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Abstract

We show that the Grothendieck bialgebra of the semi-tower of partition lattice
algebras is isomorphic to the graded dual of the bialgebra of symmetric functions in
noncommutative variables. In particular this isomorphism singles out a canonical
new basis of the symmetric functions in noncommutative variables which would be
an analogue of the Schur function basis for this bialgebra.

Introduction

Combinatorial Hopf algebras are graded connected Hopf algebras equipped with a multi-
plicative linear functional ζ : H → k called a character (see [1]). Here we assume that k

is a field of characteristic zero. There has been renewed interest in these spaces in recent
papers (see for example [3, 4, 6, 11, 13] and the references therein). One particularly
interesting aspect of recent work has been to realize a given combinatorial Hopf algebra
as the Grothendieck Hopf algebra of a tower of algebras.

The prototypical example is the Hopf algebra of symmetric functions viewed, via the
Frobenius characteristic map, as the Grothendieck Hopf algebras of the modules of all
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symmetric group algebras kSn for n ≥ 0. The multiplication is given via induction
from kSn ⊗ kSm to kSn+m and the comultiplication is the sum over r of the restriction
from kSn to kSr ⊗ kSn−r. The tensor product of modules defines a third operation on
symmetric functions usually referred to as the internal multiplication or the Kronecker
product [16, 22]. The Schur symmetric functions are then canonically defined as the
Frobenius image of the simple modules.

There are many more examples of this kind of connection (see [5, 12, 15]). Here we
are interested in the bialgebra structure of the symmetric functions in noncommutative
variables [7, 8, 9, 17, 21] and the goal of this paper is to realize it as the Grothendieck
bialgebra of the modules of the partition lattice algebras.

We denote by NCSym =
⊕

d≥0 NCSymd the algebra of symmetric functions in non-
commutative variables, the product is induced from the concatenation of words. This
is a Hopf algebra equipped with an internal comultiplication. The space NCSymd is the
subspace of series in the noncommutative variables x1, x2, . . . with homogeneous degree
d that are invariants by any finite permutation of the variables. The algebra structure
of NCSym was first introduced in [21] where it was shown to be a free noncommutative
algebra. This algebra was used in [9] to study free powers of noncommutative rings. More
recently, a series of new bases was given for this space, lifting some of the classical bases
of (commutative) symmetric functions [17]. The Hopf algebra structure was uncovered in
[2, 7, 8] along with other fundamental algebraic and geometric structures.

The (external) comultiplication ∆: NCSymd →⊕
NCSymk ⊗NCSymd−k is graded and

gives rise to a structure of a graded Hopf algebra on NCSym. The algebra NCSym also
has an internal comultiplication ∆� : NCSymd → NCSymd ⊗NCSymd which is not graded.
The algebra NCSym with the comultiplication ∆� is only a bialgebra (not graded) and is
different from the previous graded Hopf structure.

After investigating the Hopf algebra structure of NCSym, it is natural to ask if there
exists a tower of algebras {An}n≥0 such that the Hopf algebra NCSym corresponds to the
Grothendieck bialgebra (or Hopf) algebra of the An-modules. This was the 2004-2005
question for our algebraic combinatorics working seminar at Fields Institute where the
research for this article was done.

Our answer involves the partition lattice algebras (kΠn,∧) and (kΠn,∨) (as well as
the Solomon-Tits algebras [10, 18, 20]). For each one, with finite modules we can define
a tensor product of kΠn modules and a restriction from kΠn module to kΠk ⊗ kΠn−k

modules. This allows us to place on
⊕

n G0(kΠn), the Grothendieck ring of the kΠn,
a bialgebra structure (but not a Hopf algebra structure). We then define a bialgebra
isomorphism

⊕
n G0(kΠn) → NCSym∗. We call this map the Frobenius characteristic

map of the partition lattice algebras. This singles out a unique canonical basis of NCSym
(up to automorphism) corresponding to the simple modules of the kΠn.

Our paper is divided into 4 sections as follows. In section 1 we recall the definition
and structure of NCSym. We then state our first theorem claiming the existence of a basis
x of NCSym defined by certain algebraic properties. The proof of it will be postponed
to section 4. In section 2 we recall the definition and structure of the partition lattice
algebras kΠn with the product given by the lattice operation ∧ and define their modules.
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We then introduce a structure of a semi-tower of algebras (i.e. we have a non-unital
embedding ρn,m : kΠn ⊗ kΠm → kΠn+m of algebras) on the partition lattice algebras and
show that it induces a bialgebra structure on its Grothendieck ring. Our second theorem
states that this Grothendieck bialgebra is dual to NCSym. The classes of simple modules
correspond then to the basis x. In view of the work of Brown [10] we remark that this
can also be done with the semi-tower of Solomon-Tits algebras. In section 3 we build
the same construction with the lattice algebras kΠn with the product ∨. With this tower
of algebras (i.e. ρn,m is a unital morphism of algebras) we find that the Grothendieck
bialgebra is again dual to NCSym, but this time the classes of simple modules correspond
to the monomial basis of NCSym.

In section 4 we give the proof of our first theorem and show the basis canonically
defined in section 2 corresponds to the simple modules of the kΠn. In light of the Frobe-
nius characteristic of section 2, the basis can be interpreted as an analogue of the Schur
functions for NCSym and providing an answer to an open question of [17].

1 NCSym and the basis {xA}
We recall the basic definition and structure of NCSym. Most of it can be found in [7, 8].
A set partition A of m is a set of non-empty subsets A1, A2, . . . , Ak ⊆ [m] = {1, 2, . . . , m}
such that Ai ∩ Aj = ∅ for i 6= j and A1 ∪ A2 ∪ · · · ∪ Ak = [m]. The subsets Ai are called
the parts of the set partition and the number of non-empty parts the length of A, denoted
by `(A). There is a natural mapping from set partitions to integer partitions given by
λ(A) = (|A1|, |A2|, . . . , |Ak|), where the list is then sorted so that the integers are listed
in weakly decreasing order to form a partition.

We shall use `(λ) to refer to the length (the number of parts) of the partition and |λ|
is the size of the partition (the sum of the sizes of the parts), while ni(λ) shall refer to
the number of parts of the partition of size i. We denote by Πm the set of set partitions
of m. The number of set partitions is given by the Bell numbers. These can be defined
by the recurrence B0 = 1 and Bn =

∑n−1
i=0

(
n−1

i

)
Bi.

For a set S = {s1, s2, . . . , sk} of integers si and an integer n we use the notation
S + n to represent the set {s1 + n, s2 + n, . . . , sk + n}. For A ∈ Πm and B ∈ Πr set
partitions with parts Ai, 1 ≤ i ≤ `(A) and Bi, 1 ≤ i ≤ `(B) respectively, we set
A|B = {A1, A2, . . . , A`(A), B1 +m, B2 +m, . . . , B`(B) +m}, therefore A|B ∈ Πm+r and this
operation is noncommutative in the sense that, in general, A|B 6= B|A.

When writing examples of set partitions, whenever the context allows it, we will
use a more compact notation. For example, {{1, 3, 5}, {2}, {4}} will be represented by
{135.2.4}. Although there is no order on the parts of a set partition, we will impose an
implied order such that the parts are arranged by increasing value of the smallest element
in the subset. This implied order will allow us to reference the ith parts of the set partition
without ambiguity.

There is a natural lattice structure on the set partitions of a given n. We define for
A, B ∈ Πn that A ≤ B if for each Ai ∈ A there is a Bj ∈ B such that Ai ⊆ Bj (otherwise
stated, that A is finer than B). The set of set partitions of [n] with this order forms a
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poset with rank function given by n minus the length of the set partition. This poset has a
unique minimal element 0n = {1.2. . . . .n} and a unique maximal element 1n = {12 . . . n}.
The largest element smaller than both A and B is denoted

A ∧ B = {Ai ∩ Bj : 1 ≤ i ≤ `(A), 1 ≤ j ≤ `(B)}
while the smallest element larger than A and B is denoted A ∨ B. The lattice (Πn,∧,∨)
is called the partition lattice.

Example 1.1 Let A = {138.24.5.67} and B = {1.238.4567}. A and B are not comparable
in the inclusion order on set partitions. We calculate that A ∧ B = {1.2.38.4.5.67} and
A ∨ B = {12345678}.

When a collection of disjoint sets of positive integers is not a set partition because the
union of the parts is not [n] for some n, we may lower the values in the sets so that they
keep their relative values so that the resulting collection is a set partition (of an m < n).
This operation is referred to as the ‘standardization’ of a set of disjoint sets A and the
resulting set partition is denoted st(A).

Now for A ∈ Πm and S ⊆ {1, 2, . . . , `(A)} with S = {s1, s2, . . . , sk}, we define AS =
st({As1, As2 , . . . , Ask

}) which is a set partition of |As1|+ |As2|+ . . .+ |Ask
|. By convention

A{} is the empty set partition.

Example 1.2 If A = {1368.2.4.579}, then A{1,4} = {1246.357}.

For n ≥ 0, consider a set Xn of non-commuting variables x1, x2, . . . , xn and the poly-
nomial algebra RXn = k〈x1, x2, . . . , xn〉 in these non-commuting variables. There is a
natural Sn action on the basis elements defined by σ(xi1xi2 · · ·xik) = xσ(i1)xσ(i2) · · ·xσ(ik).
Let xi1xi2 · · ·xim be a monomial in the space RXn . We say that the type of this monomial
is a set partition A ∈ Πm with the property that ia = ib if and only if a and b are in the
same block of the set partition. This set partition is denoted as ∇(i1, i2, . . . , im) = A.
Notice that the length of ∇(i1, i2, . . . , im) is equal to the number of different values which
appear in (i1, i2, . . . , im).

The vector space NCSym(n) is defined as the linear span of the elements

mA[Xn] =
∑

∇(i1,i2,...,im)=A

xi1xi2 · · ·xim

for A ∈ Πm, where the sum is over all sequences with 1 ≤ ij ≤ n. For the empty set
partition, we define by convention m{}[Xn] = 1. If `(A) > n we must have that mA[Xn] =
0. Since for any permutation σ ∈ Sn, ∇(i1, i2, . . . , im) = ∇(σ(i1), σ(i2), . . . , σ(im)), we
have that σmA[Xn] = mA[Xn]. In fact, mA[Xn] is the sum of all elements in the orbit
of a monomial of type A under the action of Sn. Therefore NCSym(n) is the space of Sn-
invariants in the noncommutative polynomial algebra RXn . For instance, m{13.2}[X4] =
x1x2x1+x1x3x1+x1x4x1+x2x1x2+x2x3x2 +x2x4x2+x3x1x3+x3x2x3+x3x4x3+x4x1x4+
x4x2x4 + x4x3x4.
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As in the classical case, where the number of variables is usually irrelevant as long as it
is big enough, we want to consider that we have an infinite number of non-commuting vari-
ables. Since NCSym(n) inherits from k〈x1, x2, . . . , xn〉 a graded algebra structure, we con-
sider, for any m ≥ n, the homomorphism of graded algebras k〈x1, . . . , xm〉 → k〈x1, . . . , xn〉
that sends variables xn+1, . . . , xm to zero and the remaining ones to themselves. This map
restricts to a surjective homomorphism ρm,n : NCSym(m) → NCSym(n), that sends mA[Xm]

to mA[Xn]. The family {NCSym(n) : n ≥ 1} together with the homomorphisms ρm,n forms
an inverse system in the category of graded algebras. Let NCSym be its inverse limit in
this category. We call NCSym the algebra of symmetric functions in an infinite number
of non-commuting variables.

For each set partition A there exits an unique element mA whose projection to each
NCSym(n) is mA[Xn]. These elements are called monomial symmetric functions in an
infinite number of non-commuting variables.

If we decompose NCSym as the sum of its graded pieces,

NCSym =
⊕
d≥0

NCSymd,

then the monomial symmetric functions mA, with A ` [d], is a linear basis of NCSymd.
Here we forget any reference to the variables x1, x2, . . . and think of elements in NCSym

as noncommutative symmetric functions. The degree of a basis element mA is given by
|A| = d and the product map µ : NCSymd ⊗ NCSymm −→ NCSymd+m is defined on the
basis elements mA ⊗ mB by

µ(mA ⊗mB) :=
∑

C∈Πd+m
C ∧ 1d|1m = A|B

mC . (1)

This is a lift of the multiplication in NCSym(n).
The graded algebra NCSym is in fact a Hopf algebra with the following comultiplication

∆ : NCSymd −→⊕d
k=0 NCSymk ⊗ NCSymd−k where

∆(mA) =
∑

S⊆[`(A)]

mAS
⊗mASc (2)

and Sc = [`(A)] − S. The counit is given by ε : NCSym → Q where ε(m{}) = 1 and
ε(mA) = 0 for all A ∈ Πn for n > 0. More details on this Hopf algebra structure are
found in [7, 8].

The algebra NCSym was originally considered by Wolf [21] in extending the funda-
mental theorem of symmetric functions to this algebra and later by Bergman and Cohn
[9]. More recently Rosas and Sagan [17] considered this space to define natural bases
which are analogous to bases of the (commutative) symmetric functions. More progress
in understanding this space was made in [7, 8] where it was considered as a Hopf alge-
bra. In the Hopf algebra Sym of (commutative) symmetric functions, the comultiplication
corresponds to the plethysm f [X] 7→ f [X +Y ]. It was established in [7] that the comulti-
plication in NCSym corresponds to a noncommutative plethysm F [X] 7→ F [X +Y ], where
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X + Y is the alphabet (totally ordered set of non-commuting variables) corresponding
to the disjoint union of X and Y , together with the total order obtained from X and Y
placing all Y after all X. (That is, x < y for all x in X and all y in Y .)

The Hopf algebra Sym has more structure. There is a second comultiplication corre-
sponding to the plethysm f [X] 7→ f [XY ] (see [16, 22]). This second operation is often
referred to as the internal comultiplication or Kronecker comultiplication. We end this
section describing for NCSym the analog of this internal comultiplication. This description
is also considered in [2].

For the Hopf algebra NCSym we define a second (internal) comultiplication

∆� : NCSymd −→ NCSymd ⊗ NCSymd

by

∆�(mA) =
∑

B∧C=A

mB ⊗mC . (3)

This operation corresponds to a noncommutative plethysm F [X] 7→ F [XY ]. More pre-
cisely, assume that we have two countable alphabet X = x1, x2, . . . and Y = y1, y2, . . ..
Then, XY = x1y1, x1y2, . . . , xiyj, . . . , totally ordered using the lexicographic order. That
is, xy < zw if and only if (x < z) or (x = z and y < w) for all x, z in X and all
y, w in Y . We conclude that the transformation F [X] 7→ F [XY ] sends F (x1, x2, . . .) to
F (x1y1, x1y2, . . . , x2y1, x2y2, . . .).

If we let the xi’s commute with the yj’s then we have that F [XY ] can be expanded
in the form F [XY ] =

∑
F1,i[X]F2,i[Y ]. We can then define the operation

∆�(F ) =
∑

F1,i ⊗ F2,i.

Equation (3) gives the result of this when F = mA. Clearly this operation is a morphism
for the multiplication, thus NCSym with ∆� and the multiplication operation of equation
(1) forms a bialgebra. But it is not a Hopf algebra as it does not have an antipode. We
are now in position to state our first main theorem.

Remark: In order to define the sum and product of two alphabets, X + Y and XY ,
on the inverse limit of k〈x1, ..., xn〉, it is necessary to introduce a total order on each of
them. On the other hand, when we restrict ourselves to elements of Sym, the result is
independent of the particular choice of total order we made.

Theorem 1.3 There is a basis {xA : A ∈ Πn, n ≥ 0} of NCSym such that

(i) xAxB = xA|B.

(ii) ∆�(xC) =
∑

A∨B=C

xA ⊗ xB.

The proof of this theorem is technical and we differ it to Section 4. We are convinced
that the basis {xA : A ∈ Πn, n ≥ 0} is central in the study of NCSym and should have
many fascinating properties. We plan to study this basis further in future work. For now,
we prefer to develop the representation theory that will motivate our result.
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2 Grothendieck bialgebra of the Semi-tower (Π,∧) =⊕
n≥0 (kΠn,∧).

In this section we consider the partition lattice algebras. For a fixed n consider the vector
space (kΠn,∧) formally spanned by the set partitions of n. The multiplication is given
by the operation ∧ on set partitions and with the unit 1n = {1, 2, . . . , n}. We remark
that for all d, we have that kΠd is isomorphic as a vector space to NCSymd via the pairing
A ↔ mA. Moreover, it is straightforward to check using equation (3) that ∆� is dual to
∧ as operators.

It is well known that (kΠn,∧) is a commutative semisimple algebra (see [19, Theorem
3.9.2]). To see this, one considers the algebra kΠn = {f : Πn → k} which is clearly
commutative and semisimple. We then define the map

δ≥ : (kΠn,∧) → kΠn

A 7→ δA≥,

where δA≥(B) = 1 if A ≥ B and 0 otherwise. Next check that δA∧B≥ = δA≥δB≥ which
shows that δ≥ is an isomorphism of algebras.

The primitive orthogonal idempotents of kΠn are given by the functions δA= defined
by δA=(B) = 1 if A = B and 0 otherwise. We have that δA≥ =

∑
B≤A δB=. This implies,

using Möbius inversion, that the primitive orthogonal idempotents of (kΠn,∧) are given
by

eA =
∑
B≤A

µ(B, A)B, (4)

where µ is the Möbius function of the partially ordered set Πn. Since (kΠn,∧) is commu-
tative and semisimple, we have that the simple (kΠn,∧)-modules of this algebra are the
one dimensional spaces VA = kΠn ∧ eA. Here the action is given by the left multiplication

C ∧ eA =

{
eA if C ≥ A,

0 otherwise.
(5)

This follows from the corresponding identity in kΠn considering δ≥Cδ=A.
We now let G0(kΠn,∧) denote the Grothendieck group of the category of finite di-

mensional (kΠn,∧)-modules. This is the vector space spanned by the equivalence classes
of simple (kΠn,∧)-modules under isomorphisms.

We also consider K0(kΠn,∧) the Grothendieck group of the category of projective
(kΠn,∧)-modules. Since (kΠn,∧) is semisimple, the space G0(kΠn,∧) and K0(kΠn,∧)
are equal as vector spaces as they are both linearly spanned by the elements VA for A ∈ Πn.
We then set K0(Π,∧) =

⊕
n≥0 K0(kΠn,∧).

Given two finite (kΠn,∧) modules V and W , we can form the (kΠn,∧)-module V ⊗W
with the diagonal action (it is an action since a semigroup algebra is a bialgebra for the
coproduct A → A ⊗ A). We denote this (kΠn,∧)-module by V � W (to avoid confusion
with the tensor product of a (kΠn,∧)-module and a (kΠm,∧)-module).
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Lemma 2.1 Given two simple (kΠn,∧)-module VA and VB,

VA � VB = VA∨B. (6)

proof: Let C ∈ Πn act on eA ⊗ eB. From equation (5) we get C ∧ (eA ⊗ eB) =
(C ∧ eA) ⊗ (C ∧ eB) = eA ⊗ eB if and only if C ≥ A and C ≥ B, that is C ≥ A ∨ B. If
not, we get C ∧ (eA ⊗ eB) = 0. We conclude that the map eA ⊗ eB 7→ eA∨B is the desired
isomorphism in equation (6). �

We would like to define on G0(Π,∧) =
⊕

n≥0 G0(kΠn,∧) a graded multiplication and
a graded comultiplication corresponding to induction and restriction. For this we need a
few more tools.

Lemma 2.2 The linear map ρn,m : (kΠn,∧) ⊗ (kΠm,∧) → (kΠn+m,∧) defined by

ρn,m(A ⊗ B) = A|B
is injective and multiplicative. Moreover, ρk+n,m ◦ (ρk,n ⊗ Id) = ρk,n+m ◦ (Id ⊗ ρn,m) for
all k, n and m.

proof: Let A = {A1, . . . , Ar}, B = {B1, . . . , Bs} be set partitions in Πn, and C =
{C1, . . . , Ct} and D = {D1, . . . , Du} be set partitions in Πm. We remark that for all i, j,
we have Ai∩(Dj +n) = ∅ and (Ci +n)∩Bj = ∅. Since (Ci +n)∩(Dj +n) = (Ci∩Dj)+n,
we have

(A|C) ∧ (B|D) =
{
Ai ∩ Bj

}
1≤i≤r
1≤j≤s

∪ {(Ci + n) ∩ (Dj + n)
}

1≤i≤t
1≤j≤u

= (A ∧ B)
∣∣ (C ∧ D),

and this shows that ρn,m is multiplicative. The injectivity of this map is clear from the
fact that ρn,m maps distinct basis elements into distinct basis elements. The last identity
of the lemma follows from the associativity of the operation “|” �

We define a semi-tower (
⊕

n≥0 An, {φn,m}) to be a direct sum of algebras along with
a family of injective non-unital homomorphisms of algebras φn,m : An ⊗ Am → An+m.
A tower in the sense defined in the recent literature [5, 12, 15] is a semi-tower with the
additional constraint that φn,m(1n, 1m) = 1n+m (i.e. that φn,m is a unital embedding of
algebras).

Define the pair (Π,∧) =
(⊕

n≥0 (kΠn,∧), {ρn,m}
)

which is a semi-tower of the al-
gebras (kΠn,∧). We remark that (Π,∧) is a graded algebra with the multiplication
ρn,m(A, B) = A|B which is associative (but non-commutative) and has a unit given by
the emptyset partition ∅ ∈ Π0. Moreover, each of the homogeneous components (kΠn,∧)
of Π are themselves algebras with the multiplication ∧, and Lemma 2.2 gives the rela-
tionship between the two operations.

At this point we need to stress that ρn,m is not a unital embedding of algebras and hence
(Π,∧) is not a tower of algebras. The algebra (kΠn,∧) has a unit given by 1n = {12 . . . n},
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but ρn,m(1n ⊗ 1m) 6= 1n+m. The tower of algebras considered in the recent literature
[5, 12, 15] all have the property that the corresponding ρn,m are (unital) embeddings of
algebras. This is the reason we call our construction a semi-tower rather than a tower.

The motivation for defining a tower of algebras is to allow one to induce and restrict
modules of these algebras and ultimately to define on its Grothendieck ring a Hopf algebra
structure. Here the fact that we have only a semi-tower causes some problems in defining
restriction of modules. Yet we can still define a weaker version of restriction in our
situation. Let A and B be two finite dimensional algebras and let ρ : A → B be a
multiplicative injective linear map. Given a finite B-module M , we define

ResρM = {m ∈ M : ρ(1A)m = m} ⊆ M.

In the case where ρ is an embedding of algebras this definition agrees with the traditional
one. More on this general theory will be found in [14] but here we focus our attention on
(Π,∧).

Lemma 2.3 For k ≤ n and a simple (kΠn,∧)-module VA ∈ G0(kΠn,∧),

Resρk,n−k
VA =

{
VA if A = B|C for B ∈ Πk and C ∈ Πn−k

0 otherwise.

proof: We have that ρn,m(1k ⊗ 1n−k) ∧ eA = (1k|1n−k) ∧ eA = eA if 1k|1n−k ≥ A, and 0
otherwise. The condition 1k|1n−k ≥ A is equivalent to A = B|C where A|1,...,k = B and
A|k+1,...,n+k = C. �

We can now define a graded comultiplication on G0(Π,∧) using our definition of
restriction. For V ∈ G0(kΠn,∧) let

∆(V ) =
n∑

k=0

Resρk,n−k
V. (7)

It follows from Lemmas 2.2 that this operation is coassociative. For a simple module
VA ∈ G0(kΠn,∧), Lemma 2.3 gives us

∆(VA) =
∑

A=B|C
VB ⊗ VC . (8)

Now we extend � to G0(Π,∧) by setting VA � VB = 0 if VA and VB are not of the same
degree.

Proposition 2.4 (G0(Π,∧),�, ∆) is a bialgebra.

proof: Let A, B ∈ Πn. By equation (6), it is sufficient to prove that ∆(VA∨B) =
∆(VA) � ∆(VB). Using equation (2.3) we can easily reduce the problem to the following
assertion: there are C ∈ Πk, D ∈ Πn−k such that A ∨ B = C|D if and only if there are
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E, E′ ∈ Πk, F, F ′ ∈ Πn−k such that A = E|F and B = E ′|F ′. This follows then from
definitions. �

It is thus natural to give a notion to induced modules dual to restriction in Lemma 2.3.

Lemma 2.5 For two simple modules VA = kΠn ∧eA ∈ G0(kΠn,∧) and VB = kΠm∧eB ∈
G0(kΠm,∧) we define

Indn,mVA ⊗ VB = kΠn+m ⊗|Πn⊗|Πm (kΠn ∧ eA ⊗ kΠm ∧ eB),

where kΠn ⊗ kΠm is embedded into kΠn+m via ρn,m.
There is a natural isomorphism such that

Indn,mVA ⊗ VB
∼= kΠn+m ∧ ρn,m(eA ⊗ eB).

We have
Indn,mVA ⊗ VB = VA|B. (9)

proof: Consider the following isomorphism which allows us to naturally realize

Indn,mVA ⊗ VB

as an element of G0(kΠn+m,∧).

Indn,mVA ⊗ VB = kΠn+m ⊗|Πn⊗|Πm (kΠn ∧ eA ⊗ kΠm ∧ eB)

= kΠn+m ⊗|Πn⊗|Πm (eA ⊗ eB)

= kΠn+m ∧ ρn,m(eA ⊗ eB) ⊗|Πn⊗|Πm (1n ⊗ 1n)
∼= kΠn+m ∧ ρn,m(eA ⊗ eB).

By linearity

ρn,m(eA ⊗ eB) = eA|eB =
∑
C≤A

∑
D≤B

µ(C, A)µ(D, B)C|D.

We now remark that {E : E ≤ A|B} = {C|D : C|D ≤ A|B} = {C|D : C ≤ A, D ≤ B}.
This is isomorphic to the cartesian product {C : C ≤ A} × {D : D ≤ B}. Since Möbius
functions are multiplicative with respect to cartesian product we have

ρn,m(eA ⊗ eB) =
∑

E≤A|B
µ(E, A|B)E = eA|B.

�

It is clear now that Indn,m defines on G0(Π,∧) a graded multiplication VA⊗VB 7→ VA|B
that is dual to the graded comultiplication of ∆ defined on G0(Π,∧). We also define an
internal comultiplication on G0(Π,∧) dual to equation (6) such that ∆� : G0(kΠn,∧) →
G0(kΠn,∧) ⊗ G0(kΠn,∧). For C ∈ Πn let

∆�(VC) =
∑

A∨B=C

VA ⊗ VB. (10)

The space G0(Π,∧) with its graded multiplication given by induction and comultiplication
∆� is a bialgebra, by duality and Proposition 2.4. The main theorem of this section is a
direct corollary to Theorem 1.3.
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Theorem 2.6 The map F : G0(Π,∧) → NCSym defined by

F (VA) = xA

is an isomorphism of bialgebras.

proof: G0(Π,∧) is endowed with a product given by (9) and an inner coproduct given
by (10). Since NCSym is known to be a bialgebra satisfying the relations given in Theorem
1.3, the map F is an isomorphism. �

The map F is called the Frobenius map for our semi-tower. Along with Theorem 1.3,
it shows that the basis xA of NCSym are the only functions that correspond to the classes
of simple modules in G0(Π,∧). This defines xA uniquely (up to automorphism) and for
this reason we think of them as the Schur functions for the semi-tower (Π,∧) of the
symmetric functions in non-commutative variables.

Remark 2.7 In [10], Brown shows that (kΠn,∧) is the semisimple quotient of the Solomon-
Tits algebra STn (see [20]). It is easy to lift our semi-tower structure from Π to ST =⊕

STn via Brown’s support map. Then G0(ST,∧) and G0(Π,∧) are isomorphic as bial-
gebras.

In [14], the conditions under which a tower of algebras A = (
⊕

n≥0 An, ρn,m) defines
a Hopf algebra structure on the Grothendieck rings G0(A) and K0(A) are considered.
Under certain conditions one would expect that the Grothendieck ring G0(A) of finite
modules forms a Hopf algebra with the operations of induction and restriction which is
isomorphic to the graded dual of the Grothendieck ring K0(A) of projective modules.

For the tower of algebras we are considering here, it is not the case that G0(Π,∧)
forms a Hopf algebra because the operations of induction and restriction are not even
compatible as a bialgebra structure. We have shown that G0(Π,∧) and K0(Π,∧) are
endowed naturally with a product given by the notion of induction in equation (9) and
coproduct given by the notion of restriction given in equation (7). It is easily checked
that these operations do not form a Hopf algebra structure.

We have found however that here we have G0(Π,∧) endowed with the operations of
induction and restriction is isomorphic by the graded dual to K0(Π,∧) also endowed with
the same induction and restriction operations. This is because the operation of restriction
on G0(Π,∧) is dual to the operation of induction on K0(Π,∧) and induction on G0(Π,∧)
is dual as graded operations to restriction on K0(Π,∧). This remark can be observed
through the duality in equations (9) and (7).

3 Grothendieck bialgebras of the Tower (Π,∨) =⊕
n≥0 (kΠn,∨).

In this section we consider a second algebra related to the partition lattice and show
that there is an additional connection with the algebra NCSym. Define (kΠn,∨) to be
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the commutative algebra linearly spanned by the elements of Πn and endowed with the
product ∨. This algebra has as a unit the minimal element 0n = {1.2. · · · .n} of the poset
Πn since 0n ∨ A = A for all A ∈ Πn.

As we constructed the primitive orthogonal idempotents for (kΠn,∧), we proceed by
defining in a similar manner

δ≤ : (kΠn,∨) → kΠn

A 7→ δA≤.

It is straightforward to check that δA≤δB≤ = δ(A∨B)≤ and hence δ≤ is an isomorphism
of algebras. This map can be used to recover the primitive orthogonal idempotents of
(kΠn,∨) since if δA≤ =

∑
B≥A δB=, then δA= =

∑
B≥A µ(A, B)δB≤. This can be summa-

rized in the following proposition.

Proposition 3.1 The primitive orthogonal idempotents of the algebra (kΠn,∨) are

fA =
∑
B≥A

µ(A, B)B

with the property that

C ∨ fA =

{
fA if C ≤ A

0 otherwise.
(11)

It is also not difficult to check that the map ρn,m(A, B) = A|B is also multiplicative
with respect to the ∨ product in analogy with Lemma 2.2. Therefore we define the tower
of algebras (Π,∨) =

(⊕
n≥0 (kΠn,∨), {ρn,m}

)
. This time we find that ρn,m is indeed an

embedding of algebras and (Π,∨) a tower of algebras (see remarks related to (Π,∧))
since ρn,m(0n, 0m) = 0n+m.

We now define G0(kΠn,∨) to be the ring of the category of finite dimensional (kΠn,∨)-
modules endowed with the tensor of modules as the product. G0(kΠn,∨) is linearly
spanned by the equivalence classes of the simple modules under isomorphism. Also set
K0(kΠn,∨) to be the Grothendieck ring of the category of projective (kΠn,∨)-modules.
Since (kΠn,∨) is semi-simple we find that G0(kΠn,∨) ∼= K0(kΠn,∨) and both are spanned
by the simple modules WA = kΠn∨fA. Set G0(Π,∨) =

⊕
n≥0 G0(kΠn,∨) and K0(Π,∨) =⊕

n≥0 K0(kΠn,∨).
Given two simple modules WA, WB ∈ G0(kΠn,∨) we consider the tensor product of

modules WA⊗WB with the diagonal action of (kΠn,∨). Denote this module as WA�WB .
We find that C ∨ (fA ⊗ fB) = (C ∨ fA)⊗ (C ∨ fB) which is equal to fA ⊗ fB if C ≤ A and
C ≤ B (i.e. C ≤ A∧B) and it is equal to 0 otherwise. We conclude from this discussion
the following lemma.

Lemma 3.2 For WA, WB ∈ G0(kΠn,∨),

WA � WB = WA∧B (12)

is a simple module.
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We have the following formula for the restriction of WA to kΠk ⊗ kΠn−k.

Lemma 3.3 For k ≤ n and a simple module WA ∈ G0(kΠn,∨),

Resρk,n−k
WA = WB ⊗ WC

where A ∧ (1k|1n−k) = B|C for B ∈ Πk and C ∈ Πn−k.

proof: First we check that ρn,m(0k ⊗ 0n−k)fA = 0n ∨ fA = fA. Now for B′ ∈ Πk and
C ′ ∈ Πn−k, we have that ρk,n−k(B

′, C ′) ∨ fA = (B′|C ′) ∨ fA = fA if (B′|C ′) ≤ A and 0
otherwise. If A ∧ (1k|1n−k) = (B|C) then (B′|C ′) ∨ fA = fA if and only if B′ ≤ B and
C ′ ≤ C. Therefore WA is isomorphic to WB ⊗ WC as a kΠk ⊗ kΠn−k module. �

Define now a notion of induction for K0(Π,∨) (as the dual of G0(Π,∨)). For A ∈ Πn

and B ∈ Πm, the induced (kΠn+m,∨) module is

Indn,mWA ⊗ WB = kΠn+m ⊗|Πn⊗|Πm (WA ⊗ WB)

where we consider kΠn ⊗ kΠm
∼= ρn,m(kΠn ⊗ kΠm) ⊆ kΠn+m.

Lemma 3.4 For A ∈ Πn and B ∈ Πm we have that

Indn,mWA ⊗ WB =
∑

C∧(1n|1m)=A|B
WC . (13)

proof: By proceeding as in the proof of Lemma 2.5, we get

Indn,mWA ⊗ WB
∼= kΠn+m ∧ ρn,m(fA ⊗ fB).

Therefore we just have to prove

ρn,m(fA ⊗ fB) =
∑

C∧(1n|1m)=A|B
fC .

Since Möbius functions are multiplicative with respect to cartesian product we have on
the one hand

ρn,m(fA ⊗ fB) =
∑

E|F≥A|B
µ(A|B, E|F )E|F.

On the other hand∑
C∧(1n|1m)=A|B

fC =
∑

C∧(1n|1m)=A|B

∑
D≥C

µ(C, D)D

=
∑

E|F≥A|B

∑
C∧(1n|1m)=A|B

∑
D∧(1n|1m)=E|F

D≥C

µ(C, D)D

=
∑

E|F≥A|B
µ(A|B, E|F )E|F

+
∑

E|F≥A|B

∑
D∧(1n|1m)=E|F

D 6=E|F

( ∑
C∧(1n|1m)=A|B

C≤D

µ(C, D)

)
D.

the electronic journal of combinatorics 13 (2006), #R75 13



The result follows then from the following equality∑
C∧(1n|1m)=A|B

C≤D

µ(C, D) =
∑

A|B≤C≤D

µ(C, D) = 0.

�

Induction and restriction define a graded product and coproduct on the space of
G0(Π,∨) =

⊕
n≥0 G0(kΠn,∨). Define on the elements N ∈ G0(kΠn,∨) the operation

∆(N) =
n∑

k=0

Resk,n−kN (14)

and for M ∈ G0(kΠm,∨),
N · M = Indn,mN ⊗ M. (15)

G0(Π,∨) with the operation ∆ defines a coalgebra and G0(Π,∨) with the product of
(15) defines an algebra structure. It is easily checked that the product and coproduct on
G0(Π,∨) are not compatible as a bialgebra structure.

It is interesting to note that G0(Π,∨) endowed with the tensor product (12) and the
coproduct ∆ from equation 14 does define a bialgebra. To highlight the relationship with
NCSym, we define an internal coproduct ∆� on K0(kΠn,∨) which is the natural dual to
equation (12). That is we define a map ∆� : K0(kΠn,∨) → K0(kΠn,∨) ⊗ K0(kΠn,∨)
such that

∆�(WA) =
∑

B∧C=A

WB ⊗ WC . (16)

We can now show with the following theorem that K0(Π,∨) is a bialgebra and the
simple modules in K0(Π,∨) correspond to the m-basis on NCSym.

Theorem 3.5 The ring K0(Π,∨) endowed with product M · N := Indn,mM ⊗ N and
coproduct ∆� of equation (16) defines a bialgebra. Moreover, the map

F : K0(Π,∨) → NCSym

given by F (WA) = mA is an isomorphism of bialgebras.

proof: Recall that NCSym is a bialgebra linearly spanned by elements mA with the
product defined by

mAmB =
∑

C∧(1n|1m)=A|B
mC

and an inner coproduct defined by

∆�(mA) =
∑

B∧C=A

mB ⊗mC .

Equations (16) and (13) show that the map F (WA) = mA is an isomorphism of bialge-
bras. �
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This construction that we have presented here in the last two sections of defining an
algebra from a lattice operation and looking at the modules is something that can be done
in a more general setting and is a tool that can be used to analyze other Hopf algebras.
This will be the subject of future work.

4 Existence of the xA and Frobenius characteristic

We now prove our Theorem 1.3. It is useful at this point to introduce an intermediate
basis of NCSym. In [17], an analogue of the power sum basis is given by

pA =
∑
B≥A

mB. (17)

This basis has many nice properties.

Lemma 4.1 The set {pA : A ∈ Πn, n ≥ 0} forms a basis of NCSym such that

(i) pApB = pA|B.

(ii) ∆�(pA) = pA ⊗ pA.

proof: By triangularity, it is clear that the set forms a basis. Now, for A ∈ Πn and
B ∈ Πm we have

pApB =
∑
C≥A

∑
D≥B

mCmD =
∑
C≥A

∑
D≥B

∑
E ∧ 1n|1m=C|D

mE.

Notice that we have that if E ∧ 1n|1m = C|D, then E ≥ C|D ≥ A|B. Conversely, if
E ≥ A|B, then we find unique C and D such that C|D = E ∧ 1n|1m ≥ A|B ∧ 1n|1m =
(A ∧ 1n)|(B ∧ 1m) = A|B. This implies that the sum is equal to

pApB =
∑

E≥A|B
mE = pA|B.

For the second equality, we have

∆�(pA) =
∑
B≥A

∆�(mB) =
∑
B≥A

∑
C∧D=B

mC ⊗ mD

=
∑
C≥A

∑
B≥A

∑
D:C∧D=B

mC ⊗mD =
∑
C≥A

∑
D≥A

mC ⊗ mD

= pA ⊗ pA. �

We finally define our basis. Let

xA =
∑
B≤A

µ(B, A)pB. (18)

By triangularity, the set {xA : AΠn, n ≥ 0} is an integral basis of NCSym. We now
see that this basis has the required properties.
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Lemma 4.2

(i) xAxB = xA|B

(ii) ∆�(xC) =
∑

A∨B=C

xA ⊗ xB.

proof: Using the same argument as in Lemma 2.5 we have

xAxB =
∑
C≤A

∑
D≤B

µ(C, A)µ(D, B)pCpD

=
∑
C≤A

∑
D≤B

µ(C, A)µ(D, B)pC|D =
∑

E≤A|B
µ(E, A|B)pE = xA|B.

This shows the first identity. For the second, the left hand side of (ii) is

∆�(xC) =
∑
E≤C

µ(E, C)∆�(pE) =
∑
E≤C

µ(E, C)pE ⊗ pE , (19)

and the right hand side is∑
A∨B=C

xA ⊗ xB =
∑

A∨B=C

∑
E≤A
F≤B

µ(E, A)µ(F, B) pE ⊗ pF .

Let us isolate the coefficient of pE ⊗ pF in the sum above we get

TC
E,F =

∑
E≤A≤C
F≤B≤C

∑
A∨B=C

µ(E, A)µ(F, B) (20)

=
∑

F≤B≤C


 ∑

E≤A≤C
A∨B=C

µ(E, A)


µ(F, B).

By symmetry (interchanging the role of E and F if needed), we may assume that F 6< E.
In [19], Corollary 3.9.3 is dual to the following statement

∑
A≤1n

A∨B=1n

µ(0n, A) =

{
µ(0n, 1n) if B = 0n,

0 otherwise.

where, as usual, 0n = {1.2. . . . .n}. This implies that the sum of in bracket in equation
(20) is equal to ∑

E≤A≤C
A∨B=C

µ(E, A) =

{
µ(E, C) if B = E,

0 otherwise.
(21)
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This follows from the fact that µ is multiplicative and in general the interval [E, C] ⊆ Πn is
isomorphic to a cartesian product of (smaller) partition lattices (see Example 3.9.4 in [19]).
If we substitute this back in equation (20) we have two cases to consider. When F 6= E, our
assumption that F 6< E prohibits the possibility that F ≤ B = E. Thus we must always
have B 6= E and in this case TC

E,F = 0. When F = E, the only value of B where equation
(21) does not vanish is when B = E = F and we get T C

E,E = µ(E, C)µ(E, E) = µ(E, C).
If we compare this to equation (19) we conclude our proof of (ii). �

Notice that the character of the module (the trace of the matrix representing the action
of kΠn) VB from formula (5) is given by the formula χVB(A) = δB≤(A) when A ∈ kΠn

acts on VB. We observe that equation (18) for xA yields

pA =
∑
B≤A

xB =
∑
B

χVB(A)xB.

This means that the characters for the simple modules for (Π,∧) are encoded in the
change of basis coefficients between the p and x basis.

Similarly, the character of the module WB when acted on by the element A ∈ kΠn

are given by the formula χWB(A) = δB≥(A) from equation (11). Of course the defining
relation of the p basis from equation (17) shows that

pA =
∑
B

χWB(A)mB.

We observe in this formula that the characters of the simple modules of (Π,∨) are encoded
in the change of basis coefficients between the p and m basis.

Both these formulas are in fairly close analogy with the formula for the expansion for
the power basis in the Schur basis in the algebra of the symmetric functions. There the
change of basis coefficients are the characters of the simple modules of the symmetric
group. This shows that the p-basis which was defined by Rosas and Sagan [17] does
represent the analogue of the power basis in the algebra of the symmetric functions and
the x and the m bases encode in their coefficients the characters of the modules that they
represent.

Remark 4.3 One could also define a third algebra (kΠn, @) where A@B = δA=BA and
construct the simple modules as we have done here for (kΠn,∧) and (kΠn,∨). This
same construction shows that the simple modules of this algebra satisfy a tensor product,
induction and restriction operations which make the Grothendieck ring (of the category
of the finite dimensional projective modules) for this algebra isomorphic again to NCSym
as a bialgebra where the simple modules behave as the elements pA ∈ NCSym and pA is
defined in (17).
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Remark 4.4 Summary of bases in NCSym.
The m basis:

mAmB =
∑

C∧(1n|1k)=A|B
mC

∆(mA) =
∑

S⊆[`(A)]

mAS
⊗ mASc

∆�(mA) =
∑

B∧C=A

mB ⊗mC

The p basis:

pApB = pA|B

∆(pA) =
∑

S⊆[`(A)]

pAS
⊗ pASc

∆�(pA) = pA ⊗ pA

The x basis:

xAxB = xA|B

∆�(xA) =
∑

B∨C=A

xB ⊗ xC

It would be interesting to find a formula for ∆(xA).
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