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Abstract

In 2001, Shimozono and White gave a description of the domino Schensted al-
gorithm of Barbasch, Vogan, Garfinkle and van Leeuwen with the “color-to-spin”
property, that is, the property that the total color of the permutation equals the
sum of the spins of the domino tableaux. In this paper, we describe the poset of
domino Fibonacci shapes, an isomorphic equivalent to Stanley’s Fibonacci lattice
Z(2), and define domino Fibonacci tableaux. We give an insertion algorithm which
takes colored permutations to pairs of tableaux (P,Q) of domino Fibonacci shape.
We then define a notion of spin for domino Fibonacci tableaux for which the inser-
tion algorithm preserves the color-to-spin property. In addition, we give an evac-
uation algorithm for standard domino Fibonacci tableaux which relates the pairs
of tableaux obtained from the domino insertion algorithm to the pairs of tableaux
obtained from Fomin’s growth diagrams.

1 Introduction

The Fibonacci lattice Z(r) was introduced by Stanley in 1975 [10], and like Young’s lattice
Y r, it is one of the prime examples of an r-differential poset. In 1988, Stanley showed
that for any r-differential poset P

∑

λ∈Pn

e(λ)2 = rnn! (1)

where λ is a partition of n and e(λ) is the number of chains in P from 0̂ to λ. (Corollary
3.9, [10]) In the case of Young’s lattice with r = 1, the Schensted insertion algorithm
provides a bijective proof of this identity by taking a permutation π ∈ Sn to a pair of
standard Young tableaux (P, Q) of the same shape λ. Given π ∈ Sn, Fomin’s growth
diagram [2] provides another method for obtaining the same pair of standard Young
tableaux provided by the Schensted insertion algorithm.
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In addition to Young’s lattice, Fomin’s growth diagrams can be used to give a bijection
between a permutation in Sn and a pair of chains in the Fibonacci poset Z(1) which can be
represented as a pair of Fibonacci path tableaux (P̂ , Q̂). Roby [6] described an insertion
algorithm which provides a bijection between a permutation in Sn and a pair of tableaux
(P, Q) of the same shape where P is a Fibonacci insertion tableau and Q is a Fibonacci
path tableau. Unlike Young’s lattice, the pairs of tableaux obtained from these two
methods are not the same. While Q̂ = Q, P̂ is not equal to P . Killpatrick [4] defined an
evacaution method for Fibonacci tableaux and proved that ev(P ) = P̂ .

The poset of 2-ribbon (or domino) shapes is isomorphic to Y 2 and thus 2-differential.
For the domino poset, the Barbasch-Vogan [1] and Garfinkle [3] domino insertion algo-
rithms provide a bijective proof of (1) with r = 2 by taking colored permutations to
pairs (P, Q) of standard domino tableaux of the same shape. Shimozono and White [8]
gave a description of this algorithm and noted the property that the total color of the
permutation is the sum of the spins of P and Q.

The motivation of this paper is to describe a reasonable notion of domino Fibonacci
tableaux for which there is a “spin-preserving” bijection between pairs of chains in the
poset and colored permutations. The poset of domino Fibonacci tableaux is naturally
isomorphic to Z(2). We describe an insertion algorithm for colored permutations which
gives a pair (P, Q) for which P is a standard domino Fibonacci tableau and Q is a domino
Fibonacci path tableau. As in the case of Z(1), Fomin’s growth diagrams can be used to
give a bijection between a colored permutation in Sn and a pair of chains in Z(2) which
we show can be represented as a pair of domino Fibonacci path tableaux (P̂ , Q̂). We
prove that Q = Q̂ and define an evacuation algorithm that gives ev(P ) = P̂ .

Section 2 gives the necessary background and definitions for the rest of the paper,
and in Section 3 we describe Fomin’s chain theoretic approach to differential posets. In
Sections 4 and 5 we define domino Fibonacci tableaux and give the domino Fibonacci
insertion algorithm. Sections 6 and 7 describe the evacuation algorithm and a geometric
interpretation of Fomin’s growth diagrams. In these sections we give a relation between the
tableaux resulting from the insertion algorithm and the tableaux resulting from Fomin’s
growth diagrams. Finally the “color-to-spin” property of the domino insertion algorithm
is proved in Section 8.

2 Background and Definitions

In this section we give the necessary background and definitions for the theorems in this
paper. The interested reader is encouraged to read Chapter 5 of The Symmetric Group,
2nd Edition by Bruce Sagan [7] for general reference.

The general definition of a Fibonacci r-differential poset was given by Richard Stanley
in [11] (Definition 5.2).

Definition 1. An r-differential poset P is a poset which satisfies the following three
conditions:

1. P has a 0̂ element, is graded and is locally finite.
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2. If x 6= y and there are exactly k elements in P which are covered by x and by y,
then there are exactly k elements in P which cover both x and y.

3. For x ∈ P , if x covers exactly k elements of P , then x is covered by exactly k + r
elements of P .

The classic example of a 1-differential poset is Young’s lattice Y , which is the poset
of partitions together with the binary relation λ ≤ µ if and only if λi ≤ µi for all i.

A generalization of Young’s lattice is the domino poset, which is 2-differential. A
domino is a skew shape consisting of two adjacent cells in the same row or column. If the
two adjacent cells are in the same column, the domino is considered vertical. Otherwise,
it is considered horizontal. A domino shape is a partition (or Ferrers diagram) which can
be completely covered (or tiled) by dominos. The domino poset D is the set of domino
shapes together with the following binary relation. For two domino shapes λ and µ, we
say that λ covers µ, λ m µ, if λ/µ is a domino. In general, λ ≥ µ if λ/µ can be tiled by
dominos, i.e., we can obtain µ by successively removing dominos from λ, or we can obtain
λ by successively adding dominos to µ.

From a domino shape, a domino tableau D can be created by tiling the shape with
dominos and then filling the dominos with the numbers 1, 1, 2, 2, . . . , n, n so that (i) the
numbers appearing in a single domino are identical and (ii) the numbers weakly increase
across rows and down columns. The number of vertical dominos in D is denoted vert(D).
The spin of D, sp(D), is defined as 1

2
vert(D).

Shimozono and White [8] describe the domino insertion algorithm which takes colored
permutations π (i.e., permutations where each element can be either barred or unbarred)
to pairs of domino tableaux (P, Q) of the same shape and prove that this insertion has
the property that if tc(π) is the total color of π (i.e, the number of barred elements in π),
then tc(π) = sp(P ) + sp(Q).

A second type of r-differential poset is the Fibonacci differential poset Z(r) first de-
scribed by Richard Stanley [11]. Let A = {11, 12, . . . , 1r, 2} and let A∗ be the set of all
finite words a1a2 · · ·ak of elements of A (including the empty word).

Definition 2. The Fibonacci differential poset Z(r) has as its elements the set of words
in A∗. For w ∈ Z(r), we say z is covered by w (i.e. z l w) in Z(r) if either:

1. z is obtained from w by changing a 2 to 1k for some k if the only letters to the left
of this 2 are also 2’s, or

2. z is obtained from w by deleting the leftmost 1 of any type.

In this paper we will focus on Z(2). The first four rows of the Fibonacci lattice Z(2)
are shown below:
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3 A Chain Theoretic Approach

Fomin [2] gave a general method for representing a permutation with a square diagram and
then using a growth function to create a pair of saturated chains in a differential poset. In
particular, Fomin’s method can be applied to the square diagram of a colored permutation
to create a pair of saturated chains in Z(2), giving a proof for Z(2) of Stanley’s result [11]
that for any 2-differential poset,

∑

λ∈Pn

e(λ)2 = 2nn! (2)

where λ is a partition of n and e(λ) is the number of chains in P from 0̂ to λ.
Given a permutation in Sn, we can create a colored permutation by assigning each

element to be either colored or uncolored. We will denote colored elements by a bar. For
a colored permutation written in two line notation:

π = 1 2 · · · n
x1 x2 · · · xn

with each xi either barred or unbarred, we create a square diagram by placing an X in

column i and row xi (indexed from left to right, bottom to top) if
i
xi is a column in the

permutation π and by placing a X̄ in column i and row xi if
i
x̄i is a column in π. For

example, for the permutation

π =
1 2 3 4 5 6 7
2̄ 7 1 5̄ 6̄ 4̄ 3

we obtain the following square diagram:
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X̄

X

X

X̄

X̄

X̄

X

Fomin’s method gives a way to translate this square diagram into a pair of saturated
chains in Z(2) in the following manner. Begin by placing ∅’s along the lower edge and
the left edge at leach corner. Label the remaining corners in the diagram by following the
rules given below (called a growth function). If we have

ν

µ1

µ2

λ

with each side of the square representing a cover relation in the Z(2) or an equality, then:

1. If µ1 m ν and µ2 = ν then λ = µ1 (and similarly for µ1 and µ2 interchanged).

2. If µ1 m ν, µ2 m ν then λ is obtained from ν by prepending a 2.

3. If µ1 = ν = µ2 and the box does contain an X or an X̄, then obtain λ from ν by
prepending a 11 if the box contains an X and by prepending a 12 if the box contains
an X̄.

4. If µ1 = ν = µ2 and the box does not contain an X or an X̄, then λ = ν.

By following this procedure on our previous example, we obtain the complete growth
diagram:
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X̄

X

X

X̄

X̄

X̄

X

∅ ∅ 11 11 11 11 11

12 12 2 2 2 2 2

12 12 2 2 2 2 12

12 12 2 2 2 122 22

12 12 2 122 122 22 2122

12 12 2 122 12122 2122 222

12 1112 212 22 2122 212122 22122

Fomin [2] proved that this growth function produces a pair of saturated chains in Z(2)
by following the right edge and the top edge of the diagram.

4 Domino Fibonacci Tableaux

An element of Z(2) can be represented by a domino Fibonacci shape by letting 11 corre-
spond to two adjacent squares in the first row, a 12 correspond to two adjacent squares,
one on top of the other, and a 2 correspond to a column of 3 squares followed by an ad-
jacent single square in the first row. For example, the element 12112211212 is represented
by

S =
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Define a vertical domino to be a rectangle containing two squares in the same column,
one on top of the other. Define a horizontal domino to be a rectangle containing two
adjacent squares in the first row of the domino Fibonacci shape and define a split horizontal
domino to be the top square of a column of height 3 and the single square in the column
immediately to the right of the column of height 3.

A domino tiling is a placement of vertical and horizontal dominos into a domino
Fibonacci shape such that all squares are covered. A domino Fibonacci shapes may have
more than one domino tiling. For example, each of the following is a valid domino tiling
of the shape corresponding to 12112211212:

T1=

T2=

We define the poset DomFib to be the set of domino Fibonacci shapes together with
cover relations inherited from Z(2). DomFib is naturally isomorphic to Z(2).

A saturated chain (∅, ν1, ν2, · · · , νk = ν) in Z(2) can be translated into a domino
Fibonacci path tableau by placing i’s in νi/νi−1, i.e. in each of the two new squares
created at the ith step. For example, the chain

(∅, 12, 1112, 212, 22, 2212, 211212, 21211212, 2211212, 112211212, 12112211212)

corresponds to the domino Fibonacci path tableau

T1= 10
10

9 9

8

87
7

6 6 5
5

4

4
3
3

2 2 1
1

As seen in Section 3, Fomin’s method gives a bijection between a colored permutation
and a pair of chains in Z(2), each of which can be represented by a domino Fibonacci
path tableau. We will call the domino Fibonacci path tableau obtained from the right
edge of the diagram P̂ and the one obtained from the top edge of the diagram Q̂. From
our previous growth diagram:
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∅
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∅

∅

∅

∅

∅

∅ ∅ ∅ ∅ ∅ ∅ ∅

X̄

X

X

X̄

X̄

X̄

X

∅ ∅ 11 11 11 11 11

12 12 2 2 2 2 2

12 12 2 2 2 2 112

12 12 2 2 2 122 22
P̂

12 12 2 122 122 22 2122

12 12 2 122 12122 2122 222

12 1112 212 22

Q̂

2122 212122 22122

we have

P̂ = 7
7

6

65
54

4

3 3
2
2

1 1

Q̂ =

7

76
6

5
5

4

4
3
3

2 2 1
1

We define a domino Fibonacci tableau as a filling of the dominos in a tiling of a domino
Fibonacci shape with the numbers {1, 1, 2, 2, . . . , n, n} such that each number appears in
exactly one domino and each domino contains two of the same number.

A standard domino Fibonacci tableau has two additional properties. First, the domino
containing the leftmost square in the first row is the domino containing n. Second, for
every k, the domino containing k is either appended as a horizontal or vertical domino to
the shape of the dominos containing i’s for k < i ≤ n or is placed as a vertical or split
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horizontal domino on top of a single domino containing i’s for k < i ≤ n. For example,
the following is a standard domino Fibonacci tableau:

T1= 10
10

9 9

2

27
7

6 6 1
1

3

3
5
5

8 8 4
4

One can also think of a standard domino Fibonacci tableau in terms of a chain in a
partial order. Define S(2) to be a new partial order on the set of Fibonacci words in the
alphabet {11, 12, 2} in which an element z is covered by an element w if w is obtained
from z by appending a 1i for i = 1 or i = 2 or if w is obtained from z by replacing 11 or
12 by a 2. A standard domino Fibonacci tableau of shape w is then just a path tableau
representing a maximal chain from ∅ to w in S(2), but with i’s placed in the domino
created at the n − i + 1st step.

The evacuation method described in Section 6 can be used to prove that the number
of standard domino Fibonacci tableaux is equal to the number of domino Fibonacci path
tableaux.

5 Domino Fibonacci Insertion

We now give a domino insertion algorithm which gives a bijection between a colored
permutation and a pair of tableaux (P, Q) of domino Fibonacci shape. In the domino
insertion algorithm, the P tableau that is created will be a standard domino Fibonacci
tableau and the Q tableau that is created will be a domino Fibonacci path tableau.
To apply our algorithm to a colored permutation π = x1x2 . . . xn, we will construct a
sequence {(Pi, Qi)}n

i=0 where (P0, Q0) = (∅, ∅) and (Pi, Qi) are the tableaux obtained
from the insertion of xi (which may be barred or unbarred) into Pi−1. To begin with, if
x1 is barred then both P1 and Q1 are horizontal dominos containing 1’s. If x1 is unbarred
then both P1 and Q1 are vertical dominos containing 1’s. Now continue the insertion
process for each xi:

1. If xi is unbarred then xi will be inserted as a horizontal domino in the following
manner:

(a) Compare the value of xi to the value t1 in the domino containing the leftmost
square in the bottom row of Pi−1.

(b) If xi > t1, add a horizontal domino containing xi’s to the left of the square
containing t1 in the bottom row. Call this new tableau Pi. For example,
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7 →
6
6
3

3 4 4
=

7 7 6
6
3

3 4 4

To form Qi, a tableau of the same shape as Pi, place i’s in this newly created
horizontal domino.

(c) If xi < t1 and the domino d1 containing t1 is horizontal then change d1 to a
vertical domino in the first column and place a split horizontal domino con-
taining the value of xi into the square in the third row of the first column and
the single square in the first row of the second column. If there were no domino
on top of d1 in Pi−1, then this new tableau is Pi. For example,

2 → 6 6 3 3 = 6
6
2

2 3 3

Obtain Qi by placing i’s into the vertical domino created in the second and
third rows of the first column.

If there were a vertical domino containing b’s on top of d1 in Pi−1, then the
vertical domino containing b’s is bumped out of the first column as b̄. Continue
inductively inserting b̄ into the tableau to the right of the first two columns by
comparing b to the element t2 in the domino in the bottom row of the third
column and repeating steps (a), (b), (c) and (d) of Case 2. For example,

2 →
6 6
4
4

3 3
=

6
6
2

2
4̄ →

3 3

(d) If xi < t1 and d1 is vertical, then if there were no domino on top of d1 in
Pi−1, create a new split horizontal domino by placing xi in a new square in the
third row of the first column and in a new square in the first row of the second
column. For example,

4 →
6
6

3 3 = 6
6
4

4 3 3
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Obtain Qi by placing i’s into this newly created split horizontal domino.

If there were a split horizontal domino containing b’s on top of d1 in Pi−1

then replace the values in this split horizontal domino with xi’s and bump a
horizontal domino containing b’s out of the first stack of dominos as b. Now
insert b into the tableau to the right of the first two columns by comparing b
to the element t2 in the domino in the bottom row of the third column and
repeating steps (a), (b), (c), and (d) of Case 1. For example,

2 →
6 4
6
4

3 3
=

6
6
2

2
4 →

3 3

2. If xi is barred then xi will be inserted as a vertical domino in the following manner:

(a) Compare the value of xi to the value t1 in the domino containing the leftmost
square in the bottom row of Pi−1.

(b) If xi > t1, add a vertical domino containing xi’s to the left of the square
containing t1 in the bottom row. Call this new tableau Pi. For example,

7̄ →
6
6
3

3 4 4
=

7
7

6
6
3

3 4 4

To form Qi, a tableau of the same shape as Pi, place i’s in this newly created
vertical domino.

(c) If xi < t1 and d1 is horizontal then place a vertical domino containing the value
of xi into the squares in the second and third rows of the first column. If there
were no domino on top of d1 in Pi−1, then this new tableau is Pi. For example,

2̄ →
6 6 3 3

=
6
2
2

6 4 4

Obtain Qi by placing i’s into the vertical domino created in the second and
third rows of the first column.

If there were a vertical domino containing b’s on top of d1 in Pi−1, then the
vertical domino containing b’s is bumped out of the first column as b̄. Continue
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by inductively inserting b̄ into the tableau to the right of the first two columns
by comparing b to the element t2 in the domino in the bottom row of the third
column and repeating steps (a), (b), (c) and (d) of Case 2. For example,

2̄ →
6 6
4
4

3 3
=

6
2
2

6
4̄ →

3 3

(d) If xi < t1 and d1 is vertical, then if there were no domino on top of d1 in Pi−1

make d1 into a horizontal domino by creating a new square in the first row of
the second column. Place a domino containing xi in the second and third rows
of the first column and call this new tableau Pi. For example,

4̄ →
6
6

3 3 = 6
4
4

6 3 3

Obtain Qi by placing i’s into the new square created in the third row of the
first column and the new square in the second column.

If there were a split horizontal domino contaning b’s on top of d1 then make
d1 into a horizontal domino in the first row of the first and second columns.
Place a vertical domino containing xi’s in the second and third rows of the first
column and bump the horizontal domino containing b’s into the tableau to the
right of the first two columns by comparing b to the element t2 in the domino
in the bottom row of the third column and repeating steps (a), (b), (c), and
(d) of Case 1. For example,

2̄ →
6 4
6
4

3 3
=

6
2
2

6
4 →

3 3

Example 1. When applying the insertion algorithm to the permutation π = 2̄715̄6̄4̄3 that
was used to form the square diagram in Section 2, we obtain the following:

Pi :
2
2

, 7 7 2
2

, 7
7
1

1 2
2

, 7 7
5
5

2
2
1

1 ,
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7 7
6
6

5
5

2
2
1

1 , 7 7
4
4

6
6

5
5

2
2
1

1 , 7
7
3

3 6 6
4
4

5
5

2
2
1

1

Qi :
1
1

, 2 2 1
1

, 2
3
3

2 1
1

, 2 2
3
3

1
1
4

4 ,

2 2
3
3

5
5

1
1
4

4 , 2 2
3
3

6
6

5
5

1
1
4

4 , 2
3
3

2 6 7
6
7

5
5

1
1
4

4

From this example we have

P = :
7
7
3

3 6 6
4
4

5
5

2
2
1

1
Q = :

2
3
3

2 6 7
6
7

5
5

1
1
4

4

Theorem 1. The domino insertion algorithm is a bijection between colored permutations
and pairs (P, Q) where P is a standard domino Fibonacci tableau and Q is a domino
Fibonacci path tableau.

Proof. We claim that the insertion procedure defined above is invertible. At the kth stage
of the insertion, the Q tableau tells us which domino was the most recently created in
the tableau Pk. If this domino was added on top of another domino, then the shape of Pk

must have had a shape bijectively equivalent to 2iω for some word ω of 11’s, 12’s and 2’s.
When reversing the insertion algorithm, each domino in the top row will then bump

to the left, preserving their horizontal or vertical shape, until the leftmost domino in the
top row is bumped out of the tableau as either a vertical or horizontal domino. If this
domino is vertical and contained xi’s, then x̄i is the element that was inserted at this step.
If the domino is horizontal and contained xi’s, then xi is the element that was inserted as
this step.
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If the newly created domino was not added on top of another domino, then the shape
of Pk is bijectively equivalent to either 2i−111ω or 2i−112ω depending on whether or not
the newly created domino is horizontal or vertical, respectively. In both cases, the element
inside the newly created domino, say ti, is smaller than the element inside the bottom
domino of the stack to the left of it. When we reverse the bumping algorithm, the domino
containing ti will bump the top domino of the stack to the left of it and each domino in
the top row will bump to the left, preserving their horizontal or vertical shape until the
leftmost domino in the top row is bumped out of the tableau as either a vertical or
horizontal domino. If i = 1, then the newly created domino in the first stack is itself
bumped out of the tableau. If this domino that is bumped out is vertical and contains
xi’s, then x̄i is the element that was inserted at this step. If the domino is horizontal and
contains xi’s, then xi is the element that was inserted as this step.

In either case, we obtain the originally inserted element, either barred or unbarred,
and Pk−1.

6 Evacuation

In the case of Z(1), Killpatrick [4] gave an evacuation method for standard Fibonacci
tableau. The evacuation given below is the generalization of that method.

Compute the evacuation of standard domino Fibonacci tableau P in the following
manner.

1. Erase the number in the domino containing the leftmost square in the bottom row.
This will necessarily be the largest number in P .

2. As long as there is a domino, either split horizontal or vertical, above the empty
domino, compare the numbers in the domino above and the domino to the right of
the empty domino, ignoring the latter if it does not exist.

(a) Suppose the number in the domino on top is larger than the number in the
domino on the right. Place the number in the top domino in a vertical domino
(that starts on the bottom row) if the domino on top was vertical and place
the number in the top domino in a horizontal domino if the domino on top was
a split horizontal domino. This leaves an empty split horizontal domino in the
first case and an empty vertical domino in the second and third rows in the
second case.

(b) If the number in the domino to the right (if there is one) is larger then place
that number in the empty domino leaving a new empty domino.

3. Continue in this manner until reaching a domino that has no domino immediately
above it. At this point, remove the empty domino from the tableau and if this results
in an empty column or columns in the middle of the tableau, slide all remaining
columns to the left so that the result has the shape of a Fibonacci tableau. Call
this remaining tableau P (1).
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4. In a new tableau of the same shape as P , denoted by P̃ , put n’s in the position of
the last empty domino.

5. Create P (2) by repeating the above procedure on P (1). At step 4, label the position
of the last empty domino with n−1’s in the tableau P̃ . Continue until P (n) = ∅ and
P̃ is a standard domino Fibonacci tableau containing dominos numbered 1 through
n. The final tableau P̃ is called the evacuation tableau ev(P ).

For example, using

P (π)=

4

66
4

5
5

1

1
7
3

7 3 2
2

the first sequence of steps is

4

66
4

5
5

1

1
•
3

• 3 2
2

4

••
4

5
5

1

1
6
3

6 3 2
2

4

55
4

•
•

1

1
6
3

6 3 2
2

and thus after one step of the evacuation procedure, P̃ looks like

•

••
•

7
7

•

•
•
•

• • •
•

All of the steps in the evacuation of P and the development of P̃ are shown in the
following example:

P (k) : 7
7

3

3 66

4
4

5
5

2
2
1

1 6
6
3

3 5 5
4
4

2
2
1

1 5
5
3

3 4
4

2
2
1

1

4
4
3

3 2
2
1

1 3 3 2
2
1

1 2
2
1

1 1 1
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P̃ : •
•

•

• ••

•
•

•
•

•
•
•

•
•
•

•

• ••

•
•

7
7

•
•
•

•
•
•

•

• 6•

6
•

7
7

•
•
•

•

•
•

•

• 65

6
5

7
7

•
•
•

•
4
•

4

• 65

6
5

7
7

•
•
•

•

4
3

4

3 65

6
5

7
7

•
•
•

•
4
3

4

3 65

6
5

7
7

•
2
2

•

Completing the last slide, we have

ev(P (π)) = 3
4
4

3 5
5
6

6 7
7

1
2
2

1

In the following section, we show that this evacuation method can be used to give a
relation between the pair of tableau (P, Q) obtained from the domino insertion algorithm
and the pair (P̂ , Q̂) obtained from Fomin’s growth diagrams and we prove that evacuation
is a bijection between standard domino Fibonacci tableaux and domino Fibonacci path
tableaux. Here we describe the inverse of the evacuation map.

To begin, think of a Fibonacci domino tableau as a sequence of “columns” that each
contain one or two dominos. Given a path tableau of shape λ, denote the column with the
domino containing 1’s as column c. Remove the domino containing 1’s from the tableau.
Decrease all remaining values in the tableau by 1. If there is no domino in column c, then
stop and place 1’s in a domino in column c in an empty tableau of shape λ.

If a domino is present in column c, then (leaving all orientations of dominos fixed)
cycle the values in column c and all columns to the right of c so that the largest cycled
value is in column c. That is, if a1 < a2 < · · · < ak are the values remaining in column c
and all columns to the right of c, then replace a1 with ak, a2 with a1, a3 with a2, and so
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on. This creates a path tableau that is one domino smaller than λ and leaves an empty
domino that was either at the top of a column or a singleton on the right end of the shape.
Place 1’s in this empty domino in an empty tableau of shape λ.

Repeat the above process on the smaller path tableau. At the ith step, place a
domino containing i’s into the empty tableau of shape λ. This sequence of steps defines
a Fibonacci standard domino tableaux. One should note that the tiling of the standard
Fibonacci domino tableau and the tiling of the evacuation of that tableau are related by
swapping the shape of the dominos in the columns of height 2.

7 A Geometric Interpretation

For the case of Z(1), Killpatrick [4] gave a description of shadow lines for the square
diagram of a permutation in Sn that can be used to directly determine the standard
Fibonacci tableau obtained through the insertion algorithm. We will use the same defini-
tion of shadow lines for the square diagram of a colored permutation and will show that
these can also be used to directly determine the P tableau obtained through the domino
insertion algorithm.

To draw the shadow lines, L1, L2 . . ., for the square diagram of a colored permutation
π, begin at the top row and draw a broken line L1 through the X (barred or unbarred) in
the top row and the X (barred or unbarred) in the rightmost column. The second broken
line L2 will be drawn through the row containing the highest X not already on a line and
the rightmost column containing an X not already on a line. Continue in this manner
until there are no more X’s available. For example, for the permutation π = 2̄715̄6̄4̄3, the
lines look like:

L2 L1 L3 L4 

X 

X 

X 

X 

X

X

X

Theorem 2. Given a colored permutation π, the tableau obtained by drawing shadow
lines is the same tableau P obtained by the insertion algorithm. That is, the shadow lines
L1, L2, . . . in the square diagram of π have the following properties:

1. The row numbers of the X’s on each Li give the numbers in the dominos in the ith
column of the insertion tableau P .
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2. If there is a single X on the line Li, then the domino in the ith column of P is a
vertical domino if the X is barred and a horizontal domino if the X is unbarred.

3. If there are two X’s on the line Li, then the larger row number is in the bottom
domino and the smaller row number is in the top domino. The rightmost X on the
line Li determines the shape of the two dominos in column i: if the X is unbarred
then the column contains a vertical domino with a split horizontal domino on top of
it; if the X is barred, then the column contains a horizontal domino with a vertical
domino on top of it.

For the example above, the shadow lines give the P tableau:

P = :
7
7
3

3 6 6
4
4

5
5

2
2
1

1

Proof. We will prove this result by induction on the size of π. Throughout the proof, any
permutation π is understood to be a colored permutation. If π ∈ S1 then either π = 1, in
which case both the shadow lines and the insertion algorithm give the P tableau:

P = 1 1

or π = 1̄, in which case both the shadow lines and the insertion algorithm give the P
tableau:

P =
1
1

If π ∈ S2 then there are eight colored permutations and one can easily check that in
each case the P tableau obtained by the shadow lines is equal to the P tableau obtained
through the insertion algorithm.

Now assume that the tableau determined by the shadow lines for the colored permu-
tation σ ∈ Sk with k < n is equal to the insertion tableau P (σ). Let π ∈ Sn be a colored
permutation. Represent the permutation π with a square diagram and draw L1.

Case 1: If there is an X (barred or unbarred) in the upper right corner of the square
diagram, then L1 only passes through one X. Since an X in the upper right corner implies
that either n or n̄ is the last number in the permutation π, we can write π = πn−1n in
the first case or π = πn−1n̄, where πn−1 represents the first n − 1 digits in the colored
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permutation π. Since n, barred or unbarred, is the last number in the permutation, when
we apply the insertion algorithm to π, n is the last number inserted into the tableau. Thus
the insertion tableau P is either a horizontal domino or a vertical domino containing n
followed by Pn−1, where Pn−1 is the insertion tableaux for πn−1. Thus the fact that the
line L1 drawn in the nth row and nth column only passes through one X corresponds to
the fact that there is only one domino at the beginning of the P tableau and the shape of
that domino is determined by whether or not X is barred or unbarred. Then the insertion
tableau P and the tableau obtained from the shadow lines agree in the domino in the first
column and by induction, they agree in the remaining positions.

Case 2: If there is no X in the upper right square, then L1 passes through two X’s,
one in row n and one in column n and row a (counting from the bottom) with a < n.
Since this means that a or ā is the last element in the permutation π, then a or ā is the
last element inserted into the P tableau. Due to the method of insertion, the element
n, which corresponds to the X in the top row, is always in a domino of some shape in
the lower left position of P . Thus when a or ā is inserted into the tableau, it is inserted
as a domino above the domino containing n, possibly bumping an element b or b̄ to the
second column. The resulting P tableau has a domino containing a on top of a domino
containing n in the first column, corresponding to the fact that L1 passes through two
X’s, one in row n and one in row a. if ā is the last element of π (i.e. the X in row a
is barred), then the domino containing n is horizontal with a vertical domino containing
a on top of it. If a is the last element of π (i.e. the X in row a is unbarred), then the
domino containing n is vertical with a split horizontal domino containing a on top of it.

It remains to show that the rest of the P tableau can be determined by removing the
nth row and the nth column from the square diagram, since these elements are in the
first column of P , and applying the inductive hypothesis to the remaining diagram. Let
the permutation π be written as

π =
1 2 · · · i − 1 i i + 1 · · · n − 1 n
x1 x2 · · · xi−1 n xi+1 · · · xn−1 a

where the elements in the bottom row of π can be barred or unbarred.
Recall that Pi is the insertion tableau of the first i elements x1x2 · · ·xi−1n. By defi-

nition of the insertion algorithm, Pi is either a vertical or horizontal domino containing
n, depending on whether n is barred or unbarred, followed by Pi−1. Since xk < n ∀k 6= i
then xi+1 < n. If xi+1 is unbarred then Pi+1 has a split domino containing xi+1 on top of
a vertical domino containing n, followed by Pi−1. If xi+1 is barred then Pi+1 has a vertical
domino containing xi+1 on top of a horizontal domino containing n followed by Pi−1.

When xi+2 is inserted into Pi+1, xi+1 is bumped out of the first stack of dominos
and inserted into the tableau to the right, which is Pi−1, and the shape of the domino
containing xi+1 is preserved. When xi+3 is inserted, xi+2 is bumped out of the first stack
of dominos and inserted into the tableau to the right. At the last step, a bumps xn−1 from
the first stack of dominos and xn−1 is then inserted into the tableau to the right. In the
insertion algorithm, the shape of each stack of two dominos is determined by whether or
not the element in the top domino is barred or unbarred. The resulting tableau is thus the
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same as the tableau obtained by placing the domino containing a on top of the domino
containing n, with the shape determined by whether or not a is barred or unbarred, in
front of the tableau obtained from the insertion of

σ =
1 2 · · · i − 1 i · · · n − 2
x1 x2 · · · xi−1 xi+1 · · · xn−1

,

the permutation in Sn−2 obtained by removing n and a from π. The square diagram for σ
is the same as the square diagram for π with the top row and rightmost column removed
and any empty rows and columns removed (since empty rows and empty columns do not
affect the growth diagram). Inductively, we can now apply the above conditions to this
new square diagram and continue to determine the complete insertion tableau P (π).

Theorem 3. For π a colored permutation of length n, ev(P (π)) = P̂ (π).

Proof. We will prove that ev(P (π)) = P̂ (π) by induction. If the length of π is 1, then the
path tableau P̂ is a single horizontal domino or a single vertical domino and the insertion
tableau P is the same, so P̂ (1) = ev(P (1)).

Assume that for σ a colored permutation of length k with k < n, ev(P (σ)) = P̂ (σ)
and let π be a colored permutation of length n.

Case 1: Suppose the square in the uppermost, rightmost corner of the square diagram
for π contains an X.

An X in this square, barred or unbarred, implies that n̄ or n is the last element in
the permutation π, so π = πn−1n̄ or π = πn−1n where πn−1 represents the first n − 1
digits in the colored permutation π. From the square diagram, we have that P̂ = n̄P̂n−1

or P̂ = nP̂n−1 where P̂n−1 is the path tableau of shape ν obtained from πn−1. Since n,
barred or unbarred, is the last number in the permutation π, when we apply the insertion
algorithm, n is the last number inserted into the tableau. Thus the insertion tableau
P is a vertical or horizontal domino containing n’s followed by Pn−1 where Pn−1 is the
insertion tableaux for πn−1. Following the evacuation procedure, the domino containing
n’s is simply removed from P and ev(P ) is either a vertical or horizontal domino followed
by ev(Pn−1). Since π = πn−1n or π = πn−1n̄, πn−1 is a colored permutation of length n−1
and P̂n−1 is the path tableau obtained from πn−1, then the inductive hypothesis implies
that P̂n−1 = ev(Pn−1). Thus

ev(P ) = P̂ .

Case 2: Suppose the X, barred or unbarred, in the nth column of the square diagram
is in row n − 1. In this case, the permutation π looks like:

π =
1 2 · · · i i + 1 · · · n − 1 n
x1 x2 · · · n xi+1 · · · xn−1 n − 1

where each of the elements xi, n and n − 1 are either barred or unbarred. The top two
squares in the last column of the growth diagram look like one of the following:
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ν

ν

µ̃

ν

X

µ = 11ν

λ = 2ν

ν

ν

µ̃

ν

X̄

µ = 12ν

λ = 2ν

Here µ and λ differ by a either a vertical domino or a split horizontal domino in the
initial column of height 2, respectively. Thus

P̂ = n-1

n
n

n-1 P̂n−2

OR
P̂ = n-1

n-1

n

n P̂n−2

where P̂n−2 is the path tableau of shape ν obtained from the first n − 2 rows of the
growth diagram. The first n− 2 rows have columns i and n empty, where i is the column
containing an X or X̄ in the nth row of the square diagram, and these first n − 2 rows
are the growth diagram for

σ =
1 2 · · · i − 1 i · · · n − 2
x1 x2 · · · xi−1 xi+1 · · · xn−1

once empty columns have been removed. In σ, if xi was barred in π then it will be barred
in σ. Note that σ is a colored permutation in Sn−2.

By Theorem 2, the insertion tableau for π can be determined by the shadow lines of
the square diagram. Since there is no X in the upper right corner, the X in the uppermost
row is paired with the X in row n − 1 of the nth column. Thus, the insertion tableau P
begins with a column of height two containing a vertical domino on top of a horizontal
domino if the X in row n − 1 is barred or a split horizontal domino on top of a vertical
domino if the X in row n − 1 is unbarred. When P is evacuated, the shape of the top
domino is preserved, leaving an empty split horizontal domino if a horizontal domino is
removed and leaving an empty vertical domino (on top of a horizontal domino) if a vertical
domino is removed. Thus the initial column of height 2 of ev(P ) has a vertical domino
containing n on top of a horizontal domino if the X in row n−1 is unbarred, which is the
same as the placement of the domino containing n in P̂ . If the X in row n − 1 is barred,
then the initial column of height 2 of ev(P ) has a split horizontal domino containing n on
top of a vertical domino, which is the same as the placement of the domino containing n
in P̂ .

At the second step of the evacuation process, the domino containing n− 1 is removed
from P , leaving an horizontal domino if the X in row n − 1 is unbarred and leaving a
vertical domino if the X in row n − 1 is barred. Then
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ev(P ) = n-1

n
n

n-1 ev(Pn−1)
OR

ev(P ) = n-1

n-1

n

n ev(Pn−1)

where Pn−2 is the insertion tableau P without the first column. Comparing P̂ and ev(P )
we can see that they agree in the first column of height two. As shown in the proof of
Theorem 2, P (π) has a column of height 2 followed by P (σ) where σ is as given above.
Since σ ∈ Sn−2, we can use our inductive hypothesis to obtain

ev(P (π)) = P̂ (π).

Case 3: Suppose the X in column n is in row a1 < n − 1. In this case, π is given by:

π =
1 2 · · · i · · · n − 1 n
x1 x2 · · · n · · · xn−1 a1

where the elements in the bottom row are each either barred or unbarred. The top two
squares in the rightmost column of the growth diagram look like:

µ1

ν1

µ̃

ν̃1

µ = 2µ1

λ = 2ν1

Since λ = 2ν1 and µ = 2µ1, then λ and µ differ by the same domino as ν1 and µ1. If
we remove the upper row and rightmost column, as well as any empty rows and columns,
then the partial growth diagram of the new upper right square looks like

ν2

µ̃1

µ1

ν1

As before, if there is an X in the new upper right square, then ν1 = 11µ1 if the X is
unbarred and ν = 12µ if the X is barred. If there is an X in the square below this one,
then ν1 and µ1 differ by a vertical domino in the initial column of height 2 if the X is
unbarred and ν1 and µ1 differ by a split horizontal domino in the initial column of height
2 if the X is barred:
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ν2

ν2

ν2

µ̃1

X

µ1 = 11ν2

ν1 = 2ν2

OR

ν2

ν2

ν2

µ̃1

X̄

µ1 = 12ν2

ν1 = 2ν2

If there is no X in either square, then the growth diagram looks like

µ2

ν2

ν̃2

µ̃1

µ1 = 2µ2

ν1 = 2ν2

We can continue this procedure until µi and νi differ by a domino in the first column
which implies that λ and µ differ by a domino in the (i + 1)st column. (Note, a column
is considered to be a single domino or a stack or two dominos. For example, a horizontal
domino takes up one column in this terminology.)

We now show that the evacuation tableau ev(P ) has a domino containing n’s in the
same place in the tableau as P̂ . If there is not an X in the nth row or (n − 1)st row of
the nth column of the growth, then by Theorem 2 the first column of P has a domino
containing a1’s, with a1 < n − 1, on top of a domino containing n’s. If the X in column
n is unbarred, then the domino containing a1’s is a split horizontal domino on top of
a vertical domino containing n’s and if the X in column n is barred, then the domino
containing a1’s is a vertical domino on top of a horizontal domino containing n’s.

After removing the nth row and the nth column and any empty rows and columns
from the growth diagram, if there is not an X in one of the top two rows of the rightmost
column of the new growth diagram, then the second column of P is a domino containing
a2’s, with a2 < n−2, that is split horizontal if the X in the rightmost column is unbarred
and vertical if the X in the rightmost column is barred, on top of a domino containing
n− 1’s of the appropriate shape. We can continue in this manner until one of two things
happens.

Subcase a: Suppose after i iterations of this process, there is an X, either barred or
unbarred, in the uppermost corner of the growth diagram. In this case, the insertion
tableau P has i columns of height 2 followed by a single vertical domino if the X is barred
and by a single horizontal domino if the X is unbarred. These first i + 1 columns look
like
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a1 a2 a3 · · · ai

n n − 1 n − 2 · · · n − (i − 1) n − i

with a2 < n−1, a3 < n−2, . . . , ai < n− (i−1) where the column
ak

n − (k − 1) represents
a domino containing ak’s on top of a domino containing n − (k − 1)’s. The shape of the
dominos in each of the columns of height two is determined by the X in the ak row. If the
X in the ak row is barred, then the domino containing ak’s is a vertical domino on top of
a horizontal domino containing n− (k−1)’s. If the X in the ak row is unbarred, then the
domino containing ak’s is a split horizontal domino on top of a vertical domino containing
n − (k − 1)’s. Thus the top domino in the column determines the shape of the dominos
in the column. At the first step of evacuation for P , the domino containing n − 1 slides
one column to the left into the empty domino evacuated by n, n − 2 slides one column
to the left, and so on until n − i slides one column to the left and the evacuation process
terminates with an empty single domino in column i+1. This single domino is horizontal
if the X in the uppermost corner of the growth diagram at this step (i.e. in the (n− i)th
row) is unbarred and vertical if the X is barred. Thus ev(P ) has n’s in the single domino
in column i + 1, the same as P̂ , and after one step of the evacuation procedure the first i
columns of the P tableau look like:

a1 a2 a3 · · · ai

n − 1 n − 2 n − 3 · · · n − i
.

where again
ai

n − i represents a stack of two dominos and the shape of the dominos are
again determined by the top domino containing ai’s. The rest of the P tableau remains
unchanged by the evacuation procedure.

Subcase b: Suppose after i iterations of this process there is an X, either barred or
unbarred, in the second row from the top. In this case, the first i + 1 columns of the
insertion tableau P have height 2. These first i + 1 columns look like

a1 a2 a3 · · · ai n − (i + 1)
n n − 1 n − 2 · · · n − (i − 1) n − i

with a1 < n−1, a2 < n−2, . . . , ai < n− i, where columns represent stacks of dominos as
in Subcase a. In the evacuation process, the dominos containing n − 1 through n − i all
move one column to the left with the shape of the column determined by the top domino.
The domino containing n − (i + 1) becomes a single horizontal domino if the X reached
in row n − (i + 1) is unbarred and a vertical domino if the X is barred. This leaves an
empty top vertical domino or an empty split horizontal domino, respectively, in column
i+1. Thus ev(P ) has a domino containing n’s as the top domino in column i+1, as does
P̂ , and of the same shape as in P̂ . The part of the P tableau to the right of the (i + 1)st
column remains the same.
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In both subcases, we can now remove the domino containing n from the (i + 1)st
column of P̂ to obtain P̂n−1 of shape µ. The path tableau P̂n−1 is the path tableau
obtained from the first n − 1 rows of the square diagram, which come from the colored
permutation

τ =
1 2 · · · i − 1 i · · · n − 1
x1 x2 · · · xi−1 xi+1 · · · a

.

Note that τ ∈ Sn−1. In order to use our inductive hypothesis, it remains to show that
after one step of the evacuation of P , we obtain P (τ). In the proof of Theorem 2, we
proved that P (π) is equal to a column of height 2 that has a domino containing a’s on
top of a domino containing n’s followed by P (σ) where

σ =
1 2 · · · i − 1 i · · · n − 2
x1 x2 · · · xi−1 xi+1 · · · xn−1

.

To obtain P (τ) we must insert a1, barred or unbarred, into P (σ).
In Subcase a, P (σ) looks like

a2 a3 · · · ai−1 ai

n − 1 n − 2 · · · n − (i − 2) n − (i − 1) n − i

and a1 inserted into this tableau gives

a1 a2 · · · ai−1 ai

n − 1 n − 2 · · · n − (i − 1) n − i

for the first i columns and does not change the remaining tableau. Again the shape of
each column of height 2 is determined by the shape of the domino in the top row. This
is exactly what P looks like after one step of the evacuation procedure.

In Subcase b, P (σ) looks like

a2 a3 · · · ai an−(i+1)

n − 1 n − 2 · · · n − (i − 1) n − i

and a1 inserted into this tableau gives

a1 a2 a3 · · · ai

n − 1 n − 2 n − 3 · · · n − i n − (i + 1)

for the first i+1 columns and does not change the remaining tableau. This is again exactly
what P looks like after one step of the evacuation procedure. By induction, ev(P (τ)) =
P̂ (τ) and since ev(P (π)) and P̂ (π) agree in the position of the domino containing n, then
ev(P (π)) = P̂ (π).

Theorem 4. Q(π) = Q̂(π).
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Proof. We will prove this result by induction on the size of Q(π). If π is a permutation of
a single element, then π = 1 of π = 1̄. If π = 1 then there is an unbarred X in the single
square in the growth diagram for π and ˆQ(π) is a horizontal domino with 1’s in it. If the

X is barred then ˆQ(π) is a vertical domino with 1’s in it. One can easily check that the

tableau Q(π) for the insertion of this single element agrees with ˆQ(π).
Now assume that Q(σ) = Q̂(σ) for σ a colored permutation of length k < n and let

π be a colored permutation of length n. Since the growth diagram for π−1 is simply the
reflection of the growth diagram for π around the diagonal line y = x, then P̂ (π) = Q̂(π−1)
and Q̂(π) = P̂ (π−1). Let πn−1 be the first n − 1 elements in the colored permutation π.
Then Q̂(πn−1) is the shape of the Q̂(π) tableau at the (n − 1)st stage.

By reflecting across the diagonal, we have Q̂(πn−1) = P̂n−1(π
−1) where P̂n−1(π

−1) is
the tableau for the square diagram consisting of the first n−1 rows of the square diagram
for π−1. Let D represent the domino that P̂n−1(π

−1) and P̂ (π−1) differ by. Then D also
represents the domino that Q̂(πn−1) and P̂ (π−1) differ by. From the growth diagrams we
know that the shape of Q̂(π) is equal to the shape of P̂ (π) which is equal to the shape of
P̂ (π−1). Thus D represents the domino that Q̂(π) and Q̂(πn−1) differ by. We must show
that D is also the domino that Q(π) and Q(πn−1) differ by, which means D must be the
domino that P (π) and P (πn−1) differ by, since Q represents a recording tableau for the
insertion tableau P .

Since ev(P (π)) = P̂ (π) then these tableau have the same shape and ev(P (π)) has the
same shape as P (π) by construction so P (π) has the same shape as P̂ (π). By reflection,
the shape of P̂ (π) is the same as the shape of P̂ (π−1). Suppose a, barred or unbarred,
is the last element in the colored permutation π and let σ be the colored permutation
in Sn−1 obtained from π by deleting the last element a and replacing all elements i with
i > a by i − 1. For i > a if i was barred in π then i − 1 will be barred in σ and for
i ≤ a, if i was barred in π then i will be barred in σ. By the method of insertion, the
shape of P (πn−1) = P (σ) and by Fomin’s growth diagram we have that the shape of
Q̂(πn−1) will be the same as the shape of Q̂(σ), since Q̂(πn−1) is the path tableau for the
growth diagram of the first n − 1 columns of the square diagram for π, i.e. for all but
the last element a of the square diagram for π. Thus the domino that Q̂(π) and Q̂(πn−1)
differ by is the same as the domino that P (πn−1) and P (π) differ by, which is the same
as the domino that Q(π) and Q(πn−1) differ by since Q is a recording tableau for P . By
induction, Q(πn−1) = Q̂(πn−1) and since Q(π) differs from Q(πn−1) in the same domino
that Q̂(π) differs from Q̂(πn−1) by, then Q(π) = Q̂(π).

Theorem 5. The evacuation procedure is a bijection between standard domino Fibonacci
tableaux and Fibonacci path tableaux.

Proof. The evacuation algorithm is, by definition, an injection from standard domino
Fibonacci tableaux to domino Fibonacci path tableaux. The growth diagrams of Fomin
shows that 2nn! equals the number of pairs (P, Q) where P and Q are Fibonacci path
tableaux of the same shape. The insertion algorithm given in Section 6 shows 2nn! equals
the number of pairs (P̂ , Q̂) where P̂ is a standard domino Fibonacci tableau and Q̂ is
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a path Fibonacci tableau. Since Q = Q̂ by Theorem 5, then the number of standard
domino Fibonacci tableaux must equal the number of Fibonacci path tableaux. Hence,
the evacuation algorithm is a bijection.

8 The Color-to-Spin Property

For a pair (P, Q) in which P is a standard domino Fibonacci tableau and Q is a domino
Fibonacci path tableau, we define

vert(P, Q) = (the total number of vertical dominos in P and Q).

To simplify the vert statistic, note than any column of height 2 contains a vertical
domino so the number of vertical dominos in P is the number of columns of height 2 in
the shape of P plus the number of 12’s in the shape of P . Since P and Q have the same
shape, the number of such columns in Q is the same as in P thus vert(P, Q) = 2(the
number of columns of height 2 plus the number of 12’s in the shape of P ). Based on the
shadow lines, this is the number of shadow lines with 2 X’s plus the number of shadow
lines with a single X̄ on them.

We define
split(P, Q) = k − l

where k is the number of split horizontal dominos in Q and l is the number of split
horizontal dominos in P .

Again we can interpret this statistic in terms of the shadow lines in the square diagram.
The number of split horizontal dominos in P (π) is the number of columns of height 2 with
a split horizontal domino on top, which is the same as the number of shadow lines with
2 X’s on them and with the X in the rightmost column unbarred.

Similarly, the number of split horizontal dominos in Q(π) is the number of columns
of height 2 in Q with a vertical domino on the bottom. This is the same as the number
of lines with 2 X’s on them with the X in the leftmost column barred for the following
reason. In the insertion algorithm, dominos never move from being a bottom domino in
a column of height 2 to being a top domino in that column. This means that in the Q,
or recording, tableau, the bottom domino in a column of height 2 is created first and
maintains its shape throughout the rest of the insertion algorithm. In addition, once
a column contains 2 dominos it will have 2 dominos for the remainder of the insertion
algorithm. Thus to count the number of split horizontal dominos in Q we need to know
the number of columns of height 2, which is the number of shadow lines with 2 X’s, whose
bottom domino is a vertical domino, which means the leftmost X is barred.

We then define

spin(P, Q) =
1

2
vert(P, Q) + split(P, Q).

In the example of (P, Q) from the previous section we have vert(P, Q) = 8, split(P, Q) =
2 − 2 = 0 and spin(P, Q) = 4 + 0 = 4.

For a colored permutation π we define the color(π) to be the total number of barred
(or colored) elements in π.
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Theorem 6. If π is a colored permutation and (P, Q) is the pair of tableaux obtained
through the domino Fibonacci insertion algorithm, then

color(π) = spin(P, Q).

Proof. If we consider the square diagram of a colored permutation and then look at the
shadow lines, we know that every X or X̄ lies on some shadow line, so to prove this result
we will look at the contribution to color and to spin of each shadow line.

Suppose the shadow line L contains only a single X. If the X is unbarred, then the
contribution of this line to color is zero and the contribution of this line to spin is also
zero. If the X is barred, then the contribution of this line to color is 1 and the contribution
to spin is also 1, since this denotes a vertical domino (a 12) in the shape of P . If the
shadow line L contains two X’s (either barred or unbarred) then there are several cases
to consider.

1. Suppose both X’s on the line are barred. Then the contribution of this line to
color is 2. Since this line contains two X’s, the contribution to vert is 2(1) = 2.
Since the leftmost X is barred, this designates a split horizontal domino in Q so the
contribution of the line to split is 1. Thus the contribution of the line to spin is
1
2
(2) + 1 = 2.

2. Suppose both X’s on the line are unbarred. Then the contribution of this line to
color is zero. Since this line contains two X’s, the contribution to vert is 2. Since
the rightmost X is unbarred, this designates a split horizontal domino in P so the
contribution of the line to split is -1. Thus the contribution of the line to spin is
1
2
(2) − 1 = 0.

3. Suppose the leftmost X on the line is barred and the rightmost X on the line is
unbarred. Then the contribution of this line to color is 1. Since this line contains
2 X’s, the contribution to vert is 2. Since the leftmost X is barred, this designates
a split horizontal domino in Q so the contribution of the line to split is 1. Since
the rightmost X is unbarred, this designates a split horizontal domino in P so the
contribution of the line to split is -1. Thus the total contribution of the line to spin
is 1

2
(2) + 1 − 1 = 1.

4. Suppose the leftmost X on the line is unbarred and the rightmost X on the line is
barred. Then the contribution of this line to color is 1. Since this line contains 2
X’s, the contribution to vert is 2. Since the leftmost X on the line is unbarred and
the rightmost X on the line is barred, there is no contribution to split. Thus the
contribution of the line to spin is 1

2
(2) = 1.

For domino Young tableaux Shimozono and White extended their results to define a
generalized k-ribbon insertion algorithm [9]. The authors are working on extending the
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ideas in this paper to a notion of a generalized k-ribbon Fibonacci tableaux. In addition,
it is natural to expect that the domino insertion algorithm should extend to semistandard
permutations, but such an extension remains elusive. In particular, it is unclear what
the correct definition of a semistandard Fibonacci tableaux should be. Such a definition
would assist in giving a combinatorial interpretation of the Fibonacci Schur functions
which appear in [5].
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