The valuations of the near octagon \mathbb{I}_4

Bart De Bruyn^{*} and Pieter Vandecasteele

Department of Pure Mathematics and Computer Algebra Ghent University, Gent, Belgium bdb@cage.ugent.be

Submitted: Jun 16, 2006; Accepted: Aug 11, 2006; Published: Aug 25, 2006 Mathematics Subject Classifications: 51A50, 51E12, 05B25

Abstract

The maximal and next-to-maximal subspaces of a nonsingular parabolic quadric $Q(2n, 2), n \geq 2$, which are not contained in a given hyperbolic quadric $Q^+(2n - 1, 2) \subset Q(2n, 2)$ define a sub near polygon \mathbb{I}_n of the dual polar space DQ(2n, 2). It is known that every valuation of DQ(2n, 2) induces a valuation of \mathbb{I}_n . In this paper, we classify all valuations of the near octagon \mathbb{I}_4 and show that they are all induced by a valuation of DQ(8, 2). We use this classification to show that there exists up to isomorphism a unique isometric full embedding of \mathbb{I}_n into each of the dual polar spaces DQ(2n, 2) and DH(2n - 1, 4).

1 Introduction

1.1 Basic Definitions

A near polygon is a partial linear space $S = (\mathcal{P}, \mathcal{L}, \mathbf{I}), \mathbf{I} \subseteq \mathcal{P} \times \mathcal{L}$, with the property that for every point $x \in \mathcal{P}$ and every line $L \in \mathcal{L}$, there exists a unique point on L nearest to x. Here, distances are measured in the *point graph* or *collinearity graph* Γ of S. If d is the diameter of Γ , then the near polygon is called a *near 2d-gon*. The unique near 0-gon consists of one point (no lines). The near 2-gons are precisely the lines. Near quadrangles are usually called *generalized quadrangles* (Payne and Thas [15]). Near polygons were introduced by Shult and Yanushka [17] because of their connection with the so-called tetrahedrally closed line systems in Euclidean spaces. A detailed treatment of the basic theory of near polygons can be found in the recent book of the author [4].

If x_1 and x_2 are two points of a near polygon S, then $d(x_1, x_2)$ denotes the distance between x_1 and x_2 (in the point graph). If X_1 and X_2 are two nonempty sets of points, then $d(X_1, X_2)$ denotes the minimal distance between a point of X_1 and a point of X_2 . If

^{*}Postdoctoral Fellow of the Research Foundation - Flanders

 X_1 is a singleton $\{x_1\}$, then we will also write $d(x_1, X_2)$ instead of $d(\{x_1\}, X_2)$. If X is a nonempty set of points and $i \in \mathbb{N}$, then $\Gamma_i(X)$ denotes the set of all points y for which d(y, X) = i. If X is a singleton $\{x\}$, then we will also write $\Gamma_i(x)$ instead of $\Gamma_i(\{x\})$.

A subspace S of a near polygon S is called *convex* if every point on a shortest path between two points of S is also contained in S. The points and lines of a near polygon which are contained in a given convex subspace define a sub(-near-)polygon of S. The maximal distance between two points of a convex subspace S is called the *diameter* of S and is denoted as diam(S). If X_i , $i \in \{1, \ldots, k\}$, are nonempty sets of points, then $\langle X_1, \ldots, X_k \rangle$ denotes the smallest convex subspace containing $X_1 \cup X_2 \cup \cdots \cup X_k$, i.e., $\langle X_1, \ldots, X_k \rangle$ is the intersection of all convex subspaces containing $X_1 \cup X_2 \cup \cdots \cup X_k$.

A near polygon is said to have order (s, t) if every line is incident with precisely s + 1points and if every point is incident with precisely t + 1 lines. A near polygon is called *dense* if every line is incident with at least three points and if every two points at distance 2 have at least two common neighbours. Dense near polygons satisfy several nice properties, see e.g. Chapter 2 of [4]. The most interesting among these properties is without any doubt the following result due to Brouwer and Wilbrink [2]: if x and y are two points of a dense near polygon at distance δ from each other, then (the point-line geometry induced by) $\langle x, y \rangle$ is a sub-near-2 δ -gon. These subpolygons are called *quads* if $\delta = 2$ and *hexes* if $\delta = 3$.

If x is a point and Q is a quad of a dense near polygon such that $d(x, Q) = \delta$, then precisely one of the following two cases occurs: (i) Q contains a unique point $\pi_Q(x)$ at distance δ from x and $d(x, y) = d(x, \pi_Q(x)) + d(\pi_Q(x), y)$ for every point y of Q; (ii) $\Gamma_{\delta}(x) \cap Q$ is an ovoid of Q. If case (i) occurs, then x is called *classical* with respect to Q. If case (ii) occurs, then x is called *ovoidal* with respect to Q. If Q is a quad and $\delta \in \mathbb{N}$, then we denote by $\Gamma_{\delta,C}(Q)$, respectively $\Gamma_{\delta,O}(Q)$, the set of points at distance δ from Q which are classical, respectively ovoidal, with respect to Q.

A convex subspace F of a dense near polygon S is called *classical* in S if for every point x of S, there exists a unique point $\pi_F(x)$ in F such that $d(x, y) = d(x, \pi_F(x)) + d(\pi_F(x), y)$ for every point y of F. The point $\pi_F(x)$ is called the *projection* of x onto F. Classical convex subspaces satisfy the following property:

Proposition 1.1 (Theorem 2.32 of [4]) Let H be a convex sub-2m-gon of a dense near 2d-gon S which is classical in S and let x be a point of H. If H' is a convex sub-2 $(d-m+\delta)$ -gon through x, then diam $(H \cap H') \ge \delta$.

An important class of near polygons are the dual polar spaces (Cameron [3]). Suppose Π is a nondegenerate polar space of rank $n \geq 2$. Let Δ be the incidence structure with points, respectively lines, the maximal, respectively next-to- maximal, singular subspaces of Π , with reverse containment as incidence relation. Then Δ is a near 2*n*-gon, a so-called dual polar space of rank n. If Π is a thick dual polar space, then Δ is a dense near 2*n*-gon. There exists a bijective correspondence between the convex subspaces of Δ and the singular subspaces of Π : if α is a singular subspace of Π , then the set of all maximal singular subspaces containing α is a convex subspace of Δ . Every convex subspace of Δ

is classical in Δ . The dual polar spaces relevant for this paper are the dual polar spaces DQ(2n,2) and DH(2n-1,4) related to respectively a nonsingular parabolic quadric Q(2n,2) in PG(2n,2) and a nonsingular hermitian variety H(2n-1,4) in PG(2n-1,4).

Let $Q(2n, 2), n \ge 2$, be a nonsingular parabolic quadric in PG(2n, 2) and let π be a hyperplane of PG(2n, 2) intersecting Q(2n, 2) in a nonsingular quadric $Q^+(2n-1, 2)$. The generators of Q(2n, 2) define a dual polar space DQ(2n, 2). The generators of Q(2n, 2) not contained in $Q^+(2n-1, 2)$ form a subspace X of DQ(2n, 2). The set X is a hyperplane of DQ(2n, 2), i.e., every line of DQ(2n, 2) is either contained in X or intersects X in a unique point. The point-line incidence structure defined on the set X by the set of lines of DQ(2n, 2) (contained in X) is a dense near 2n-gon which we will denote by \mathbb{I}_n . The generalized quadrangle \mathbb{I}_2 is isomorphic to the (3×3) - grid. For more details on the above construction, we refer to Section 6.4 of [4].

Let $S_1 = (\mathcal{P}_1, \mathcal{L}_1, I_1)$ and $S_2 = (\mathcal{P}_2, \mathcal{L}_2, I_2)$ be two dense near polygons with respective diameters d_1 and d_2 and respective distance functions $d_1(\cdot, \cdot)$ and $d_2(\cdot, \cdot)$. An *isometric full embedding* θ of S_1 into S_2 is a map $\theta : \mathcal{P}_1 \to \mathcal{P}_2$ which satisfies the following properties:

- for all points x and y of \mathcal{P}_1 , $d_2(\theta(x), \theta(y)) = d_1(x, y)$;
- if L is a line of \mathcal{S}_1 , then $\theta(L) := \{\theta(x) \mid x \in L\}$ is a line of \mathcal{S}_2 .

Two isometric full embeddings θ_1 and θ_2 of S_1 into S_2 are called *isomorphic* if there exists an automorphism ϕ of S_2 such that $\theta_2 = \phi \circ \theta_1$. If there exists an isometric full embedding of S_1 into S_2 , then obviously $d_2 \ge d_1$. In view of the following proposition, we may restrict the study of isometric full embeddings between dense near polygons to the case in which both dense near polygons have the same diameter.

Proposition 1.2 If there exists an isometric full embedding θ of S_1 into S_2 , then there exists a convex subspace S'_2 of diameter d_1 in S_2 containing all points $\theta(x)$, $x \in \mathcal{P}_1$.

Proof. Let x_1 and x_2 be two points of S_1 at maximal distance d_1 from each other. Then $d_2(\theta(x_1), \theta(x_2)) = d_1$ and hence there exists a convex subspace S'_2 of diameter d_1 in S_2 containing the points $\theta(x_1)$ and $\theta(x_2)$.

Suppose x is a point of S_1 at distance d_1 from x_1 . Then by Brouwer and Wilbrink [2], there exists a path $x_2 = y_0, y_1, \ldots, y_k = x$ in $\Gamma_{d_1}(x_1)$ connecting the points x_2 and x. We will prove by induction on $i \in \{0, \ldots, k\}$ that $\theta(y_i)$ is a point of S'_2 . Obviously, this holds if i = 0. So, suppose $i \in \{1, \ldots, k\}$. The line $y_i y_{i-1}$ contains a point z_i at distance $d_1 - 1$ from x_1 . Since θ is an isometric embedding, $\theta(z_i)$ is a point collinear with $\theta(y_{i-1})$ at distance $d_1 - 1$ from $\theta(x_1)$. By the induction hypothesis, $\theta(y_{i-1})$ is a point of S'_2 at distance d_1 from $\theta(x_1)$. Hence, also $\theta(z_i)$ is a point of S'_2 . It follows that the point $\theta(y_i)$ of the line $\theta(z_i)\theta(y_{i-1})$ belongs to S'_2 .

Now, let x denote an arbitrary point of S_1 . Then by Brouwer and Wilbrink [2], x is contained in a shortest path connecting x_1 with a point $x' \in \Gamma_{d_1}(x_1)$. By the previous paragraph, $\theta(x')$ is a point of S'_2 at distance d_1 from $\theta(x_1)$. Since $\theta(x)$ is on a shortest path between the points $\theta(x_1)$ and $\theta(x')$ of \mathcal{S}'_2 , also $\theta(x)$ belongs to \mathcal{S}'_2 . This proves the proposition.

Let $S = (\mathcal{P}, \mathcal{L}, I)$ be a dense near polygon. A function f from \mathcal{P} to \mathbb{N} is called a *valuation* of S if it satisfies the following properties (we call f(x) the value of x):

- (V1) there exists at least one point with value 0;
- (V2) every line L of S contains a unique point x_L with smallest value and $f(x) = f(x_L) + 1$ for every point x of L different from x_L ;
- (V3) every point x of S is contained in a convex subspace F_x such that the following properties are satisfied for every $y \in F_x$:
 - (i) $f(y) \le f(x);$
 - (ii) if z is a point collinear with y such that f(z) = f(y) 1, then $z \in F_x$.

One can show, see De Bruyn and Vandecasteele [8, Proposition 2.5], that the convex subspace F_x in property (V_3) is unique. If f is a valuation of \mathcal{S} , then we denote by O_f the set of points with value 0. A quad Q of \mathcal{S} is called *special (with respect to f)* if it contains two distinct points of O_f , or equivalently (see [8]), if it intersects O_f in an ovoid of Q. We denote by G_f the partial linear space with points the elements of O_f and with lines the special quads (natural incidence). An important notion is the one of *induced valuation*.

Proposition 1.3 (Proposition 2.12 of [8]) Let S be a dense near polygon and let $F = (\mathcal{P}', \mathcal{L}', \mathbf{I}')$ be a dense near polygon which is fully and isometrically embedded in S. Let f denote a valuation of S and put $m := \min\{f(x) | x \in \mathcal{P}'\}$. Then the map $f_F : \mathcal{P}' \to \mathbb{N}, x \mapsto f(x) - m$ is a valuation of F (a so-called induced valuation).

Valuations of dense near polygons have interesting and important applications in the following areas: (1) the classification of dense near polygons (e.g. [11]); (2) construction of hyperplanes of dense near polygons, in particular of dual polar spaces ([9]); (3) classification of hyperplanes of dual polar spaces ([5]); (4) the study of isometric full embeddings between dual polar spaces ([6]). Valuations will be further discussed in Section 2.

1.2 Main results

Valuations are an indispensable tool for classifying dense near polygons (see e.g. [4]). Of particular interest are the dense near polygons of order (2, t) which the authors are trying to classify. At this moment, a complete classification of such dense near polygons is available up to diameter 4 ([15], [1], [11]). In order to obtain new classification results regarding dense near polygons of order (2, t), new classification results regarding valuations seem to be necessary. The classification of the valuations of the dense near hexagons of order (2, t) has been completed by the authors in [10]. The next cases to consider are the near octagons. We start with the near octagon \mathbb{I}_4 .

The embedding of \mathbb{I}_n in DQ(2n, 2) $(n \ge 2)$ described above is an isometric full embedding. So, by Proposition 1.3, every valuation of the dual polar space DQ(2n, 2) induces a valuation of \mathbb{I}_n . In [10], the authors classified all valuations of \mathbb{I}_3 . It turns out that all these valuations are induced by a unique valuation of DQ(6, 2). In the present paper, we prove a similar result for the near octagon \mathbb{I}_4 :

Theorem 1.4 Every valuation f of the near octagon \mathbb{I}_4 is induced by a unique valuation f' of DQ(8,2).

Remark. In [7], it will be shown by one of the authors that also every valuation of \mathbb{I}_n , $n \geq 5$, is induced by a unique valuation of DQ(2n, 2). The complete classification of the valuations of \mathbb{I}_4 is however necessary to achieve this goal. Paper [7] will also contain a discussion of the structure of the valuations of \mathbb{I}_n .

We will see in Corollary 2.8, that there are three types of valuations in DQ(8, 2). We will show in Section 4 that these valuations induce five types of valuations in \mathbb{I}_4 . More precisely, if f' is a valuation of DQ(8, 2) and if f is the valuation of \mathbb{I}_4 induced by f', then one of the following cases occurs (we refer to Sections 2 and 3 for definitions):

- (i) If f' is a classical valuation of DQ(8, 2) such that the unique point with f'-value 0 belongs to \mathbb{I}_4 , then f is a classical valuation of \mathbb{I}_4 and $O_f = O_{f'}$.
- (ii) If f' is a classical valuation of DQ(8,2) such that the unique point with f'-value 0 does not belong to \mathbb{I}_4 , then O_f is a so-called projective set.
- (iii) Suppose f' is the extension of an ovoidal valuation f'' in a quad Q of DQ(8,2) which is contained in \mathbb{I}_4 . Then the valuation f of \mathbb{I}_4 is also the extension (in \mathbb{I}_4) of the ovoidal valuation f'' of Q. So, $O_f = O_{f'}$.
- (iv) Suppose f' is the extension of an ovoidal valuation f'' in a quad Q of DQ(8, 2) which is not contained in \mathbb{I}_4 . Then $O_f \subset O_{f'}$ is an ovoid in the grid-quad $Q \cap \mathbb{I}_4$ of \mathbb{I}_4 .
- (v) Suppose that f' is an SDPS-valuation of DQ(8,2). Then $|O_f| = 75$ and the linear space G_f is isomorphic to the partial linear space W'(4) obtained from the symplectic generalized quadrangle W(4) by removing two orthogonal hyperbolic lines.

In Section 5, we will use the classification of the valuations of \mathbb{I}_3 and \mathbb{I}_4 to study isometric full embeddings of \mathbb{I}_n into the dual polar spaces DQ(2n, 2) and DH(2n - 1, 4). We will show the following:

Theorem 1.5 (i) Up to isomorphism, there is a unique isometric full embedding of \mathbb{I}_n , $n \geq 2$, into DQ(2n, 2).

(ii) Up to isomorphism, there is a unique isometric full embedding of \mathbb{I}_n , $n \geq 2$, into DH(2n-1,4).

2 Valuations: more advanced notions

2.1 Properties of valuations

Let $\mathcal{S} = (\mathcal{P}, \mathcal{L}, I)$ be a dense near 2*n*-gon.

We define four classes of valuations.

(1) For every point x of S, the map $f_x : \mathcal{P} \to \mathbb{N}; y \mapsto d(x, y)$ is a valuation of S. We call f a *classical valuation* of S.

(2) Suppose O is an ovoid of S, i.e., a set of points of S meeting each line in a unique point. For every point x of S, we define $f_O(x) = 0$ if $x \in O$ and $f_O(x) = 1$ otherwise. Then f_O is a valuation of S, which we call an *ovoidal valuation*.

(3) Let x be a point of S and let O be a set of points of S at distance n from x such that every line at distance n-1 from x has a unique point in common with O. For every point y of S, we define f(y) := d(x, y) if $d(x, y) \le n-1$, f(y) := n-2 if $y \in O$ and f(y) := n-1 otherwise. Then f is a valuation of S, which we call a semi-classical valuation.

(4) Suppose $F = (\mathcal{P}', \mathcal{L}', \mathbf{I}')$ is a convex subspace of \mathcal{S} which is classical in \mathcal{S} , and that $f' : \mathcal{P}' \to \mathbb{N}$ is a valuation of F. Then the map $f : \mathcal{P} \to \mathbb{N}; x \mapsto f(x) := d(x, \pi_F(x)) + f'(\pi_F(x))$ is a valuation of \mathcal{S} . We call f the extension of f'. If $\mathcal{P}' = \mathcal{P}$, then we say that the extension is *trivial*.

Applying Proposition 1.3 to classical valuations, we obtain:

Proposition 2.1 Let S be a dense near polygon and let $F = (\mathcal{P}', \mathcal{L}', I')$ be a dense near polygon which is fully and isometrically embedded in S. For every point x of S and for every point y of F, we define $f_x(y) := d(x, y) - d(x, F)$. Then f_x is a valuation of F.

Proposition 2.2 Let S be a dense near 2n-gon and let $F = (\mathcal{P}', \mathcal{L}', I')$ be a dense near 2n-gon which is fully and isometrically embedded in S. Let x be a point of S and let f_x be the valuation of F induced by x (see Proposition 2.1). Then d(x, F) = n - M, where M is the maximal value attained by f_x .

Proof. We need to show that there is a point in F at distance n from x. Let y be a point of F at maximal distance from x. Every line of F through x contains a point at distance d(x, y) - 1 from x and hence is contained in the convex subspace $\langle x, y \rangle$ of S. The intersection $\langle x, y \rangle \cap F$ is a convex subspace of F containing all lines of F through y. Hence, $\langle x, y \rangle \cap F = F$, i.e., $F \subseteq \langle x, y \rangle$. Since F has diameter n, also $\langle x, y \rangle$ must have diameter n, i.e. d(x, y) = n. This was what we needed to show.

In the following proposition, we collect some properties of valuations. We refer to [8] for proofs.

Proposition 2.3 ([8]) The following holds for a valuation f of a dense near 2n-gon S. (a) No two distinct special quads intersect in a line.

(b) $f(x) = d(x, O_f)$ for every point x of S with $d(x, O_f) \leq 2$.

The electronic journal of combinatorics 13 (2006), #R76

(c) f is a classical valuation if and only if there exists a point with value n.

(d) If x is a point such that f(y) = d(x, y) for every point y at distance at most n - 1 from x, then f is either classical or semi-classical.

(e) If S contains lines with s + 1 points and if m_i , $i \in \mathbb{N}$, denotes the total number of points with value i, then $\sum_{i=0}^{\infty} m_i (-\frac{1}{s})^i = 0$.

2.2 SDPS-valuations

Let Δ be a thick dual polar space of rank $2n, n \in \mathbb{N}$. (We will take the following convention: a dual polar space of rank 0 is a point and a dual polar space of rank 1 is a line.) A set X of points of Δ is called an *SDPS-set* of Δ if it satisfies the following properties.

(1) No two points of X are collinear in Δ .

(2) If $x, y \in X$ such that d(x, y) = 2, then $X \cap \langle x, y \rangle$ is an ovoid of the quad $\langle x, y \rangle$.

(3) The point-line geometry Δ whose points are the elements of X and whose lines are the quads of Δ containing at least two points of X (natural incidence) is a dual polar space of rank n.

(4) For all $x, y \in X$, $d(x, y) = 2 \cdot \delta(x, y)$. Here, d(x, y) and $\delta(x, y)$ denote the distances between x and y in the respective dual polar spaces Δ and $\widetilde{\Delta}$.

(5) If $x \in X$ and if L is a line of Δ through x, then L is contained in a quad of Δ which contains at least two points of X.

SDPS-sets were introduced by De Bruyn and Vandecasteele [9], see also [4, Section 5.6.7]. An SDPS-set of a dual polar space of rank 0 consists of the unique point of that dual polar space. An SDPS-set of a thick generalized quadrangle Q is an ovoid of Q. For examples of SDPS-sets in thick dual polar spaces of rank $2n \ge 4$, see De Bruyn and Vandecasteele [9, Section 4] or Pralle and Shpectorov [16].

Proposition 2.4 (Theorem 4 of [9]; Section 5.8 of [4]) Let X be an SDPS-set of a thick dual polar space Δ of rank $2n \geq 0$. For every point x of Δ , we define f(x) := d(x, X). Then f is a valuation of Δ with maximal value equal to n.

Any valuation which can be obtained from an SDPS- set as described in Proposition 2.4 is called an *SDPS- valuation*. In the following two propositions, we characterize SDPS-valuations.

Proposition 2.5 (Theorem 5 of [9]; Section 5.9 of [4]) Let f be a valuation of a thick dual polar space Δ which is the possibly trivial extension of an SDPS-valuation in a convex subspace of Δ , and let A be an arbitrary hex of Δ . Then the valuation induced in A is either classical or the extension of an ovoidal valuation in a quad of A.

Proposition 2.6 (Theorem 6 of [9]; Section 5.10 of [4]) Let f be a valuation of a thick dual polar space Δ such that every induced hex-valuation is either classical or the extension of an ovoidal valuation in a quad, then f is the possibly trivial extension of an SDPS-valuation in a convex subspace of Δ .

Proposition 2.7 (Section 6 of [10]) Every valuation of the dual polar space DQ(6,2) is either classical or the extension of an ovoidal valuation in a quad of DQ(6,2).

Corollary 2.8 If f is a valuation of the dual polar space DQ(2n, 2), $n \ge 2$, then f is the possibly trivial extension of an SDPS-valuation in a convex subspace of DQ(2n, 2).

Proof. If f is a valuation of DQ(2n, 2), $n \ge 2$, then by Proposition 2.7, every induced hex valuation is either classical or the extension of an ovoidal valuation in a quad. By Proposition 2.6, it then follows that f is the possibly trivial extension of an SDPS-valuation in a convex subspace of DQ(2n, 2).

3 Properties of the near 2n-gon \mathbb{I}_n

3.1 The convex subspaces of \mathbb{I}_n

Consider a nonsingular parabolic quadric Q(2n, 2), $n \ge 2$, in PG(2n, 2) and a hyperplane π of PG(2n, 2) intersecting Q(2n, 2) in a nonsingular hyperbolic quadric $Q^+(2n - 1, 2)$. Let DQ(2n, 2) denote the dual polar space associated with Q(2n, 2) and let \mathbb{I}_n be the sub-2n-gon of DQ(2n, 2) defined on the set of generators of Q(2n, 2) not contained in $Q^+(2n - 1, 2)$.

Let α be a subspace of dimension n - 1 - i, $i \in \{0, ..., n\}$, on Q(2n, 2) which is not contained in $Q^+(2n - 1, 2)$ if $i \in \{0, 1\}$. If X_{α} is the set of all maximal subspaces of Q(2n, 2) through α not contained in $Q^+(2n - 1, 2)$, then X_{α} is a convex subspace of diameter i of \mathbb{I}_n . Conversely, every convex subspace of diameter i of \mathbb{I}_n is obtained in this way. Let \mathcal{A}_{α} denote the point-line geometry on the set X_{α} induced by the lines of DQ(2n, 2). If $i \geq 2$ and if α is not contained in π , then $\mathcal{A}_{\alpha} \cong DQ(2i, 2)$. If $i \geq 2$ and $\alpha \subseteq \pi$, then $\mathcal{A}_{\alpha} \cong \mathbb{I}_i$. Every convex subspace of \mathbb{I}_n isomorphic to DQ(2i, 2) for some $i \geq 2$ is classical in \mathbb{I}_n . If α_1 and α_2 are two subspaces of Q(2n, 2) such that $\alpha_i \not\subseteq \pi$ if $\dim(\alpha_i) \in \{n - 2, n - 1\}$ ($i \in \{1, 2\}$), then $X_{\alpha_1} \subseteq X_{\alpha_2}$ if and only if $\alpha_2 \subseteq \alpha_1$. Using this fact, one can easily see that every line of \mathbb{I}_n is contained in a unique grid- quad. (Recall that \mathbb{I}_2 is isomorphic to the (3×3) -grid.) For more details on the above-mentioned facts, see Section 6.4 of [4].

An important notion is the one of a projective set. Suppose α is a point of DQ(2n, 2) not contained in \mathbb{I}_n , i.e., α is a generator of $Q^+(2n-1, 2)$. Let V_{α} denote the set of points of \mathbb{I}_n collinear with α . Since \mathbb{I}_n is a hyperplane of DQ(2n, 2), there is a unique point of V_{α} on every line of DQ(2n, 2) through α . The set V_{α} satisfies the following properties, see Section 8.2 of [10]:

(i) every two points of V_{α} lie at distance 2 from each other and the unique quad of \mathbb{I}_n containing them is a grid;

(ii) if $x \in V_{\alpha}$ and if Q is a grid-quad through x, then $Q \cap V_{\alpha}$ is an ovoid of Q;

(iii) the incidence structure with points the elements of V_{α} and with lines the gridquads of \mathbb{I}_n containing at least two points of V_{α} is isomorphic to the point-line system of the projective space PG(n-1,2). Because of property (iii), the set V_{α} is called a *projective set*. Projective sets satisfy the following properties, see again Section 8.2 of [10].

(a) Every point is contained in precisely two projective sets.

(b) If x and y are two points at distance 2 from each other such that $\langle x, y \rangle$ is a grid, then there exists a unique projective set containing x and y.

3.2 The valuations of \mathbb{I}_3

We will use the same notations as in Section 3.1 but we suppose that n = 3. The valuations of \mathbb{I}_3 were classified in Section 8.4 of [10]. The following holds:

Proposition 3.1 Every valuation f of \mathbb{I}_3 is induced by a unique valuation f' of DQ(6,2).

There are two types of valuations f' in DQ(6,2) (recall Proposition 2.7) giving rise to four types of valuations f in \mathbb{I}_3 .

(1) Suppose f' is a classical valuation of DQ(6,2) such that the unique point x with f'-value 0 belongs to \mathbb{I}_3 . Then f is a classical valuation of \mathbb{I}_3 and $O_f = \{x\}$.

(2) Suppose f' is a classical valuation of DQ(6, 2) such that the unique point with f'-value 0 does not belong to \mathbb{I}_3 . Then O_f is a projective set. We call f a valuation of Fano-type: the set of grid-quads of \mathbb{I}_4 which are special with respect to f defines a Fano plane on the set O_f .

(3) Suppose f' is the extension of an ovoidal valuation in a quad Q of DQ(6, 2) which is also a quad of \mathbb{I}_3 . Then the valuation f of \mathbb{I}_3 is the extension of an ovoidal valuation in Q. Moreover, $O_f = O_{f'}$. We call f a valuation of extended type.

(4) Suppose f' is the extension of an ovoidal valuation in a quad Q of DQ(6, 2) which is not a quad of \mathbb{I}_3 . Then $|O_f| = 3$ and the grid $Q \cap \mathbb{I}_3$ is the unique quad of \mathbb{I}_3 which is special with respect to the valuation f. We call f a valuation of grid-type.

Lemma 3.2 Let f be a valuation of \mathbb{I}_3 of grid-type and let G denote the unique special grid-quad of \mathbb{I}_3 containing O_f . Then there are 24 points in \mathbb{I}_3 at distance 2 from G. From these 24 points, 16 have value 2 and 8 have value 1.

Proof. Let \overline{G} denote the unique W(2)-quad of DQ(6,2) containing G and let \overline{O} denote the unique ovoid of \overline{G} containing O_f . The points of \mathbb{I}_3 at distance 2 from G are precisely the points x of \mathbb{I}_3 for which $\pi_{\overline{G}}(x) \notin G$. If y is a point of $\overline{G} \setminus G$, then y is collinear with four points of $\mathbb{I}_3 \setminus G$. If $y \in \overline{O}$, then each of these points has value 1. If $y \notin \overline{O}$, then each of these points has value 2. The lemma now readily follows from the fact that $|\overline{O} \setminus O_f| = 2$ and $|\overline{G} \setminus G| = 6$.

4 The valuations of \mathbb{I}_4

In this section, we will prove Theorem 1.4. We will regard the near octagon \mathbb{I}_4 as a subnear-polygon of DQ(8, 2), see Section 1. Convex subspaces of diameter 2 and 3 of \mathbb{I}_4 will be called *quads* and *hexes*, respectively. Convex subspaces of diameter 2 and 3 of DQ(8, 2)will be called *QUADS* and *HEXES*, respectively. Every W(2)-quad of \mathbb{I}_4 is a QUAD of DQ(8, 2). A grid-quad of \mathbb{I}_4 is not a QUAD of DQ(8, 2).

4.1 Two lemmas

By Corollary 2.8, every valuation of DQ(8,2) is either a classical valuation, the extension of an ovoidal valuation in a quad of DQ(8,2) or an SDPS-valuation. By Proposition 1.3, each valuation of DQ(8,2) induces a valuation of \mathbb{I}_4 .

Lemma 4.1 Suppose the valuation f of \mathbb{I}_4 is induced by a valuation f' of DQ(8,4).

(i) If f' is a classical valuation of DQ(8,2) such that $O_{f'} \subseteq \mathbb{I}_4$, then f is a classical valuation of \mathbb{I}_4 and $O_f = O_{f'}$.

(ii) If f' is a classical valuation of DQ(8,2) such that $O_{f'} \not\subseteq \mathbb{I}_4$, then O_f is a projective set, and every quad of \mathbb{I}_4 which is special with respect to f is a grid.

(iii) If f' is a valuation of DQ(8,2) which is the extension of an ovoidal valuation in a QUAD Q of DQ(8,2) which is also a quad of \mathbb{I}_4 , then f is the extension of an ovoidal valuation of Q and $O_f = O_{f'}$.

(iv) If f' is a valuation of DQ(8,2) which is the extension of an ovoidal valuation in a QUAD Q of DQ(8,2) which is not a quad of \mathbb{I}_4 , then $O_f = O_{f'} \cap \mathbb{I}_4$ is a set of 3 points of Q.

(v) If f' is an SDPS-valuation of DQ(8,2), then $|O_f| \ge 10$ and there exists a W(2)-quad in \mathbb{I}_4 which is special with respect to f.

Proof. Claims (i), (ii), (iii) and (iv) are obvious. We now show claim (v). Let H_1 and H_2 be two disjoint hexes of \mathbb{I}_4 isomorphic to DQ(6,2). Then H_1 and H_2 are also HEXES of DQ(8,2). By the structure of SDPS-sets, see Lemma 8 of [9], $H_1 \cap O_{f'}$ and $H_2 \cap O_{f'}$ are ovoids in QUADS. Claim (v) follows from the fact that $(H_1 \cap O_{f'}) \cup (H_2 \cap O_{f'}) \subseteq O_f$.

Lemma 4.2 If f is a valuation of \mathbb{I}_4 , then $d(x_1, x_2)$ is even for every two points x_1 and x_2 of O_f .

Proof. By property (V_2) in the definition of valuation, $d(x_1, x_2) \neq 1$. Suppose $d(x_1, x_3) = 3$, let H denote the unique hex through x_1 and x_2 and let f_H denote the valuation of H induced by f. Then $x_1, x_2 \in O_{f_H}$. The hex H is isomorphic to either DQ(6, 2) or \mathbb{I}_3 . But neither DQ(6, 2) nor \mathbb{I}_3 has a valuation for which there exist two points with value 0 at distance 3 from each other. Hence, $d(x_1, x_2) \in \{0, 2, 4\}$.

If f is a valuation of \mathbb{I}_4 , then we will consider the following two cases:

(I) any two distinct points of O_f lie at distance 2 from each other;

(II) there exist two points in O_f at distance 4 from each other.

4.2 Treatment of Case I

In this subsection, we suppose that f is a valuation of \mathbb{I}_4 such that any two distinct points of O_f lie at distance 2 from each other.

Lemma 4.3 If $|O_f| = 1$, then the following holds:

- (i) f is a classical valuation;
- (ii) there exists a unique valuation f' in DQ(8,2) inducing f;
- (iii) the valuation f' is classical and $O_{f'} = O_f$.

Proof. (i) Put $O_f = \{x\}$. Let H denote an arbitrary hex through x and let f_H denote the valuation induced in H. Then $O_{f_H} = \{x\}$. Regardless of whether $H \cong DQ(6, 2)$ or $H \cong \mathbb{I}_3$, f_H is classical. It follows that f(y) = d(x, y) for every point y at distance at most 3 from x. By Proposition 2.3 (d), f is classical or semi-classical. Suppose f is semi-classical. Let y be a point at distance 1 from x and let H be a hex through y not containing x. Then the valuation induced in H is semi-classical. But this is impossible, because neither DQ(6, 2) nor \mathbb{I}_3 has semi-classical valuations.

(ii) + (iii) Obviously, f is induced by the classical valuation f_x of DQ(8,2) for which x is the unique point with value 0. By Lemma 4.1, f_x is the unique valuation of DQ(8,2) inducing f.

Lemma 4.4 Suppose that the maximal distance between two points of O_f is equal to 2 and that there exists a special W(2)-quad Q. Then:

- (i) f is the extension of an ovoidal valuation in Q;
- (ii) there exists a unique valuation f' in DQ(8,2) inducing f;
- (iii) the valuation f' is the extension of an ovoidal valuation in Q and $O_{f'} = O_f$.

Proof. (i) We first prove that $Q \cap O_f = O_f$. Suppose the contrary. Then there exists a point $x \in O_f \setminus (O_f \cap Q)$. Since $d(x, y) = d(x, \pi_Q(x)) + d(\pi_Q(x), y) = 2$ for every point y of $O_f \cap Q$, every point of $O_f \cap Q$ has distance at most 1 from $\pi_Q(x)$, a contradiction. Hence $Q \cap O_f = O_f$.

If x is a point of \mathbb{I}_4 such that $d(x,Q) \leq 1$ or (d(x,Q) = 2 and $\pi_Q(x) \in O_f)$, then $d(x,O_f) \leq 2$ and hence $f(x) = d(x,O_f)$ by Proposition 2.3 (b). Suppose now that x is a point of \mathbb{I}_4 such that d(x,Q) = 2 and $\pi_Q(x) \notin O_f$. Let y be a point of O_f collinear with $\pi_Q(x)$, let H be the hex $\langle x, y \rangle$ and let f_H be the valuation of H induced by f. Then $O_{f_H} = \{y\}$ since $H \cap O_f = \{y\}$. Hence, f_H is a classical valuation. It follows that $f(x) = 3 = d(x, O_f)$.

Summarizing, we have $f(x) = d(x, O_f) = d(x, \pi_Q(x)) + d(\pi_Q(x), O_f)$ for every point x of \mathbb{I}_4 . It follows that f is the extension of the ovoidal valuation of Q determined by the ovoid O_f .

(ii) + (iii) If f' is the valuation of DQ(8, 2) which is the extension of the ovoidal valuation of the QUAD Q determined by the ovoid O_f , then f' induces the valuation f of \mathbb{I}_4 . By Lemma 4.1, f' is the unique valuation of DQ(8, 2) inducing f.

Lemma 4.5 Suppose that the maximal distance between two points of O_f is equal to 2 and that no special W(2)-quads exist. Then O_f is either a projective set or an ovoid in a grid-quad.

Proof. Let x denote an arbitrary point of O_f . The incidence structure P with points the grid-quade through x and with lines the \mathbb{I}_3 - hexes through x (natural incidence) is isomorphic to the Fano- plane. Let X denote the set of all special grid-quades through x.

Step 1: X is a subspace of P.

PROOF. Let Q_1 and Q_2 denote two distinct special grid- quads through x and let Q_3 denote the third grid-quad through x such that $\{Q_1, Q_2, Q_3\}$ is a line of P. Let H denote the unique \mathbb{I}_3 -hex containing Q_1, Q_2, Q_3 , and let f_H be the valuation of H induced by f. Since Q_1 and Q_2 are special quads with respect to f_H , f_H is a valuation of Fano- type. So, also Q_3 is special with respect to f_H and hence also with respect to f.

Step 2: X is not a line of P.

PROOF. Suppose the contrary and let H denote the unique \mathbb{I}_3 -hex containing all points of O_f . Let H' denote a DQ(6, 2)- hex of \mathbb{I}_4 disjoint with H and let $f_{H'}$ denote the valuation of H' induced by f. Every point of $\pi_{H'}(O_f)$ has f-value 1 and hence belongs to $O_{f_{H'}}$. It follows that $|O_{f_{H'}}| \geq |\pi_{H'}(O_f)| = |O_f| = 7$, a contradiction, because a valuation of DQ(6, 2) has at most five points with value 0. This proves the claim.

From Steps 1 and 2, it follows that X is either a point of P or the whole of P. In the first case, O_f is an ovoid in a grid-quad. In the second case, O_f must be a projective set since every two points of O_f lie at distance 2 from each other.

Lemma 4.6 If X is a projective set of \mathbb{I}_4 , then there exists a unique valuation g of \mathbb{I}_4 such that $X = O_g$. Moreover, g is induced by a unique valuation of DQ(8, 2).

Proof. (1) Suppose g is a valuation of \mathbb{I}_4 such that $X = O_g$. Let x denote an arbitrary point of \mathbb{I}_4 and let H denote a DQ(6, 2)-hex through x. Then H has a unique point in common with O_g . Hence, the valuation induced in H by g is classical. It follows that $g(x) = d(x, X \cap H)$. This proves that there exists at most one valuation g of \mathbb{I}_4 such that $O_g = X$.

(2) Let x denote the unique point of $DQ(8,2) \setminus \mathbb{I}_4$ such that X is the set of all points of \mathbb{I}_4 collinear with x. Let f_x denote the classical valuation of DQ(8,2) such that $f_x(x) = 0$ and let g denote the valuation of \mathbb{I}_4 induced by f_x . Then $O_q = X$.

(3) By Lemma 4.1, f_x is the unique valuation of DQ(8,2) inducing a valuation g of \mathbb{I}_4 with $O_g = X$.

The lemma now follows from (1), (2) and (3).

Lemma 4.7 Let G be a grid-quad of the near octagon \mathbb{I}_4 , let x be a point of G and let O be an ovoid of G. Then the following holds:

- (i) there are 128 points u in $\Gamma_{2,C}(G)$ for which $\pi_G(u) = x$;
- (ii) there are 96 points u in $\Gamma_{3,O}(G)$ for which $\Gamma_3(u) \cap G = O$.

Proof. Let \overline{G} denote the unique QUAD of DQ(8,2) containing G. Let y denote the unique point of $\overline{G} \setminus G$ for which $y^{\perp} \cap G = O$. The lines and QUADS of DQ(8,2) through any given point of DQ(8,2) define a projective space isomorphic to PG(3,2). So, every point of \overline{G} is contained in precisely 16 QUADS which intersect \overline{G} in only one point.

The 16 QUADS through x intersecting \overline{G} in only the point x are also quads of \mathbb{I}_4 , since \overline{G} contains the unique line of DQ(8, 2) through x not contained in \mathbb{I}_4 . In each such QUAD, there are 8 points at distance 2 from x. If u is one of these 8 points, then $u \in \Gamma_{2,C}(G)$ and $\pi_G(u) = x$. Conversely, if u is a point of $\Gamma_{2,C}(G)$ such that $\pi_G(u) = x$, then u is contained in one of the 16 QUADS through x intersecting \overline{G} in only the point x. Hence, there are $16 \cdot 8 = 128$ points $u \in \Gamma_{2,C}(G)$ for which $\pi_G(u) = x$.

Each of the 16 QUADS through y intersecting \overline{G} in only the point y intersects \mathbb{I}_4 in a grid. In each such QUAD, there are 6 points of \mathbb{I}_4 at distance 2 from y. If u is one of these 6 points, then $u \in \Gamma_{3,O}(G)$ and $\Gamma_3(u) \cap G = O$. Conversely, if u is a point of $\Gamma_{3,O}(G)$ such that $\Gamma_3(u) \cap G = O$, then u is contained in one of the 16 QUADS through y intersecting \overline{G} only in the point y. This proves that there are $16 \cdot 6 = 96$ points $u \in \Gamma_{3,O}(G)$ for which $\Gamma_3(u) \cap G = O$.

Lemma 4.8 If X is an ovoid in a grid-quad G of \mathbb{I}_4 , then there exists a unique valuation g of \mathbb{I}_4 such that $X = O_q$. Moreover, g is induced by a unique valuation of DQ(8, 2).

Proof. (1) Suppose g is a valuation of \mathbb{I}_4 such that $X = O_g$. We will count the number of points with a certain g-value. Notice that there are no points with g-value 4 by Proposition 2.3 (c).

Consider first the points of G. In G, there are 3 points with value 0 and 6 points with value 1.

Consider the set of points $\Gamma_1(G)$. Since there are 14 lines through each point of \mathbb{I}_4 , $|\Gamma_1(G)| = 9 \cdot (14-2) \cdot 2 = 216$. If $x \in \Gamma_1(G)$, then $d(x, O_g) \leq 2$ and hence $g(x) = d(x, O_g)$ by Proposition 2.3 (b). It follows that there are 72 points in $\Gamma_1(G)$ with value 1 and 144 points in $\Gamma_1(G)$ with value 2.

Now, consider the set $\Gamma_{2,O}(G)$. If $x \in \Gamma_{2,O}(G)$, then $\langle x, G \rangle$ is an \mathbb{I}_3 -hex. Now, there are three \mathbb{I}_3 -hexes through G and the valuation induced in each such \mathbb{I}_3 -hex is of grid-type. By Lemma 3.2, in each \mathbb{I}_3 -hex through G there are 8 points at distance 2 from G with value 1 and 16 points at distance 2 from G with value 2. Hence, in $\Gamma_{2,O}(G)$ there are 24 points with value 1 and 48 points with value 2.

Now, consider the set $\Gamma_{2,C}(G)$. If x is one of the $128 \cdot 3 = 384$ points of $\Gamma_{2,C}(G)$ such that $\pi_G(x) \in O_g$ (see Lemma 4.7 (i)), then $d(x, O_g) = 2$ and hence g(x) = 2 by Proposition 2.3 (b). Suppose x is one of the $128 \cdot 6 = 768$ points of $\Gamma_{2,C}(G)$ for which $\pi_G(x) \notin O_g$. Let y be a point of O_g collinear with $\pi_G(x)$. Then the valuation induced in the hex $\langle x, y \rangle$ is classical since $O_g \cap \langle x, y \rangle = \{y\}$. It follows that g(x) = 3.

Finally, suppose that $x \in \Gamma_3(G)$. Then $\Gamma_3(x) \cap G$ is an ovoid of G. By Lemma 4.7 (ii), there are $4 \cdot 96 = 384$ points x in $\Gamma_3(G)$ for which $\Gamma_3(x) \cap G$ is an ovoid meeting O_g and there are $96 \cdot 2 = 192$ points in $\Gamma_3(x) \cap G$ for which $\Gamma_3(x) \cap G$ is an ovoid of G disjoint from O_g .

Suppose first that $x \in \Gamma_3(G)$ such that there exists a point $y \in O_g \cap \Gamma_3(x)$. Then the valuation induced in $\langle x, y \rangle$ is classical since $O_g \cap \langle x, y \rangle = \{y\}$. It follows that g(x) = 3.

Now, suppose $\Gamma_3(x) \cap O_g = \emptyset$. We show that x cannot have value 1. Suppose the contrary and let y denote a point of $\Gamma_3(x) \cap G$. Then the hex $\langle x, y \rangle$ does not contain points of O_g . Since g(y) = g(x) = 1, the valuation induced in $\langle x, y \rangle$ has two points with value 0 at distance 3 from each other, which is impossible. Hence, x has value 2 or 3. Suppose that among the 192 points x of $\Gamma_3(G)$ for which $\Gamma_3(x) \cap G \cap O_g = \emptyset$, there are α points with value 3 and 192 - α points with value 2.

Now, let m_i , $i \in \{0, 1, 2, 3\}$, denote the total number of points with value *i*. Summarizing what has been said before, we can conclude that $m_0 = 3$, $m_1 = 102$, $m_2 = 768 - \alpha$ and $m_3 = 1152 + \alpha$. By Proposition 2.3 (e), $m_0 - \frac{m_1}{2} + \frac{m_2}{4} - \frac{m_3}{8} = -\frac{3\alpha}{8} = 0$. So, $\alpha = 0$ and the valuation is completely determined by the set X, i.e., there exists at most one valuation g of \mathbb{I}_4 for which $O_g = X$.

(2) Let \overline{G} denote the QUAD of DQ(8,2) containing G, let O denote the unique ovoid of \overline{G} containing X and let \overline{f} denote the valuation of DQ(8,2) which arises as extension of the ovoidal valuation of \overline{G} with corresponding ovoid O. Let g denote the valuation of \mathbb{I}_4 induced by \overline{f} . Then $O_g = X$.

(3) By Lemma 4.1, it is also clear that \overline{f} is the unique valuation of DQ(8,2) inducing a valuation g in \mathbb{I}_4 such that $O_g = X$.

The lemma now follows from (1), (2) and (3).

4.3 Treatment of Case II

In this subsection, we suppose that f is a valuation of \mathbb{I}_4 containing two points of O_f at distance 4 from each other.

Lemma 4.9 Let x_1 and x_2 be two points of O_f at distance 4 from each other. Then through x_1 , there are 4 special W(2)-quads and a unique special grid-quad. These special quads partition the set of lines through x_1 .

Proof. There are 14 hexes through x_1 containing a point of $\Gamma_1(x_2)$. Each of the 8 DQ(6,2)-hexes through x_1 is classical in \mathbb{I}_4 and hence contains a point of $\Gamma_1(x_2)$. So, from the 7 \mathbb{I}_3 - hexes through x_1 there are 6 which contain a point of $\Gamma_1(x_2)$ and a unique other one which does not contain a point of $\Gamma_1(x_2)$.

Let *H* be an arbitrary DQ(6, 2)-hex through x_1 . Then $f(x_1) = 0$, $f(\pi_H(x_2)) = 1$ and $d(x_1, \pi_H(x_2)) = 3$. It follows that the valuation induced in *H* is the extension of an ovoidal valuation in a quad of *H*. Hence, *H* contains a unique special W(2)-quad. Conversely, every special W(2)-quad is contained in precisely two DQ(6, 2)-hexes. As a consequence,

there are precisely $\frac{8}{2} = 4$ special W(2)-quads through x_1 . By Proposition 2.3 (a), these four special quads cover twelve lines through x_1 . Let L_1 and L_2 denote the remaining two lines of \mathbb{I}_4 through x_1 .

Let H be one of the six \mathbb{I}_3 hexes through x_1 containing a point collinear with x_2 . Since $f(x_1) = 0$, $f(\pi_H(x_2)) = 1$ and $d(x_1, \pi_H(x_2)) = 3$, the valuation f_H induced in H cannot be classical. Suppose f_H is a valuation of Fano-type. Then there exists a special grid-quad through x_1 meeting a special W(2)- quad in a line, contradicting Proposition 2.3 (a). Hence, f_H is either of extended type or of grid-type.

As every special W(2)-quad through x_1 is contained in a unique \mathbb{I}_3 -hex, there are precisely four \mathbb{I}_3 -hexes H through x_1 meeting $\Gamma_1(x_2)$ for which f_H is of extended type. Hence, there exists an \mathbb{I}_3 -hex H^* through x_1 meeting $\Gamma_1(x_2)$ for which f_{H^*} is a valuation of grid-type. Let Q^* denote the unique special quad of H^* . By Proposition 2.3 (a), the grid Q^* cannot intersect any of the special W(2)-quads through x_1 in a line. Hence, Q^* coincides with the quad $\langle L_1, L_2 \rangle$. This proves the lemma.

Lemma 4.10 For every point y_1 of O_f , there exists a point $y_2 \in O_f$ at distance 4 from y_1 .

Proof. Suppose the contrary. Let x_1 and x_2 denote two points of O_f at distance 4 from each other. We necessarily have $d(y_1, x_1) = 2$ and $d(y_1, x_2) = 2$. Moreover the quads $\langle y_1, x_1 \rangle$ and $\langle y_1, x_2 \rangle$ are different. By Lemma 4.9, there exists a special W(2)-quad Qthrough x_1 different from $\langle y_1, x_1 \rangle$. Let z denote a point of $O_f \cap Q$ different from x_1 . Since the quads Q and $\langle y_1, x_1 \rangle$ do not intersect in a line, the point z has distance 2 from $\langle y_1, x_1 \rangle$. If z is ovoidal with respect to $\langle y_1, x_1 \rangle$, then $\langle y_1, x_1, z \rangle$ is a hex containing a W(2)-quad which is not classical in $\langle y_1, x_1, z \rangle$ by Proposition 1.1 (Q and $\langle y_1, x_1, z \rangle$. It follows that z is classical with respect to $\langle y_1, x_1 \rangle$ and that $d(z, y_1) = d(z, x_1) + d(x_1, y_1) = 4$. This proves the lemma.

From Lemmas 4.9 and 4.10, it readily follows:

Corollary 4.11 Every point of O_f is contained in 4 special W(2)-quads and a unique special grid-quad.

Lemma 4.12 If Q is a special W(2)-quad and if x is a point of O_f not contained in Q, then d(x, Q) = 2 and $\pi_Q(x) \in O_f$.

Proof. If d(x,Q) = 1, then $\pi_Q(x) \notin O_f$ and there exists a point $y \in Q \cap O_f$ at distance 2 from $\pi_Q(x)$. Then d(x,y) = 3, contradicting Lemma 4.2. Hence, d(x,Q) = 2. If $\pi_Q(x) \notin O_f$, then there exists a point $y \in O_f \cap Q$ collinear with $\pi_Q(x)$. Then d(x,y) = 3, again contradicting Lemma 4.2. This proves the lemma.

Lemma 4.13 If Q is a special grid-quad and if x is a point of O_f not contained in Q, then precisely one of the following cases occurs:

(i) there exists a unique point in $Q \cap O_f$ at distance 2 from x and the remaining two points in $Q \cap O_f$ have distance 4 from x;

(ii) all points of $Q \cap O_f$ have distance 4 from x.

Proof. By Lemma 4.2, $d(x, y) \in \{2, 4\}$ for every point y of $Q \cap O_f$. As in Lemma 4.12 one shows that $d(x, Q) \neq 1$. So, $d(x, Q) \geq 2$. Suppose that there exist two points $y_1, y_2 \in Q \cap O_f$ at distance 2 from x. Then $\langle x, Q \rangle$ is a hex and the two special quads $\langle x, y_1 \rangle$ and $\langle x, y_2 \rangle$ are grids since they intersect Q in only points. (Recall Proposition 1.1 and the fact that every W(2)-quad is classical in $\langle x, Q \rangle$.) So, the point x is contained in two special grid-quads which contradicts Corollary 4.11. The lemma now follows.

Lemma 4.14 It holds $|O_f| = 75$.

Proof. Let Q denote a special W(2)-quad, let $Q \cap O_f = \{x_1, \ldots, x_5\}$. For every $i \in \{1, 2, 3, 4, 5\}$, let G_i denote the unique special grid-quad through x_i and let $Q_1^{(i)}, Q_2^{(i)}$ and $Q_3^{(i)}$ denote the three special W(2)-quads through x_i different from Q. By Lemma 4.12, every point of $O_f \setminus Q$ is contained in precisely one of the quads $Q_j^{(i)}, G_i$ $(i \in \{1, 2, 3, 4, 5\}, j \in \{1, 2, 3\})$. It follows that $|O_f| = 5 + 5 \cdot 2 + 15 \cdot 4 = 75$.

From Corollary 4.11 and Lemma 4.14, it readily follows:

Corollary 4.15 There are $\frac{75\cdot4}{5} = 60$ special W(2)-quads and $\frac{75\cdot1}{3} = 25$ special grid-quads.

Now, for every grid-quad G of \mathbb{I}_4 , let \overline{G} denote the unique QUAD of DQ(8, 2) containing G. For every special grid-quad G, let O_G denote the unique ovoid of the QUAD \overline{G} containing $G \cap O_f$. Now, let $\overline{O_f}$ denote the union of all sets O_G , where G is a special grid-quad. Notice that $O_f \subseteq \overline{O_f}$ by Corollary 4.11.

Lemma 4.16 If x_1 and x_2 are points of $\overline{O_f}$, then $d(x_1, x_2)$ is even.

Proof. We distinguish the following cases:

Case I: $x_1, x_2 \in O_f$. The claim has already been shown in Lemma 4.2.

Case II: $(x_1 \in O_f, x_2 \in \overline{O_f} \setminus O_f)$ or $(x_2 \in O_f, x_1 \in \overline{O_f} \setminus O_f)$. By symmetry, we only need to consider the case $x_1 \in O_f, x_2 \in \overline{O_f} \setminus O_f$. Let G denote a special grid-quad such that:

- (i) $x_2 \in Q := \overline{G};$
- (ii) for every $i \in \{1, 2, 3\}$, $d(x_2, a_i) = 2$ where $\{a_1, a_2, a_3\} = G \cap O_f$.

Let O_G denote the unique ovoid of Q containing the points a_1 , a_2 and a_3 . Then $O_G = \{a_1, a_2, a_3, x_2, x'_2\}$ for a certain point x'_2 of Q. We distinguish three cases (see Lemma 4.13):

(a) $x_1 \in \{a_1, a_2, a_3\}$. Then $d(x_1, x_2) = 2$.

- (b) $d(x_1, a_i) = 2$ for a certain $i \in \{1, 2, 3\}$ and $d(x_1, a_j) = 4$ for all $j \in \{1, 2, 3\} \setminus \{i\}$. Then $d(x_1, Q) = 2$ and $\pi_Q(x_1) = a_i$. It follows that $d(x_1, x_2) = 4$.
- (c) $d(x_1, a_i) = 4$ for all $i \in \{1, 2, 3\}$. Then $d(x_1, Q) = 2$ and $d(\pi_Q(x_1), a_i) = 2$ for all $i \in \{1, 2, 3\}$. Hence, either $\pi_Q(x_1) = x_2$ or $\pi_Q(x_1) = x'_2$. In the first case, $d(x_1, x_2) = 2$ and in the latter case $d(x_1, x_2) = 4$.

Case III: $x_1, x_2 \in \overline{O_f} \setminus O_f$.

Let G_1 and G_2 denote two special grid-quads such that:

- (i) $x_i \in Q_i := \overline{G_i}$ for every $i \in \{1, 2\}$;
- (ii) for every $i \in \{1, 2, 3\}$, x_i belongs to the ovoid O_i of Q_i containing $G_i \cap O_f = \{a_1^{(i)}, a_2^{(i)}, a_3^{(i)}\}$.

Put $O_i := \{x_i, x'_i, a_1^{(i)}, a_2^{(i)}, a_3^{(i)}\}$ for every $i \in \{1, 2\}$.

Suppose $d(x_2, Q_1) \in \{0, 2\}$. Since $d(x_2, a_i^{(1)})$ is even for all $i \in \{1, 2, 3\}$ (see Case II), $d(\pi_{Q_1}(x_2), a_i^{(1)}) \in \{0, 2\}$ for all $i \in \{1, 2, 3\}$. Hence, $d(\pi_{Q_1}(x_2), x_1) \in \{0, 2\}$ and $d(x_1, x_2) \in \{0, 2, 4\}$. In a similar way, one shows that $d(x_1, x_2) \in \{0, 2, 4\}$ if $d(x_1, Q_2) \in \{0, 2\}$.

So, suppose $d(x_1, Q_2) = 1$ and $d(x_2, Q_1) = 1$. If $d(x_1, x_2) \in \{2, 4\}$, then we are done. Suppose $d(x_1, x_2) = 1$. Then $d(x_1, a_i^{(2)}) = d(x_1, x_2) + d(x_2, a_i^{(2)})$ is odd for all $i \in \{1, 2, 3\}$, contradicting Case II. So, suppose $d(x_1, x_2) = 3$.

Suppose the quads Q_1 and Q_2 intersect in a line L. The line L contains at most 1 point of $G_2 \cap O_f$. So, without loss of generality, we may suppose that $a_1^{(2)} \notin L$. By cases (I) and (II), every point of O_1 is collinear with $\pi_{Q_1}(a_1^{(2)})$, a contradiction. So, Q_1 and Q_2 are two disjoint QUADS. Now, x_1 and $\pi_{Q_1}(x_2)$ are two points of Q_1 at distance 2 from each other collinear with the respective points $\pi_{Q_2}(x_1)$ and x_2 of Q_2 . It follows that Q_1 and Q_2 are two QUADS at distance 1 from each other.

Now, $d(a_1^{(1)}, a_i^{(2)})$ is even for all $i \in \{1, 2, 3\}$. It follows that $\pi_{Q_2}(a_1^{(1)})$ is the unique point of Q_2 collinear with $a_1^{(2)}$, $a_2^{(2)}$ and $a_3^{(2)}$. Similarly, $\pi_{Q_2}(a_2^{(1)})$ and $\pi_{Q_2}(a_3^{(1)})$ must coincide with the unique point of Q_2 collinear with $a_1^{(2)}$, $a_2^{(2)}$ and $a_3^{(2)}$. From $\pi_{Q_2}(a_1^{(1)}) = \pi_{Q_2}(a_2^{(1)}) = \pi_{Q_2}(a_3^{(1)})$, it follows that $a_1^{(1)} = a_2^{(1)} = a_3^{(1)}$, a contradiction.

Let Ω denote the set of 85 QUADS of DQ(8,2) consisting of all 60 special W(2)-quads and all 25 QUADS \overline{G} , where G is some special grid-quad (see Corollary 4.15).

Lemma 4.17 If $Q \in \Omega$, then $Q \cap \overline{O_f}$ is an ovoid of Q.

Proof. Obviously, this holds if Q is a special W(2)-quad. So, suppose that $Q = \overline{G}$ for some special grid-quad G. Let O denote the unique ovoid of Q containing $G \cap O_f$. Then obviously, $O \subseteq Q \cap \overline{O_f}$. By Lemma 4.16, $Q \cap \overline{O_f}$ cannot contain points outside O.

Lemma 4.18 No two QUADS of Ω intersect in a line.

Proof. Suppose that Q_1 and Q_2 are two QUADS of Ω intersecting in a line L. Let y_1 and y_2 denote the two points of L not contained in $\overline{O_f}$. Let $x_i, i \in \{1, 2\}$, denote a point of $(Q_i \cap \overline{O_f}) \setminus L$ collinear with y_i . Then $d(x_1, x_2) = 3$, contradicting Lemma 4.16.

Corollary 4.19 Every point of $\overline{O_f} \setminus O_f$ is contained in at most five QUADS of Ω .

Proof. This follows from Lemma 4.18 and the fact that there are precisely 15 lines through every point of DQ(8,2).

Lemma 4.20 Let Q denote a QUAD of Ω and let x be a point of $\overline{O_f}$ not contained in Q. Then d(x,Q) = 2 and $\pi_Q(x) \in \overline{O_f}$.

Proof. The proof is similar to the proof of Lemma 4.12.

Lemma 4.21 It holds $|\overline{O_f}| = 85$.

Proof. Let Q denote a special W(2)-quad. Put $Q \cap O_f = \{x_1, x_2, x_3, x_4, x_5\}$. For every $i \in \{1, 2, 3, 4, 5\}$, let $Q_1^{(i)}, Q_2^{(i)}, Q_3^{(i)}, Q_4^{(i)}$ denote the four QUADS of Ω through x_i different from Q (see Corollary 4.11). By Lemma 4.18, the QUADS $Q, Q_1^{(i)}, Q_2^{(i)}, Q_3^{(i)}, Q_4^{(i)}$ partition the set of lines through x_i . By Lemma 4.20, the 20 QUADS $Q_j^{(i)}, i \in \{1, 2, 3, 4, 5\}$ and $j \in \{1, 2, 3, 4\}$, give rise to 80 distinct points of $\overline{O_f}$ not contained in Q. Together with the points of $Q \cap \overline{O_f}$ this gives rise to 85 points of $\overline{O_f}$. We will show that these are all the points of $\overline{O_f}$. Suppose that x is a point of $\overline{O_f}$ which we have not yet counted. Without loss of generality, we may suppose that x_1 is the unique point of Q at distance 2 from x and that the QUAD $Q_1^{(1)}$ intersects $\langle x, x_1 \rangle$ in a line. It is easily seen that there exists a point in $Q_1^{(1)} \cap \overline{O_f}$ at distance 3 from x, which is impossible by Lemma 4.16. So, $|\overline{O_f}| = 85$.

Lemma 4.22 Every point x of $\overline{O_f}$ is contained in precisely five QUADS of Ω . These five QUADS partition the set of lines through x.

Proof. There are 25 QUADS of Ω which are of the form \overline{G} , where G is a special gridquad. Each such quad contains two points of $\overline{O_f} \setminus O_f$. On the other hand, $|\overline{O_f} \setminus O_f| = 10$ and each point of $\overline{O_f} \setminus O_f$ is contained in at most 5 QUADS of Ω by Corollary 4.19. Since $25 \cdot 2 = 10 \cdot 5$, it readily follows that every point of $\overline{O_f} \setminus O_f$ is contained in precisely five QUADS of Ω . By Corollary 4.11, also every point of O_f is contained in five quads of Ω .

By Lemma 4.18, the five QUADS through a point x of $\overline{O_f}$ partition the set of lines through x.

Lemma 4.23 The incidence structure \mathcal{Q} with point set $\overline{O_f}$ and with line set Ω is isomorphic to the symplectic generalized quadrangle W(4).

Proof. We will show that Q is a generalized quadrangle of order 4. The lemma then follows from a well-known result of Payne ([13], [14]) with a gap filled by Tits (see [15]) stating that W(4) is the unique generalized quadrangle of order 4.

By Lemma 4.17, every line of \mathcal{Q} contains five points and by Lemma 4.22, every point of \mathcal{Q} is incident with precisely five lines. From Lemma 4.20, it readily follows that for every line L of \mathcal{Q} and every point x of \mathcal{Q} not incident with L, there exists a unique point on L collinear with x. So, \mathcal{Q} is a generalized quadrangle of order 4.

Corollary 4.24 The set $\overline{O_f}$ is an SDPS-set of DQ(8,2).

Let \overline{f} denote the valuation of DQ(8,2) associated with the SDPS-set $\overline{O_f}$, i.e., $\overline{f}(x) = d(x, \overline{O_f})$ for every point x of DQ(8,2).

Lemma 4.25 For every point x of \mathbb{I}_4 , $f(x) = \overline{f}(x) = d(x, \overline{O_f}) = d(x, O_f)$.

Proof. Let H denote a DQ(6, 2)-hex through x. By properties of SDPS- sets and SDPSvaluations (see Lemmas 8 and 9 of [9]), we have (i) $\overline{f}(x) = d(x, \overline{O_f}) = d(x, \overline{O_f} \cap H)$ and (ii) $H \cap \overline{O_f}$ is an ovoid in a quad of H. Since $H \cap O_f = H \cap \overline{O_f}$, $d(x, O_f) \leq 2$ and hence $f(x) = d(x, O_f)$ by Proposition 2.3 (b). So, we have

$$f(x) = d(x, O_f) \le d(x, O_f \cap H) = d(x, \overline{O_f} \cap H) = \overline{f}(x) = d(x, \overline{O_f}) \le d(x, O_f),$$

from which the lemma readily follows.

Clearly, the set $\overline{O_f}$ is the unique SDPS-set containing O_f , So, by Lemmas 4.1 and 4.25, we have

Corollary 4.26 Let f be a valuation of \mathbb{I}_4 such that O_f contains two points at distance 4 from each other. Then f is induced by a unique valuation f' of DQ(8,2). Moreover, f' is an SDPS-valuation.

Definition. Let x and y be two points of W(4) at distance 2 from each other. Since the pair (x, y) is regular (see Payne and Thas [15] for definitions), $|\{x, y\}^{\perp}| = |\{x, y\}^{\perp \perp}| = 5$. Here, $\{x, y\}^{\perp}$ denotes the set of points of W(4) collinear with x and y, and $\{x, y\}^{\perp \perp}$ denotes the set of points of W(4) collinear with every point of $\{x, y\}^{\perp}$. Let W'(4) denote the incidence structure derived from W(4) by removing all points of $\{x, y\}^{\perp} \cup \{x, y\}^{\perp \perp}$.

Lemma 4.27 It holds $G_f \cong W'(4)$.

Proof. The incidence structure G_f is obtained from $G_{\overline{f}} = \mathcal{Q} \cong W(4)$ by removing all points of $\overline{O_f} \setminus O_f$. Let x_1 denote an arbitrary point of $\overline{O_f} \setminus O_f$, let y_1, y_2, y_3, y_4, y_5 denote the five points of $\overline{O_f} \setminus O_f$ collinear with x_1 (in $G_{\overline{f}}$) and let x_2, x_3, x_4, x_5 denote the remaining points of $\overline{O_f} \setminus O_f$. Since $G_{\overline{f}}$ is a generalized quadrangle, $y_i \not\sim y_j$ for all $i, j \in \{1, \ldots, 5\}$ with $i \neq j$. Since every y_j is collinear with five points of $\overline{O_f} \setminus O_f$, we have $x_i \sim y_j$ for all $i, j \in \{1, \ldots, 5\}$. As before, we then have $x_i \not\sim x_j$ for all $i, j \in \{1, \ldots, 5\}$ with $i \neq j$. The lemma now readily follows.

5 Isometric full embeddings of \mathbb{I}_n into DQ(2n,2) and DH(2n-1,4)

It is well-known that the dual polar space DQ(2n, 2), $n \ge 2$, has an isometric full embedding into the dual polar space DH(2n - 1, 4). In De Bruyn [6], it was shown that such an embedding is unique up to isomorphism. In Section 1, we described an isometric full embedding of \mathbb{I}_n into DQ(2n, 2), which we refer to as the *natural embedding* of \mathbb{I}_n in DQ(2n, 2). Composing both isometric embeddings, we obtain an isometric full embedding of \mathbb{I}_n into the dual polar space DH(2n - 1, 4). The natural embedding of \mathbb{I}_n in DQ(2n, 2)can be completely described in terms of the near 2n-gon \mathbb{I}_n . For this, we need to give a description (in terms of objects of \mathbb{I}_n) of the points and lines of DQ(2n, 2) which are not contained in \mathbb{I}_n . This is realized as follows.

(i) The points of $DQ(2n,2) \setminus \mathbb{I}_n$ are in bijective correspondence with the projective sets of \mathbb{I}_n . If $x \in DQ(2n,2) \setminus \mathbb{I}_n$, then $x^{\perp} \cap \mathbb{I}_n$ is a projective set of \mathbb{I}_n .

(ii) In view of (i), we need to describe the lines of DQ(2n, 2) not contained in \mathbb{I}_n as sets of size 3 whose elements are either points or projective sets of \mathbb{I}_n . The set of lines of DQ(2n, 2) not contained in \mathbb{I}_n are in bijective correspondence with the sets $\{x, P_1, P_2\}$, where x is a point of \mathbb{I}_n and where P_1 and P_2 are the two projective sets through x.

We will now prove Theorem 1.5. This theorem is a consequence of the uniqueness of the isometric full embedding of DQ(2n, 2) into DH(2n - 1, 4) and the following proposition.

Proposition 5.1 Let Δ be one of the dual polar spaces DQ(2n,2) or DH(2n-1,4), $n \geq 2$. If θ is an isometric full embedding of \mathbb{I}_n into Δ , then $\theta = \theta_2 \circ \theta_1$, where θ_1 is the natural embedding of \mathbb{I}_n into DQ(2n,2) and θ_2 is an isometric full embedding of DQ(2n,2) into Δ .

Proof. Obviously, the proposition holds if n = 2. So, we will suppose that $n \ge 3$. We will regard \mathbb{I}_n as a subgeometry of Δ , i.e., we will regard θ as an inclusion map. By Proposition 1.2, every convex subspace A of \mathbb{I}_n is contained in a unique convex subspace \overline{A} of Δ of the same diameter.

Claim 1. For every projective set P of \mathbb{I}_n , there exists a unique point $x_P \in \Delta \setminus \mathbb{I}_n$ such that $x_P^{\perp} \cap \mathbb{I}_n = P$.

PROOF. Let x^* denote an arbitrary point of P and let G_1 and G_2 denote two distinct grid-quads of \mathbb{I}_n through x^* . Then $|G_1 \cap P| = |G_2 \cap P| = 3$ and there exists a unique \mathbb{I}_3 -hex H in \mathbb{I}_n containing G_1 and G_2 . Since \overline{H} is a hex of Δ containing the quads $\overline{G_1}$ and $\overline{G_2}$, $\overline{G_1}$ and $\overline{G_2}$ intersect in a line L^* . Let x_P denote the unique point of $L^* \setminus \{x^*\}$ such that $x_P^{\perp} \cap G_1 = G_1 \cap P$. Then also $x_P^{\perp} \cap G_2 = G_2 \cap P$, since every point of $(G_2 \cap P) \setminus \{x^*\}$ has distance 2 from every point of $(G_1 \cap P) \setminus \{x^*\}$. Let G_3 denote the third grid-quad of H through x^* . By Proposition 2.1, the map $f : H \to \mathbb{N}; y \mapsto d(x_P, y) - 1$ is a valuation of H. Since the quads G_1 and G_2 are special with respect to f, the valuation must be of Fano-type. Hence, also G_3 is special with respect to f. So, $x_P^{\perp} \cap G_3$ is an ovoid of G_3 which necessarily coincides with $G_3 \cap P$, since every point of $(G_3 \cap P) \setminus \{x^*\}$ has distance 2 from any point of $(G_1 \cap P) \setminus \{x^*\}$. Now, suppose G_4 is a grid-quad of \mathbb{I}_n through x^* different from G_1, G_2 and G_3 . Then there exists a convex suboctagon $F \cong \mathbb{I}_4$ in \mathbb{I}_n containing G_1, G_2, G_3 and G_4 . By Proposition 2.1, the map $f': F \to \mathbb{N}; y \mapsto d(x_P, y) - 1$ is a valuation of F having G_1, G_2 and G_3 as special grid-quads. By the classification of the valuations of \mathbb{I}_4 , we know that $O_{f'}$ is a projective set of F. Hence, $x_P^{\perp} \cap G_4$ is an ovoid of G_4 which necessarily coincides with $G_4 \cap P$, since every point of $(G_4 \cap P) \setminus \{x^*\}$ has distance 2 from every point of $(G_1 \cap P) \setminus \{x^*\}$.

By the above, we know that $P \subseteq x_P^{\perp} \cap \mathbb{I}_n$. We will now show that $P = x_P^{\perp} \cap \mathbb{I}_n$. Suppose the contrary. Then there exists a point $u \in (x_P^{\perp} \cap \mathbb{I}_n) \setminus P$. Since $d(x^*, u) = 2$, there exists a quad Q in \mathbb{I}_n containing x^* and u. Then $x_P^{\perp} \cap Q$ is an ovoid of Q. Now, the grid-quads of \mathbb{I}_n through x^* determine a partition of the lines of \mathbb{I}_n through x^* . Hence, there exists a grid-quad G of \mathbb{I}_n through x^* which intersects Q in a line. Since $x_P^{\perp} \cap G$ is an ovoid of Gand $Q \cap x_P^{\perp}$ is an ovoid of Q, it is easily seen that there exists a point $v_1 \in Q \cap x_P^{\perp}$ and a point $v_2 \in G \cap x_P^{\perp}$ at distance 3 from each other. But this is impossible, since every two points of $x_P^{\perp} \cap \mathbb{I}_n$ lie at distance 2 from each other.

Hence, $P = x_P^{\perp} \cap \mathbb{I}_n$ as claimed.

Claim 2. Let x be a point of \mathbb{I}_n and let P_1 and P_2 denote the two projective sets through x. Then $\{x, x_{P_1}, x_{P_2}\}$ is a line of Δ .

PROOF. Let y denote the point of the line xx_{P_1} different from x and x_{P_1} . For every grid-quad G of \mathbb{I}_n through $x, x_{P_1}^{\perp} \cap G$ and $y^{\perp} \cap G$ are the two ovoids of G through x. Since $x_{P_1}^{\perp} \cap G = P_1 \cap G$, we have $y^{\perp} \cap G = P_2 \cap G$. Since this holds for every grid-quad G of \mathbb{I}_n through $x, x_{P_2} = y$. This proves the claim.

Now, consider the following substructure Δ' of Δ . The points of Δ' are of two types: (i) the points of \mathbb{I}_n ; (ii) the points x_P , where P is a projective set of \mathbb{I}_n . The lines of Δ' are of two types: (i) the lines of \mathbb{I}_n , (ii) the lines $\{x, x_{P_1}, x_{P_2}\}$, where x is a point of \mathbb{I}_n and where P_1 and P_2 are the two projective sets of \mathbb{I}_n through x.

By the discussion preceding this proposition, the incidence structure Δ' is isomorphic to DQ(2n, 2). Moreover, the embedding of \mathbb{I}_n in Δ' is isomorphic to the natural embedding of \mathbb{I}_n in DQ(2n, 2). It remains to show that Δ' is isometrically embedded in Δ . By the main result of Huang [12], it suffices to show that there exist two opposite points x_1 and x_2 in Δ' which are also opposite in the geometry Δ . But this holds as we can take for x_1 and x_2 two opposite points in \mathbb{I}_n . Then x_1 and x_2 are also opposite points in Δ as \mathbb{I}_n is isometrically embedded in Δ .

We now take a closer look at the case n = 4. Suppose $F_1 := \mathbb{I}_4$ is fully and isometrically embedded in $F_2 := DQ(8, 2)$ which itself is also fully and isometrically embedded in $F_3 := DH(7, 4)$. By Proposition 2.1, every point x of F_3 induces a valuation $f_x : F_1 \to$ $\mathbb{N}; y \mapsto d(x, y) - d(x, F_1)$ of F_1 . So, we can distinguish the points of F_3 by means of the type of valuation of F_1 they induce. From this point of view, there are five possible types of points $x \in F_3$:

(I) O_{f_x} is a singleton, or equivalently, f_x is a classical valuation;

- (II) O_{f_x} is a projective set of F_1 ;
- (III) O_{f_x} is an ovoid in a W(2)-quad of F_1 ;
- (IV) O_{f_x} is an ovoid in a grid-quad of F_1 ;
- (V) O_{f_x} is a set of 75 points.

We can make the following conclusions (recall Proposition 2.2 and Lemma 4.1):

The points of type (I) are precisely the points of F_1 . There are precisely 2025 such points.

The points of type (II) are the points of $F_2 \setminus F_1$. There are precisely 270 such points.

The points of type (III) belong to $\Gamma_1(F_2) \cap \Gamma_1(F_1)$. If x is a point of type (III), then $\Gamma_1(x) \cap F_2 = \Gamma_1(x) \cap F_1$ is an ovoid in a W(2)-quad of F_2 which is also a quad of F_1 . There are 45360 points of type (III).

The points of type (IV) belong to $\Gamma_1(F_2) \cap \Gamma_1(F_1)$. If x is a point of type (IV), then $\Gamma_1(x) \cap F_2$ is an ovoid in a W(2)-quad of F_2 and $\Gamma_1(x) \cap F_1$ is an ovoid in a grid-quad of F_1 . There are 18900 points of type (IV).

The points of type (V) belong to $\Gamma_2(F_2) \cap \Gamma_2(F_1)$. If x is a point of type (V), then $\Gamma_2(x) \cap F_2$ is a set of 85 points which carries the structure of a generalized quadrangle of order 4, and $\Gamma_2(x) \cap F_1$ is a set of 75 points which carries the structure of a generalized quadrangle of order 4 in which two orthogonal hyperbolic lines have been removed. There are 48384 points of type (V).

References

- A. E. Brouwer, A. M. Cohen, J. I. Hall and H. A. Wilbrink. Near polygons and Fischer spaces. *Geom. Dedicata* 49 (1994), 349–368.
- [2] A. E. Brouwer and H. A. Wilbrink. The structure of near polygons with quads. *Geom. Dedicata* 14 (1983), 145–176.
- [3] P. J. Cameron. Dual polar spaces. *Geom. Dedicata* 12 (1982), 75–86.
- [4] B. De Bruyn. *Near Polygons.* Frontiers in Mathematics 6, Birkhäuser, 2006.
- [5] B. De Bruyn. A characterization of the SDPS- hyperplanes of dual polar spaces. *European J. Combin.*, to appear.
- [6] B. De Bruyn. Isometric full embeddings of DW(2n-1,q) into $DH(2n-1,q^2)$. preprint.
- [7] B. De Bruyn. The valuations of the near 2n-gon \mathbb{I}_n . preprint.
- [8] B. De Bruyn and P. Vandecasteele. Valuations of near polygons. *Glasg. Math. J.* 47 (2005), 347–361.

- B. De Bruyn and P. Vandecasteele. Valuations and hyperplanes of dual polar spaces. J. Combin. Theory Ser. A 112 (2005), 194–211.
- [10] B. De Bruyn and P. Vandecasteele. The distance-2- sets of the slim dense near hexagons. Ann. Combin., to appear.
- [11] B. De Bruyn and P. Vandecasteele. The classification of the slim dense near octagons. European J. Combin., to appear.
- [12] W.-l. Huang. Adjacency preserving mappings between point- line geometries. *Inno*vations in Incidence Geometry, to appear.
- [13] S. E. Payne. Generalized quadrangles of order 4, I. J. Combin. Theory 22 (1977), 267–279.
- [14] S. E. Payne. Generalized quadrangles of order 4, II. J. Combin. Theory 22 (1977), 280–288.
- [15] S. E. Payne and J. A. Thas. *Finite Generalized Quadrangles*. Research Notes in Mathematics 110. Pitman, 1984.
- [16] H. Pralle and S. V. Shpectorov. The ovoidal hyperplanes of a dual polar space of rank 4. *Adv. Geom*, to appear.
- [17] E. E. Shult and A. Yanushka. Near n-gons and line systems. Geom. Dedicata 9 (1980), 1–72.