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Abstract
An n× n array is avoidable if there exists a Latin square which differs from the

array in every cell. The main aim of this paper is to present a generalization of
a result of Chetwynd and Rhodes involving avoiding arrays with multiple entries
in each cell. They proved a result regarding arrays with at most two entries in
each cell, and we generalize their method to obtain a similar result for arrays with
arbitrarily many entries per cell. In particular, we prove that if m ∈ N, there exists
an N = N(m) such that if F is an N ×N array with at most m entries in each cell,
then F is avoidable.

1 Introduction

The study of avoiding given configurations in Latin squares was initiated by Häggkvist,
who in 1989 asked which n × n arrays can be avoided in every cell by some n × n Latin
square. While finding arrays which cannot be avoided has some merit, finding families
which can be avoided seems to be a more difficult problem. Häggkvist [10] was the first
to present such a positive result (Theorem 1 below). Throughout the paper, we shall
use the notation [n] for the set {1, 2, . . . , n}. Unless explicitly stated otherwise, an n × n
Latin square uses symbols [n]. A partial n × n column-Latin square on [n] is an array of
n rows and n columns in which each cell is empty or contains one symbol from [n] and
every symbol appears at most once in each column.
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Theorem 1 Let n = 2k and P be a partial n× n column-Latin square on [n] with empty
last column. Then there exists an n× n Latin square, on the same symbols, which differs
from P in every cell.

We say that an n× n array is avoidable if there is an n× n Latin square which differs
from the array in every entry. Chetwynd and Rhodes [5] proved that some partial Latin
squares are avoidable:

Theorem 2 If k ≥ 2, then all 2k × 2k and 3k × 3k partial Latin squares are avoidable.

In this paper, we generalize another result of Chetwynd and Rhodes [6] involving
avoiding arrays with at most two entries in each cell:

Theorem 3 Let k > 3240 and F be a 4k × 4k array such that each cell contains at most
two symbols and each symbol appears at most twice in every row and column. Then F is
avoidable.

This result depended on a lemma, which we shall generalize, and the following result
of Daykin and Häggkvist [7].

Theorem 4 Let 0 ≤ d < k and H be an r-partite r-uniform hypergraph with minimum
degree δ(H) and |V (H)| = rk. If

δ(H) >
r − 1

r

[
kr−1 − (k − d)r−1

]
,

then H has more than d independent edges.

The main result of this paper is as follows:

Theorem 5 Let m ∈ N. There exists a constant c = c(m) such that if k > c = c(m) and
if F is a 2mk × 2mk array on the symbols [2mk] in which every cell contains at most m
symbols and every symbol appears at most m times in every row and column, then F is
avoidable.

The proof yields a polynomial bound on c(m), but we have not tried to make this bound
best possible. In fact, the bound has leading term 8m8, and we believe any significant
improvement on this, e.g., an absolute constant, will involve a different approach.

We note that any result involving avoidable arrays corresponds directly to a list col-
oring problem on bipartite graphs. An n × n array can be thought of as the complete
bipartite graph Kn,n with vertices in one class corresponding to the rows of the array and
vertices in the other the columns. So, edges in this representation of Kn,n correspond
to cells of the array. We begin with the assumption that every edge, or cell, can receive
colors 1, 2, . . . , n. Then, a proper edge coloring of Kn,n corresponds to a Latin square
on the n × n array. This question of list colorings of bipartite graphs was answered in a
general form by a theorem of Galvin [8].
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Theorem 6 The list chromatic index of a bipartite graph equals the maximum degree of
the bipartite graph.

However, our question does not relate to this theorem in that we are interested not
in subgraphs of Kn,n, but rather shortening the lists at each edge and seeing if there
still is a proper edge coloring. Given Galvin’s theorem, or even König’s theorem, we
must put some additional constraint on these lists, but this constraint is provided by the
requirement that we can only remove a color at most m times from the edges incident
to a single vertex. The shortening of the lists is done by our forbidden array F in that
the entries in each cell are the forbidden colors on the corresponding edges. Thus, in this
setting, we have the following corollary of Theorem 5.

Theorem 7 Let m ∈ N. Then there exists an n0 = n0(m) such that if n > n0 and the
edges of K2n,2n are given lists which are each subsets of [2n], contain at least 2n − m
colors, and each color is deleted from the edges incident to a vertex at most m times, then
there is a proper edge coloring of K2n,2n using the colors of the list at each edge.

This paper will present the key lemma in the next section and then proceed to the
proof of Theorem 5. We end with some discussions of the general problem and a conjec-
ture involving the constant in Theorem 5. While an effort has been made to define all
terminology, any undefined terms should be possible to find in [1].

2 The lemma

In a 2n × 2n array, a generalized diagonal is a set of 2n cells, one from each row and
column, i.e., there is a rearrangement of rows and columns of the array such that this set
is a diagonal. In this terminology, Chetwynd and Rhodes proved the following using case
analysis:

Lemma 8 Let E be a 4× 4 array in which some cells contain symbol s and s appears at
most twice in every row and column. Then there exists a generalized diagonal of E along
which s does not appear.

We will generalize this to l × l arrays in which a symbol appears at most b l
2
c times in

each row and column. It is an immediate corollary of the classical theorem of König [9],
and so we will state it without proof.

Lemma 9 Let E be an l × l array with the symbol s appearing at most l2 = b l
2
c times in

each row and column. Then we can find a set M of l cells in E not containing s, such
that no two of these cells appear in the same row or column.

Note that this lemma gives that by permuting the rows and columns of M , the cells
not containing s can be arranged to appear on the, say, upper right to lower left diagonal
of E. This does not depend on the parity of l. Thus, we note that this step is not where
the proof method of the main theorem breaks down for mk ×mk arrays where m is odd.
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3 Proof of Theorem 5

Proof. Let X = {X1, X2, . . . , Xk}. For a n×n array A and ` such that `|n, we say that an
`× ` subarray of A is a standard subsquare if it is of the form {(i−1)`+1, . . . , i`}×{(j−
1)` + 1, . . . , j`} for i, j ∈ [n/`]. We divide F into the k2 2m × 2m standard subsquares
and label these subsquares with X1, . . . , Xk in such a way that the k × k array on X is
a Latin square. Let S = [2mk]. We shall partition S into k 2m-tuples S1, . . . , Sk in such
a way that we can form a Latin square on each Xi with the symbols in Si. Further, let
X1

i , X2
i , . . . , Xk

i be the k 2m× 2m standard subsquares of F labelled Xi. In order to ease
our count and to be able to define a hypergraph to apply Theorem 4, we only consider a
certain subset of 2m-tuples on S. Let Ai = {(i − 1)k + 1, . . . , ik} for i = 1, 2, . . . , 2m, so
that S =

⋃2m
i=1 Ai. Then, let M be the set of all 2m-tuples of the form {a0, a1, . . . , a2m−1}

where ai ∈ Ai for i = 1, 2, . . . , 2m.
Let E be any of the k2 2m × 2m standard subsquares of F . Let a cell pair of E be

any two symbols which appear together in some cell of E. We then define CE to be the
subset of M containing all 2m-tuples which contain at least one cell pair. Then, since E
has 4m2 cells, and each cell has at most m symbols,

|CE| ≤ 4m2

(
m

2

)
k2m−2. (1)

Let a doubled pair of E be any two symbols x and y such that both x and y appear
at least twice in some row or column of E. Then, let DE be the subset of M containing
all 2m-tuples which contain at least one doubled pair of E. Since there are at most 4m3

total symbols in E, at most 2m3 symbols can appear twice in E, and thus we have

|DE| ≤
(

2m3

2

)
k2m−2. (2)

If we let RE = M \ {CE ∪DE}, R ∈ RE and {x, y} ⊂ R, then since we have excluded
doubled pairs, we know that only one of x and y can appear more than twice in any row
or column of E. So, if x appears at least 2 times, y appears at most once. Since we can
note this of any pair of symbols in R, only one symbol in R can appear more than once in
any row or column of E and all others appear at most once. Now, we know that at most
2m3 symbols appear at least twice in any row and column of E and we shall denote these
symbols by {sE

1 , sE
2 , . . . , sE

p } for some p such that 0 ≤ p ≤ 2m3. Applying Lemma 9 for
each of the sE

i , we rearrange the rows and columns of E to get Ei so that the generalized
diagonal given by the lemma is the upper right to lower left diagonal of Ei.

We call a pair of symbols {x, y} improper for a 2 × 2 array if either diagonal of the
array has x in one cell and y in the other. Otherwise, we say that the pair is proper.
Now, we let IE be the set of all 2m-tuples in M containing at least one improper pair for
any standard 2 × 2 subsquares of each Ei, 1 ≤ i ≤ p. For a fixed 2m × 2m array with
each cell containing at most m symbols, we partition the array into its standard 2 × 2
subsquares. We then count the number of improper pairs for each of the 2×2 subsquares
of this 2m × 2m array. For each diagonal of a fixed 2 × 2 array, there are at most m2
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improper pairs, and so there are at most 2m2 improper pairs per 2 × 2 subsquare. Since
there are at most 2m3 Ei’s and m2 2 × 2 standard subsquares of each Ei with at most
2m2 improper pairs per 2 × 2 subsquare, we have

|IE| ≤ 2m3 · m2 · 2m2 · k2m−2 = 4m7k2m−2. (3)

Finally, we need to get rid of all of the unusable 2m-tuples for our 2m× 2m array E.
So, we let UE = CE ∪ DE ∪ IE and let M ∈ M \ UE . If all 2m symbols of M appear less
than twice in every row and column of E, then, since we have excluded improper pairs,
only one symbol from M can appear on each diagonal for every 2× 2 standard subsquare
of E. Thus, we can label the 2 × 2 subsquares with m symbols Y1, Y2 . . . , Ym in such a
way that the Yi’s form an m × m Latin square. Since every pair of M forms a proper
pair for every 2 × 2 standard subsquare of E in this case, we can partition M into pairs
R1, R2, . . . , Rm arbitrarily and use the pair Ri to form a Latin square avoiding Yi for all
i, 1 ≤ i ≤ m. Thus, we can form a Latin square avoiding E using the symbols of M .

Otherwise, since we have excluded doubled pairs, at most one symbol of M , say s,
appears more than twice in some row or column of E. Therefore, we can rearrange E to
get E′ so that the generalized diagonal that does not contain s by Lemma 9 is the upper
right to lower left diagonal of E ′. Since any other symbol appears less than twice and
we have gotten rid of the improper pairs, any other symbol of M , say t, can be used to
complete the 2×2 standard subsquares containing s in E ′, while the other 2m−2 can be
used in any of the other 2 × 2 standard subsquares. If we again label the 2 × 2 standard
subsquares with Y1, . . . , Ym in such a way that the Y1’s form a diagonal from upper right
to lower left, and thus we can use symbols s and t to form Latin squares avoiding F in
all of the Y1’s. We can then arbitrarily partition the remaining 2m− 2 symbols of M into
pairs R2, . . . , Rm and use the symbols in Ri to form a 2× 2 Latin square which avoids Yi

for all i, 1 ≤ i ≤ m. Thus, M can be used to form a Latin square avoiding E. Also, note
that we have

|UE| ≤ |CE| + |DE| + |IE|
≤ 4m2

(
m

2

)
k2m−2 +

(
2m3

2

)
k2m−2 + 4m7k2m−2. (4)

We define a (2m + 1)-partite (2m + 1)-uniform hypergraph

H = H(X, A1, A2, . . . , A2m)

in which edge Xia1a2 · · ·a2m for Xi ∈ X and ai ∈ Ai is present if and only if the 2m-tuple
{a1, a2, . . . , a2m} is not in UXq

i
for any q with 1 ≤ q ≤ k. We shall show that H has a

set of k independent edges, which corresponds to a partition of S, say S1, . . . , Sk, into k
2m-tuples such that the symbols in Si can be used to form a Latin square which avoids
each subsquare labelled Xi.

To show that H has an independent set of at least k edges, we shall find a lower bound
for δ(H) and then apply the theorem of Daykin and Häggkvist, i.e. Theorem 4. We do
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this by first finding a lower bound on the degree of vertices in X, and then for those in
the Ais. First of all, for any i with 1 ≤ i ≤ k, we have, using (4),

dH(Xi) ≥ |M| −
k∑

q=1

|Uxq
i
|

≥ k2m − k

[
4m2

(
m

2

)
k2m−2 +

(
4m3

2

)
k2m−2 + 4m7k2m−2

]

= k2m −
[
4m2

(
m

2

)
+

(
4m3

2

)
+ 4m7

]
k2m−1. (5)

We now consider s ∈ S and the minimal degree over such vertices in H. Let CE(s)
be the subset of M which contains the 2m-tuple M if M ⊃ {s, t} where s and t appear
together in some cell of E for some t ∈ [2mk]. Likewise, let DE(s) be the subset of M

which contains the 2m-tuple M if M ⊃ {s, t} where s and t appear at least twice in some
row or column of E for some t ∈ [2mk] and IE(s) be the subset of M which contains the
2m-tuple M if M ⊃ {s, t} where s and t are an improper pair for some 2 × 2 standard
subsquare of Ei for i ∈ {1, 2, . . . , p} and for some t ∈ [2mk]. We now note that H cannot
contain any edge containing both s and any member of CXq

i
(s)∪DXq

i
(s)∪IXq

i
(s). However,

contrary to what is implicitly claimed in [6], there are other edges which cannot be present
in H, i.e., those which contain a bad pair for a given Xq

i not involving s. Let CE(s̄) be
the subset of M which contains the 2m-tuple M if s ∈ M and M ⊃ {u, v} where u, v 6= s
and u and v appear together in some cell of E. Similarly, let DE(s̄) be the subset of M

which contains the 2m-tuple M if s ∈ M and M ⊃ {u, v} where u, v 6= s and {u, v} is
a doubled pair of E. Lastly, let IE(s̄) be the subset of M containing the 2m-tuple M if
s ∈ M and M ⊃ {u, v} where u, v 6= s and {u, v} is an improper pair for E. Then,

dH(s) ≥ k2m −
(∑

i,q

|CXq
i
(s)| +

∑
i,q

|DXq
i
(s)| +

∑
i,q

|IXq
i
(s)|
)

−
(∑

i,q

|CXq
i
(s̄)| +

∑
i,q

|DXq
i
(s̄)| +

∑
i,q

|IXq
i
(s̄)|
)

. (6)

Symbol s occurs at most m times in each of the 2mk rows of F , so s can occur with t
in at most 2m2k of the Xq

i . Thus∑
i,q

|CXq
i
(s)| ≤ 2m2k · k2m−2 = 2m2k2m−1. (7)

If a symbol s appears twice in some row or column of a 2m × 2m standard subsquare of
F , then at most 2m3 − 1 symbols also occur twice in some row or column of that same
subsquare. Further, since s appears at most m times in each of the 2mk rows, and thus
a total of at most 2m2k times, it can occur twice in at most m2k of the Xq

i . Thus,∑
i,q

|DXq
i
(s)| ≤ (2m3 − 1)m2k · k2m−2 = (2m5 − m2)k2m−1. (8)
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As noted above, there are at most 2m2k cells containing s. If s occurs in some 2 × 2
standard subsquare of a particular 2m × 2m standard subsquare of F , then, since there
are at most m symbols in the cell diagonal from s, it occurs as an improper pair with
at most m symbols. Furthermore, the 2m × 2m standard subsquare is rearranged at
most 2m3 times, since we rearrange once for each symbol appearing twice in some row or
column of the standard subsquare, and all such improper pairs are counted. Thus,∑

i,q

|IXq
i
(s)| ≤ m · 2m3 · 2m2k · k2m−2 = 4m6k2m−1. (9)

We are left with bounding CXq
i
(s̄), DXq

i
(s̄) and IXq

i
(s̄). But the same arguments that

led to the inequalities (1), (2) and (3) give similar bounds for these, with the difference
being that we have fixed one symbol, i.e., s, in each of the 2m-tuples in these sets. Thus,
we see that for any fixed i and q,

|CXq
i
(s̄)| ≤ 4m2

(
m

2

)
k2m−3, (10)

|DXq
i
(s̄)| ≤

(
2m3

2

)
k2m−3, (11)

and

|IXq
i
(s̄)| ≤ 4m7k2m−3. (12)

Combining inequalities, (6), (7), (8) and (9) with (10), (11) and (12) after summing
the last three over all i and q, we see that

dH(s) ≥ k2m − [2m2k2m−1 + (2m5 − m2)k2m−1 + 4m6k2m−1
]

−k2

[
4m2

(
m

2

)
k2m−3 +

(
2m3

2

)
k2m−3 + 4m7k2m−3

]

= k2m −
[
m2 + 4m2

(
m

2

)
+ 2m5 +

(
2m3

2

)
+ 4m6 + 4m7

]
k2m−1.

Using (5), and noting that 4m2
(

m
2

)
+
(
2m3

2

)
+ 4m7 < m2 + 4m2

(
m
2

)
+ 2m5 +

(
2m3

2

)
+

4m6 + 4m7 for m ≥ 1, we see then that

δ(H) ≥ k2m −
[
m2 + 4m2

(
m

2

)
+ 2m5 +

(
2m3

2

)
+ 4m6 + 4m7

]
k2m−1.

To apply Theorem 4 with r = 2m + 1 and d = k − 1, we need δ(H) > 2m
2m+1

(k2m − 1) in
order to insure the existence of k independent edges. In other words, we need

k2m −
[
m2 + 4m2

(
m

2

)
+ 2m5 +

(
2m3

2

)
+ 4m6 + 4m7

]
k2m−1 >

2m

2m + 1
(k2m − 1).

This certainly holds if

k > (2m + 1)

[
m2 + 4m2

(
m

2

)
+ 2m5 +

(
2m3

2

)
+ 4m6 + 4m7

]
.

�
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4 Concluding remarks

It has been noted by Pebody [11] that for any n the following is an unavoidable n × n
array on [n] where each symbol appears at most bn

3
c + 1 times in every row and column.

We set k = bn
3
c + 1.

1, . . . , k
k + 1, . . . , 2k

2k + 1, . . . , n

The first and second row and column of the above array have width k, while the third
row and column have width n − 2k < k. The nonempty cells above are either n × n or
(n − 2k) × (n − 2k) arrays, where each entry contains all the symbols in that cell. For
n = 2 this is the canonical 2 × 2 unavoidable (single entries) array.

As mentioned above, the method employed in Theorem 5 does not yield anything near
what we believe to be the best bounds possible. Since we have yet to find a counterexample
to the following statement, we rather brashly present it as a conjecture. Note that this
may be seen as an elaboration of a conjecture of Häggkvist [10].

Conjecture 10 Let m ≥ 2 and let F be a cm × cm array where each cell contains at
most m symbols, and each symbol appears at most m times in every row and column. If
c ≥ 3 then F is avoidable.

If true, the conjecture is sharp for all n = cm, by the above example of Pebody’s. For
m = 1, F is a partial Latin square, and the following holds (see [2], [3] and [5]).

Theorem 11 Let P be an n × n partial Latin square, n ≥ 4. Then P is avoidable.

This is not true for n = 3, as there are examples of unavoidable 3 × 3 partial Latin
squares. This might be taken as an indication that we should have c > 3 instead of c ≥ 3
in Conjecture 10.
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