1 = 4 − 5s6, making s6 = 0; the
88 is on no 6210 short plane. An 88 in F has x3 ≤ 6, so that x1 ≤ 10 − 5s1 and the
88 is on at most two 6210 short planes. Once again the count of 6210 short planes falls
short: it is at most 14 × 2 = 28. However, s6210 ≥ 39.

a92 = 16: Now l6030 ≤ 8 by (15), and Lemma 21 implies that there are no 14-planes at
all: l6030 = 0. Then for all 88s, x1 = 6 − 5s6, making s6 ≤ 1. Thus s6210 ≤ a88 = 42 and
yet s6210 = 48, from (15).

We have arrived at our theorem:

Theorem 22 There is no [93, 4, 80]8 Griesmer code.
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