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Abstract

Sommerville [8] and Davies [2] classified the spherical triangles that can tile the
sphere in an edge-to-edge fashion. Relaxing this condition yields other triangles,
which tile the sphere but have some tiles intersecting in partial edges. This paper
shows that no right triangles in a certain subfamily can tile the sphere, although
multilayered tilings are possible.

Keywords: spherical right triangle, monohedral tiling, non-normal, non-edge-to-
edge, asymptotically right

1 Introduction

A tiling in which all tiles are congruent is said to be a monohedral (or sometimes homo-
hedral) tiling; and if two tiles that intersect always do so in a single point or an entire
edge, the tiling is called edge-to-edge (or sometimes normal). In 1923, D.M.Y. Somerville
[8] classified the edge-to-edge monohedral tilings of the sphere with triangles, subject to
certain restrictions. H.L. Davies obtained a complete classification of edge-to-edge mono-
hedral tilings in 1967 [2], though many details were omitted; these were provided in 2002
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by Ueno and Agaoka [9]. There are, of course, reasons why the edge-to-edge tilings are of
special interest; however, non-edge-to-edge tilings do exist. Some of these use tiles that
also tile in an edge-to-edge fashion; others use tiles that cannot tile edge-to-edge.

In [3] a complete classification of isosceles spherical triangles that tile the sphere was
given. Of course, every isosceles tile yields a right-angled tile by bisection, but there are
other right-angled triangles that tile as well. This paper forms a part of a sequence of
articles (also including [4, 5, 6, 7]) that classifies those triangles.

For any right triangle, let β be the larger non-right angle and γ the smaller. It is clear
that a tile cannot tile the sphere unless it permits some vertex configurations with at least
as many β as γ angles. We call such a configuration (or, rather, the triple containing the
numbers of the various sorts of angles appearing there) a “β source”; it turns out to be
useful to classify triangles in terms of these, and to consider triangles with a common β
source together.

This paper deals with one family of right-angled triangles, whose members are shown
not to tile the sphere. We present, however, two interesting multiple covers. The family
consists of all those triangles for which 90◦ + 3β + 2γ = 2β + nγ = 360◦, where β and γ
are the two non-right angles of the triangle, with β > γ. It will be shown below that there
are infinitely many such triangles, indexed by n. It may be seen that limn→∞ βn = 90◦;
we call such a family asymptotically right-angled.

While most triangles in this family can be shown not to tile by a simple counting
argument, two of them have some extra vertex configurations not shared by the others
and require many cases to be considered. For that reason, the present paper has been
separated from [5], of which it would otherwise be a natural part. The reader is referred
to that paper for basic definitions and general results.

2 Basic Results

In this paper, we consider the family of right triangles Tn which have (1, 3, 2) as a β source
and (0, 2, n) as a γ source. Tn has

βn =
270◦n− 720◦

3n− 4
, γn =

540◦

3n− 4
(1)

We will see that none of these tile the sphere, although T6 and T8 yield interesting multiple
covers.

We can use the values of these angles to derive the following lemma, which rules out
certain relations among edge lengths.

Lemma 1 We do not have B = 2C, H = 2C, or 2B = H + C for any Tn.

Proof: Note that γn is a strictly decreasing function of n, while βn is strictly increasing. It
therefore follows that B/C is strictly increasing. Numerical calculation shows that when
n < 8, B/C < 2, while for n = 8, B/C = 2.30121 . . . > 2. The proof that H 6= 2C follows
the same pattern. Finally, after verifying that 2B 6= H + C for n < 8, we observe that
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for n ≥ 8 we have H + C < B + 2C < 2B.

We now find the vertex vectors (a, b, c) of the triangles Tn.

Proposition 1 The vertex vectors of Tn are precisely (0, 2, n), (1, 3, 2), (4, 0, 0); and, if
n is even, (1, 0, 3n−4

2
) and (2, 1, n

2
); and also, if n is even and ≤ 8, (0, 5, 8−n

2
).

Proof: This follows the pattern of Proposition 4 of [5]

When n is odd, there is no second split, so that (in light of [2] and [4]) the triangle
does not tile. Setting β > γ in (1) we get n > 14/3; so we need to consider only Tn for
n = 6, 8, 10, . . ..

For n = 2 we get a negative value for β. For n = 4 we have β = 45◦, γ = 67.5◦ with
β < γ. With the angles in the proper order, this is classified as a member of the (0, 4, 2)
“quarterlune” family. It has γ source (0, 0, 8), tiles the sphere in an edge-to-edge fashion,
and is listed by Davies [2], though not by Sommerville [8].

For n > 8 the vertex vector (0, 5, 8−n
2

) does not exist and there is no β source except
for (1, 3, 2). This provides only a slight surplus of β angles over γ angles, and it is easy
to show that it cannot serve as the sole β source in a tiling, by showing that wherever
it appears it is associated with enough nearby γ angles to require a global surplus of γ
angles over β angles.

Proposition 2 No triangle Tn tiles the sphere using the (1, 3, 2) vertex as its only β
source.

Proof: Suppose, on the contrary, that such a tiling exists. At any (1, 3, 2) vertex O the
angles have, between them, three medium edges, four short edges, and five hypotenuses.
Either there are two or more mismatched pairs, or there is a medium edge mismatched
with a hypotenuse.

O O O O

X

a b c d

A

B

A
A

A

B B

B

C

Figure 1: Splits associated with a (1, 3, 2) vertex

We say that a (0, 2, n)/2 split vertex X is associated with a (1, 3, 2) vertex O if it is
connected to O by a single short or medium edge (Fig. 1a− c), or if it is connected by a
short edge to a (4, 0, 0)/2 split which is itself connected to O by another short edge (Fig.
1d). It may be easily verified, using Lemma 1, that no split X is associated with more
than 2 (1, 3, 2) vertices.

Suppose OA and OB are a mismatched pair of edges, belonging to triangles 4OAC
and 4OBD. Assume (without loss of generality) that OA is shorter than OB. If the
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angles ∠OAC is not a right angle, it is a part of a (0, 2, n)/2 split, associated with O. If
both are right angles, another right angle is needed to fill the gap ∠CAB, and the β angle

of that triangle will be a part of a split vertex X, either on the extended edge
←→
OA or on

an extended edge that terminates at that extended edge, and X will again be associated
with O and with no other (1, 3, 2) vertex.

As each split associated with a (1, 3, 2) vertex yields at least 3 γ angles and one β
angle, we conclude that even one mismatched edge leads to a net surplus of γ angles in
the tiling, which is impossible.

Corollary 1 No triangle Tn, n > 8, tiles the sphere.

The next lemma, ruling out certain edge length dependencies, will be used frequently.

Lemma 2 (Overhang Lemma) Let 4XY Z be a triangle in a (hypothetical) monohe-

dral tiling of the sphere with some Tn. If
←→
XY overhangs at Y , then

←→
XZ does not overhang

at Z.

Figure 2: An included right angle

Proof: Consider first the case in which the included angle is the right angle A, and
suppose there are overhangs at B and C as shown. All other angles at C must be γ
angles, so triangle 2 is forced as shown (Fig. 2a). The remaining angles in the gap at B
are all γ angles, so that BD is mismatched with either a medium edge or hypotenuse.
The edge CD must be covered as shown in (Fig. 2b) by Triangle 3; and by Lemma 1 the

extended edge
←→
BD does not end at E, creating a further overhang. The edge CE cannot

be covered by a hypotenuse in either orientation without putting two β angles at a split,
which is impossible.

Suppose now that the included angle between the edges is β and the edges overhang
at A and C:

The split at A requires another right angle. By Lemma 1, AC must be covered by
another medium edge, forcing Triangle 2; and by the same lemma, there is an overhang
as shown at D. Triangle 3 is then forced, to cover the hypotenuse CD while avoiding a
second β at D. The remaining gap at C must be filled by one or more γ angles, so the

extended edge
←→
CE overhangs triangle 3 at E. Triangle 4 and the overhang at F follow,

and DF cannot then be covered in any way.
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Figure 3: An included β angle

Finally, if the included angle is a γ angle, and there are overhangs at A and B, the
edge AB would have to be covered by another short edge, with a split vertex at either
end; but this requires either a split vertex with two β angles or one with a β angle and a
right angle, neither of which exists for these triangles.

3 The triangle T6

This triangle has angles (90◦, 642
7

◦
, 384

7

◦
), and vertex vectors (0, 2, 6), (0, 5, 1), (1, 0, 7),

(1, 3, 2), (2, 1, 3), and (4, 0, 0). Its area is 1/56 that of the sphere. In this section we show
that this triangle does not tile the sphere, although it admits a multiple cover.

Because of the second β source (0, 5, 1) which has a large surplus of β angles over γ
angles, a counting argument of the sort used in the previous section will not work; we
have to resort to “brute force” tile chasing.

Theorem 1 The (90◦, 642
7

◦
, 384

7

◦
) triangle does not tile the sphere.

Proof: If it did so, it would (by Prop. 2) do so using at least one (0, 5, 1) vertex. Let O
be such a vertex, with triangle 1 contributing the only γ angle (Figure 4a).

Figure 4: The neighborhood of a (0, 5, 1) vertex

Since all other angles are β angles, the medium edge of triangle 1 cannot be matched,
forcing an overhang at A. The hypotenuse of triangle 1 must then, by Lemma 2, be
matched, with a β angle at O, forcing triangle 2 as shown in Figure 4a. There are two
possible orientations for triangle 3, which contributes the remaining right angle at A
(Figure 4b, c).
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Figure 5: The neighborhood of a (0, 5, 1) vertex

Proposition 3 If the configuration of Figure 4b appears in a tiling of the sphere with
triangle T6, this configuration must extend to that of Figure 5b.

Proof: By Lemma 1, there is an overhang at B and the hypotenuse of triangle 3 must be
matched. If triangle 4, which contributes this hypotenuse, were positioned as in Fig. 5a
with a β angle at B, then, when the split at B is filled, it will create an overhang at C,

forcing triangle 5. By Lemma 1, the extended edge
←→
BC overhangs triangle 5 at D; the

edge DE must be matched, but neither vertex D nor vertex E can take an additional β
angle. We conclude that triangle 4 must be positioned as in Figure 5b.

It follows that E could only be a (1, 3, 2) vertex or a (0, 5, 1) vertex. The next propo-
sition eliminates one of these possibilities.

Proposition 4 If the configuration of Figure 5b appears in a tiling of the sphere with
triangle T6, then E is a (0, 5, 1) vertex.

Proof: Suppose instead that E is a (1, 3, 2) vertex. If the right angle were next to triangle
2 (Figure 6a), the short edge EF could not match either edge adjacent to a γ angle; so
to obtain the matching required by Lemma 2 we must have triangles 5 and 6 as shown.

Figure 6: The configuration if E is a (1, 3, 2) vertex

Overhangs at G and H are then forced as shown; and the overhang at H requires a
split with a β and a right angle, which does not exist. Therefore the right angle at E
must be adjacent to triangle 4 (Figure 6b, c). Lemma 2 requires one edge adjacent to that
angle to be matched, which forces triangle 5 as shown. We now consider the orientation
of triangle 6, contributing the γ angle at E.
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If the medium edge of triangle 6 matches that of triangle 2 (Figure 6b), it creates a
split at J , and an overhang at K. By Lemma 1, the extended edge OK is covered by two
more short edges. One of these must be a side of a β angle at O, forcing a (4, 0, 0) vertex
at L; but then there are two β angles at K, which is impossible.

The medium edge of triangle 6 thus matches that of triangle 5 (Figure 6c), creating
an overhang at M . Triangle 7 is then forced at O. When the gap at N is filled with γ
angles, it creates a split vertex at P with a right angle and a γ angle; but this cannot
exist. We conclude that E is a (0, 5, 1) vertex.

Figure 7: The neighborhood of the (0, 5, 1) vertex E

Proposition 5 If the configuration of Figure 5b appears in a tiling of the sphere with
triangle T6, this configuration must extend to that of Figure 7a.

The (0, 5, 1) vertex at E requires 2 more β angles (Figure 7 - note that these diagrams
have been reoriented!) Let triangle 5 be the one adjacent to triangle 4 at E. If it is placed
with its hypotenuse against the short leg of triangle 4 (Figure 7b, c), then triangle 6 is
forced as shown by Lemmas 1 and 2. The overhang at M forces triangle 7 as shown,
creating an overhang at N . By Lemma 1, there must be an overhang at P . The extended
edge NP must be matched by two medium edges, forcing triangles 8 and 9. There cannot
be an overhang at S, so the hypotenuses of triangles 8 and 9 must each be matched.

Suppose (Figure 7b) that the hypotenuse of triangle 9 is covered by triangle 10 con-
tributing an angle β at P . When the split at P is filled it creates an overhang at Q.
Triangle 11 is forced on edge QS, with the right angle at Q, forcing S to be a (1, 3, 2)

vertex. By Lemma 1,
−→
PQ overhangs triangle 11 at R, forcing triangle 12 as shown. But

now we cannot match SN while providing the missing right angle at S. A similar contra-
diction arises if we try to cover the hypotenuse of triangle 8 with the β angle of the new
triangle at N .

We must thus have triangles 10 and 11 as shown in Figure 7c. The vertex at S must
be (0, 5, 1), and one of ST , SU must be covered with an edge adjacent to the γ angle,
which must overhang as shown. The corresponding medium edge, PT or NU , cannot be
covered, as the split at N or P cannot accommodate either a fourth γ or a right angle.
We conclude that triangle 5 is as shown in Figure 7a, with triangle 6 forced by Lemma 2.
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Figure 8: A configuration appears twice.

Proposition 6 If the configuration of Figure 4b appears in a tiling of the sphere with the
triangle T6, centered on the (0, 5, 1) vertex O, then the tiling contains another copy of the
same configuration centered on the vertex E of Figure 7a.

Proof: We have seen that triangles 4-6 are forced. Triangle 7 is also forced by Lemma 2
(Fig. 8a). By Lemma 1 there is an overhang at G which forces triangle 3′ to be as shown.
Triangles 2, 1 and 3′ have the same configuration as triangles 1, 2 and 3. Thus triangles
4− 7 have counterparts 4′ − 7′ (Fig. 8c).

Proposition 7 If the configuration of Figure 4b appears in a tiling of the sphere with the
triangle T6, it must extend to the configuration of Figure 8c.

Proof: We first show that the hypotenuse of triangle 7 must be matched. Otherwise,
there would be an overhang at J (Fig. 8a). The edge BJ must be filled with two medium
edges; but this is impossible since the split at J requires a β. Triangle 8 is thus as shown

in Fig. 8b. (Note that the extended edge
−→
BJ must therefore extend beyond J).

The split at G requires two more γ angles, provided by triangles 9 and 10. By Lemma
2, these must be positioned as in Fig. 8b or c; but the configuration of Fig. 8b has over-
hangs at K and L. KL is thus a complete extended edge, which by Lemma 1 must be
covered by two more short edges; but this cannot be done in the absence of a split with
two β angles. We must then have triangles 9 and 10 as in Fig. 8c; there is an overhang
at N , forcing triangle 11. Triangles 8′-11′ are forced similarly.

BM is thus a complete extended edge, and must be matched by two medium edges
and two short edges.

Proposition 8 If the configuration of Figure 8c appears in a tiling of the sphere with the
triangle T6, the medium edge of triangle 4 cannot be matched.
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Figure 9: The medium edge of triangle 4 cannot be matched

Proof: Suppose that it is (Figure 9); then triangle 12 must be as shown. Triangle 13 is
then forced by Lemma 2, and triangles 14 and 15 are then forced . The edge PJ must
be covered, without a third β at P , forcing triangle 15; and Lemma 2 then forces triangle
16. The edge BP must be covered by triangle 17 as shown. Referring back to Fig. 8c,
we see that the length of QR is exactly C; so triangle 18 must cover QP as shown. P
must therefore be a (1, 3, 2) vertex; but Lemma 2 shows that it is impossible to fill the
right-angled gap.

Proposition 9 The neighborhood of every (0, 5, 1) vertex in a tiling of the sphere by the
triangle T6 must have the configuration of Figure 4c.

Proof: Suppose not; in light of Proposition 8, we must have triangle 12 as in Figure 10.
Triangles 13, 14, and 15 are forced as before. The edge PS must be matched, forcing
triangle 16; the remaining γ gap at P is filled by triangle 17, whose orientation is dictated
by Lemma 2.

The segment OR has length 2C + 2B, while the segment OB has length 2B (refer
back to Figure 9.) The segment BR therefore has length 2C . This is equal to neither H
nor B; so that side of triangle 18, filling the γ gap at B, cannot be matched. Lemma 2
thus requires triangle 18 to be positioned as shown, with its hypotenuse matching that of
triangle 12. Triangle 19 is forced as shown; this leaves a right-angled gap at S. However,
the sides of this gap are both longer than either leg of the triangle, so Lemma 2 shows
that the tiling cannot be completed.

Proposition 10 The neighhborhood of any (0, 5, 1) vertex in a tiling of the sphere by the
triangle T6 must have the configuration of Figure 11b.

Proof: By the previous proposition, triangle 3 must be as shown in Figure 11.
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Figure 10: A contradiction is reached.

9

D

E

B

C C

Figure 11: The configuration near a (0, 5, 1) vertex

As there is an overhang at C, there cannot be one at B, forcing triangles 4 and 5 as
shown. There must be an overhang as shown at D, forcing triangle 6. Triangles 7 and 8
provide the remaining two β angles at O; by Lemma 2, they must either be as in Figure
11a or b. In the first case triangle 9 is forced; there is an overhang at E, requiring the
hypotenuse of triangle 9 to be matched, but the splits at both ends already have a β
angle; thus this configuration is impossible. We conclude that the short edges of triangles
6 and 7 are matched, as in Figure 11b.

Proposition 11 If the configuration of Figure 11b arises in a tiling of the sphere by the
triangle T6, the vertex B is also a (0, 5, 1) vertex.

Proof: If
−−→
CB extended beyond B, it would be impossible to cover the hypotenuse of

triangle 5; so the hypotenuse of triangle 3 must be matched (triangle 9 in Figure 12a− c.)
If triangle 9 contributes a β angle to the split at C (Figure 12a), the next angle must be
a γ and the overhang at E results. As already observed, we cannot have a split at B, so
triangle 10 is forced, with an overhang at F by Lemma 1. But it is now impossible to
cover BG, as neither end can accept another β angle. We conclude that triangle 9 must
be oriented as in 12b, c and must contribute a second β at B, which is thus not split.
Triangle 12 is then forced on BG.
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Figure 12: The configuration near a (0, 5, 1) vertex, continued

If there is an overhang at H(Fig. 12b), then triangle 13 is forced as shown. By Lemma
1 there is also an overhang at J ; and the hypotenuse of triangle 13 cannot be matched,
as neither end can accept another β. We conclude that the short edge of triangle 12 must
be matched. But if triangle 14, matching the short edge of triange 12, contributes a right
angle at B, a similar impossible configuration arises (Fig. 12c). We conclude that triangle
14 contributes a β angle at B, which is therefore a (0, 5, 1) vertex, with the remaining
triangle as in Fig. 13a.

As before, all our deductions henceforth apply to the vertex B as well as to O; so
forced triangles will appear in pairs. Beginning with Figure 13, we will renumber the
diagrams to reflect this.

Figure 13: A pair of (0, 5, 1) vertices

Proposition 12 In any tiling of the sphere by the triangle T6, the neighborhood of any
(0, 5, 1) vertex has the configuration of Figure 15b.

Proof: The split at E requires two more γ angles; we will show that the medium edge
of triangle 2 is matched, as in Figure 13c. Suppose not; we would have triangle 9 as in
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13b; and by Lemma 2 triangle 10 would forced. The exposed segment CF has length
H +C−B, which, as we may easily verify, is not a sum of edge lengths; thus there would
be an overhang at F . But the extended edge FG (with length 2C) cannot be covered,
as neither end can accept another β angle. We thus have triangle 9 as in Figure 13c.
Triangles 10 and 11 are forced by Lemma 2.

The gap at C requires a β and another γ. By Lemma 2, the triangles (12 and 13)
that provide these angles must have their hypotenuses matched. We shall show that the
medium edge of triangle 6′ is also matched.

Figure 14: An impossible configuration at vertex C.

Suppose that this is not the case; we have triangles 12 and 13 as in Fig. 14. Triangle
14 is forced by Lemma 2. The segment HI has length B − C and cannot be covered
exactly, so there is an overhang at I witha right-angled gap. If the gap were filled as
in Fig. 14a, triangle 15 would create an overhang at J , and the edge JK could not be
covered; so triangle 15 must be positioned as in Fig. 14b.

The edge JK can be covered only as shown, so that J must be a (1, 3, 2) vertex.
However, the segment IL has length 2B−C, which is not a sum of edge lengths, so there
is an overhang at L. The edge JL is a hypotenuse, and cannot be covered with a right
angle at J , a contradiction.

The medium edge of triangle 6′ is therefore matched, as in Fig. 15a. Triangle 14 is
now forced by Lemma 2; triangles 9′ − 14′ are obtained by applying the same arguments
after interchanging the (0, 5, 1) vertices B and O.

We are now almost finished; the reader will observe the apparent emergence of a
periodic pattern.

Proposition 13 If the configuration of Figure 15b arises in a tiling of the sphere by the
triangle T6, the vertex N is also a (0, 5, 1) vertex.

Proof: The extended edge MN has length B +C and must be covered by a short edge
and a medium edge. We will rule out some of the ways in which this might be done.

Let triangle 15 be the tile covering MN near N . If this triangle had a β angle at N
(Fig. 16a), N would be a (0, 5, 1) vertex with four β angles as shown. This would force
another copy of the entire configuration of Fig.15b, oriented so as to require four γ angles
at B, which is impossible.
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P

P’
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1’1’

2’2’

8’8’ 7’7’

6’6’

9

10

11

14

12

3’3’

1’1’

2’2’

8’8’ 7’7’

6’6’

9

10

11

13

14’14’

12’12’

9’9’

10’10’

11’11’

13’13’

a b

Figure 15: A 24-tile configuration forced at any (0, 5, 1) vertex

Figure 16: Covering the segment MN

Supppose that triangle 15 has a right angle at N ; then N is a (1, 3, 2) vertex, and
the two remaining triangles have γ angles and no short edge there. Thus, by Lemma
2, triangle 15 cannot have the orientation shown in Figure 16b; it must be as in Figure
16c, d, forcing triangle 16 at M as shown.

There cannot be an overhang at vertex P , which already has four γ angles; so the
hypotenuse of triangle 14 must be matched. The tile (triangle 17) doing so cannot be
positioned as in Fig. 16c, because the remaining γ angle at M could not have either
adjacent edge matched, contrary to Lemma 2. If instead it is positioned as in Fig. 16d,
triangle 18 must be as shown, creating an overhang at S and hence another at T . As
there cannot be an overhang at Q, triangle 19 is forced. But now it is impossible to cover
the edge QR, as neither of the splits at Q,R can accept another β angle. We conclude
that triangle 15 can only have a γ angle at vertex N (Figure 17).

To cover the hypotenuse of triangle 15 while satisfying Lemma 2, triangle 17 must be
placed as shown; triangle 18 is then forced. N is thus a (0, 5, 1) vertex.
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Figure 17: N has the same configuration as O.

The rest of the (hypothetical) tiling is therefore forced. However, we note that every
angle at the vertex P and P ′ has measure γ. As γ does not divide 360◦, the tiling does
not close up at P and P ′; we conclude that T6 does not tile the sphere.

Figure 18: The tiling fails to close up.

The configuration at the poles is illustrated in Fig. 18. However, 28γ = 1080◦; so if
we continue the tiling around the poles beyond the point at which it begins to overlap,
we obtain a threefold cover of the sphere with 168 tiles (Fig. 19).
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Figure 19: Three-layered tiling of the sphere with the (90◦, 642
7

◦
, 384

7

◦
) triangle.

4 The triangle T8

This triangle has angles (90◦, 72◦, 27◦) and vertex vectors (0, 2, 8), (0, 5, 0), (1, 0, 10),
(1, 3, 2), (2, 1, 4), and (4, 0, 0). Its area is 1/80 that of the sphere.

Theorem 2 The triangle T8 does not tile the sphere.

Proof: As before, we examine the properties of a hypothetical tiling and eventually
reach a contradiction.

Proposition 14 In any tiling of the sphere with the triangle T8, the configuration of
Figure 20c must occur.

Figure 20: Configurations of T8 at a (0, 5, 0) vertex.
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Proof: As before, such a hypothetical tiling must use the β source (0, 5, 0) at least
once. The triangles meeting at such a vertex have, between them, five short edges and five
hypotenuses. As many short edges as hypotenuses must be unmatched; parity permits
one, three, or five unmatched pairs. Each unmatched pair must (by Lemma 2) have the
configuration of Fig. 20a, with a (0, 2, 8)/2 split as shown that cannot be related in the
same way to any other (0, 5, 0) vertex. Nor can the split be related to a (1, 3, 2) vertex
in any of the ways illustrated in Figure 1. For Figure 1a, b a shared split would require
3C = H or 3C = B respectively; and the other two cases have a right angle where Figure
20 requires a β angle.

If there were three (or five) of these, the (0, 5, 0) and the associated splits between them
would have 12 (or 20) γ angles associated with 8 (or 10)β angles, and the configuration
would have a net shortage of β angles. We conclude that there exists a (5, 0, 0) vertex O
with exactly one unmatched pair, as in Fig. 20b.

The overhang and split at C are forced. If neither of these split vertices is shared
with another β source, then O, B, and C have between them seven β angles and eight γ
angles, for a net γ surplus. It follows that some instance of this configuration must have
another β source at D sharing these associated split vertices. The vertex D cannot be
split; so matching edge lengths forces the configuration of Fig. 20c.

We cannot immediately rule out the possibility that D is a (1, 3, 2) vertex or a (0, 5, 0)
vertex with three mismatched pairs of edges. However, the next proposition will establish
that it is in fact identical to O.

Figure 21: The configuration at D.

Proposition 15 Any instance of the configuration of Figure 20c must extend to that of
Figure 21.

Proof: We consider the other triangles at B. If triangle 9 (covering the medium edge
of triangle 1′) were as shown in Fig. 22a, triangle 2′ would be forced (because there can
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Figure 22: Configuration at B.

be no overhang at D.) The split at E then requires γ angles; the extended edge EF forces
triangle 8, and there is no way to cover the edge BF . We conclude that triangle 9 must
be as in Fig. 22b.

If the extended edge
−−→
DG overhangs at G, covering the edge BG would require a split

at B or G with two β angles, so triangles 10 and 2′ must be as shown in Fig. 22c. Again,−−→
BG cannot overhang at G, so triangle 8 is forced, with triangle 7 following from Lemma
2. Similar arguments yield triangles 7′-10′.

We now consider what might cover the hypotenuse of triangle 5′ (see Figure 23a).

Certainly
−−→
DH cannot extend beyond H , as this would make HJ a complete extended

edge of length 2C; but there is not room for a right angle or β angle at H . Thus DH is
covered by another hypotenuse. If it is oriented as in Fig. 23b, triangles 12′ and 13′ are
forced. Triangle 14′ must be as shown, by Lemma 2.

Figure 23: Some configurations at D.

A further right angle and γ are needed at D. If the γ angle were next to triangle 11′,
it would have to have its medium edge against DK (Figure 23c), leaving a right angled
gap at D that cannot be filled (Lemma 2). The triangle must instead be positioned as
triangle 15 in Figure 24.

Lemma 2 forces triangle 16 to be as shown, with triangle 17 overhanging at L. Triangle
18 is then forced, with another overhang at M . The hypotenuse of triangle 18 must be
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Figure 24: The two alternatives for triangle 19.

covered; Figure 24 shows the two alternatives.
If triangle 19 is as in Figure 24a, triangle 20 must be as shown, with an overhang at

Q. But then the hypotenuse NQ cannot be covered, as neither end can accept another
β angle. Conversely, if triangle 19 is positioned as in Figure 24b, we have a right angle
gap at N which does not permit the hypotenuse edge NP to be covered. We conclude
that the hypotenuse of triangle 5′ is in fact covered as in Figure 21, so that D is a (0, 5, 0)
vertex. The position of triangle 3′ follows immediately by Lemma 2.

Proposition 16 Triangle 11 cannot appear as in Figure 25a.

Figure 25: An impossible configuration
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Proof: We first note that the right angled gap cannot be filled by a triangle positioned
as triangle 12 in Figure 25b, as this would create an overhang and a γ gap at E. Filling
this gap (triangle 13 in Figure 25b) would place triangle 12 in a configuration forbidden
by Lemma 2. We thus have triangle 12 as in Figure 25c.

There must be a fifth β angle at F . This cannot be provided by a triangle positioned
as triangle 13 in Figure 25c; otherwise Lemma 2 gives us triangle 14, creating a split which
must be filled with γ angles, giving us triangle 15 and an overhang at G. The hypotenuse
of triangle 12 must be matched, and as there are already 2 β and three γ angles at E,
triangle 16 must be as shown. Triangles 17 and 18 follow; but then the hypotenuse HE
of triangle 18 cannot be covered, as neither end can accept another β angle.

Figure 26: Various attempts to extend Figure 26a

We thus have triangle 13 as in Figure 26. Triangle 14 follows from Lemma 2, creating a
split that must be completed with γ angles. If triangle 15 is as shown in Figure 26a, then
triangles 16-18 are forced, and the hypotenuse of triangle 18 cannot be covered; otherwise,
it is as in Figure 26b, c. As before, there must be a γ angle at E; either orientation for
this triangle leads to an impossible configuration (Figure 26b, c). We conclude that the
configuration of Figure 25a cannot occur.

Corollary 2 The extended edge
−→
FE continues beyond E in Figure 27a.

Proof: Suppose, on the contrary, that
−→
FE was covered by two short edges; then by the

previous proposition one of those triangles would have a right angle at F . There would
then be either three right angles and a β angle or two right angles and two β angles at
G, but neither of these is possible.

Proposition 17 The configuration of Figure 27a extends to that of 27c.

Proof: As observed above, there is an overhang at E; hence there is a γ gap that must be
filled. If triangle 11, filling it, were oriented as in Figure 27b, we would also have triangle
12 as shown there; but Proposition 16 and Lemma 2 would make it impossible to cover
the extended edge FH.
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Figure 27: Propagating the configuration of Figure 21

Triangle 11 is thus positioned as in Figure 27c. Triangle 12 follows immediately by
Lemma 2. There cannot be a split at G, so by Proposition 16 triangles 13, 14, and 15
must be as shown to cover the extended edge FJ . Triangle 16 must be positioned as
shown to provide the fifth β angle at F consistent with Lemma 2. But now triangles
7− 11 and 13− 16 form the configuration of Figure 20c, and triangles 17− 22 are forced
by Proposition 15.

We can now finish the proof of the theorem. Repeatedly applying Proposition 17,
we obtain configurations with 5, 7, 9 . . . γ angles at the poles P, P ′, eventually reaching a
contradiction as there is no vertex configuration with 11 or more γ angles.

However, 40 γ angles will cover the region around a point exactly three times, so there
is a triple cover of the sphere with 240 T8 tiles. It is worth noting that all the right
triangles in this tiling are arranged in pairs; the multiple cover (and the failed tiling) are
thus derived from the multiple cover by the (72◦, 72◦, 54◦) isosceles triangle mentioned
in [3].

5 Conclusion

We have seen that no spherical triangle in the Tn family (except for the improper member
T4) can tile the sphere. For n > 8 this is fairly straightforward, but for n = 6 and n = 8,
the powerful counting arguments that establish the result in other cases fail, and it is
necessary to rule out a lot of false leads. Some of these come very close to complete
tilings of the sphere.

This result forms a part of the classification of all spherical triangles that tile the
sphere, which will be completed in a sequence of papers now in preparation.

The authors would like to thank the anonymous referee for a very thorough reading
and many helpful suggestions.
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Figure 28: A partial tiling that fails to close up.

Figure 29: Three-layered tiling of the sphere with the (90◦, 72◦, 27◦) triangle.
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