
Characterization of [1, k]-Bar Visibility Trees

Guantao Chen 1∗, Joan P. Hutchinson2, Ken Keating3, Jian Shen4

1 Georgia State University, Atlanta, GA 30303

gchen@gsu.edu

2 Macalester College, St. Paul, MN 55105

hutchinson@macalester.edu

3 Emory University, Atlanta, GA 30322

kekeati@emory.edu

4 Texas State University, San Marcos, TX 78666

js48@txstate.edu

Submitted: May 27, 2006; Accepted: Oct 19, 2006; Published: Oct 27, 2006

Mathematics Subject Classification: 05E25

Abstract

A unit bar-visibility graph is a graph whose vertices can be represented in the
plane by disjoint horizontal unit-length bars such that two vertices are adjacent
if and only if there is a unobstructed, non-degenerate, vertical band of visibility
between the corresponding bars. We generalize unit bar-visibility graphs to [1, k]-
bar-visibility graphs by allowing the lengths of the bars to be between 1/k and
1. We completely characterize these graphs for trees. We establish an algorithm
with complexity O(kn) to determine whether a tree with n vertices has a [1, k]-
bar-visibility representation. In the course of developing the algorithm, we study a
special case of the knapsack problem: Partitioning a set of positive integers into two
sets with sums as equal as possible. We give a necessary and sufficient condition for
the existence of such a partition.

1 Introduction

A bar-visibility graph, or BVG for short, is a graph whose vertices can be represented in
the plane by disjoint horizontal bars such that two vertices are adjacent if and only if there

∗Partially supported by NSA grant H98230-04-1-0300 and NSF grant DMS-0500951

the electronic journal of combinatorics 13 (2006), #R90 1

is an unobstructed, non-degenerate, vertical band of visibility between the corresponding
bars. The study of BVGs is motivated by VLSI design. Several layout compaction
strategies for VLSI are based on the concept of visibility between parallel segments. Two
parallel segments are visible if they can be joined by a segment orthogonal to them without
intersecting any other segment. This precisely matches the definition of a BVG.

Wismath [11] and Tamassia-Tollis [9] independently characterize BVGs as planar graphs
having a planar embedding with all cutpoints on a common face. A BVG is called a unit

bar visibility graph, or UBVG for short, if all horizontal bars have length 1. A caterpillar is
a tree in which a single path (the spine) is incident to (or contains) every edge. Dean and
Veytsel [6] show that a tree T is a UBVG if and only if T is a subdivision of a caterpillar
with maximum degree three. Dean, Gethner, and Hutchinson [4] give some combinato-
rial and geometric characterizations of the triangulated polygons (2-connected maximal
outer-planar graphs) that are UBVGs. Bose-Dean-Hutchinson-Shermer [3] and Dean-
Hutchinson [5] study the rectangular visibility graphs where the adjacency of rectangles
is determined by horizontal and vertical visibility.

A BVG is called a [1, k]-Bar Visibility Graph, or kBVG for short, if all bar lengths are
between 1/k and 1. Equivalently, the ratio of the length of the longest bar to the length
of the shortest bar is at most k. We characterize all [1, k]-Bar Visibility trees, or kBVTs
for short, and establish an O(kn) algorithm to determine whether a tree with n vertices
is a kBVT.

We follow the notations in [10]. All graphs considered here are simple graphs. Let G be a
graph. A path P of G is maximal if there is no path Q containing P as a proper subpath.
For any v ∈ V (G), let N(v) denote the set of neighbors of v and d(v) := |N(v)| be the
degree of v. A rooted tree is a tree with a specific vertex as its root. Let T be a rooted
tree and v0 ∈ V (T) be the root. A vertex v ∈ V (T)−{v0} is called a leaf if d(v) = 1. Let
L denote the set of all leaves of T .

2 Characterization of kBVT

We begin by generalizing the definition of a caterpillar. Let k be a nonnegative integer.
A tree T is called a generalized k-caterpillar if there exists a spine P such that each
component of T − V (P) is a rooted tree with at most k leaves, where the root is the
vertex adjacent to the spine. The set of all leaves of the trees in T − V (P) is denoted
by L(P). Note that L(P) ∩ V (P) = ∅. According to the definition of k-caterpillar, a
generalized 0-caterpillar is an ordinary caterpillar and in this case L(P) = ∅; a generalized
1-caterpillar is a subdivision of a caterpillar. An example of a generalized 2-caterpillar is
shown in Figure 1.

Let T be a tree with the spine P . Let {X, Y } be a partition of L(P), i.e. X ∪ Y = L(P)
and X ∩ Y = ∅. A partition {X, Y } of L(P) is called a proper partition with respect to

P if, for any x ∈ X and any y ∈ Y , x and y are in different components of T − V (P). A

the electronic journal of combinatorics 13 (2006), #R90 2

Figure 1: A generalized 2-caterpillar

proper partition of L(P) is shown in Figure 2.

PSfrag replacements

X

Y

P

Figure 2: A proper partition of L

A proper partition L(P) = X ∪ Y with respect to P is called strictly k-bounded if |X ∩
V (Ti)| ≤ k and |Y ∩ V (Ti)| ≤ k − 1 for each component Ti of T − E(P). Note that a
tree Ti in T − E(P) contains several trees in T − V (P) and a vertex on P . So if L(P)
has a strictly k-bounded partition with respect to a path P of T , then T is a generalized
k-caterpillar with the spine P and the converse may not hold. Figure 3 shows that the
proper partition of Figure 2 is strictly 3-bounded.

PSfrag replacements

X

Y

Ti

|X ∩ V (Ti)| ≤ 3

|Y ∩ V (Ti)| ≤ 2

Figure 3: A strictly 3-bounded partition

Theorem. (2.1) A tree T is a kBVT if and only if there exists a spine P such that L(P)
has a strictly k-bounded partition with respect to P .

Proof. “=⇒” Let T be a kBVT and I be the set of bars representing the vertices of
T . Let P := I1I2 · · · Im be a maximal path in T , where I1 and Im are the bars with the

the electronic journal of combinatorics 13 (2006), #R90 3

left-most endpoint and the bar with the right most endpoint, respectively. Note that there
may be more than one bar with the left-most endpoint and more than one bar with the
right most endpoint. Let Ii = [ai, bi], where ai and bi denote the left and right endpoints
of Ii, respectively. Clearly, ai < bi−1 ≤ bi and ai ≤ ai+1 < bi for each 1 < i < m. Let Ti,
1 ≤ i ≤ m, be the component of T − E(P) containing Ii.

For each i = 1, . . . , m, we view Ti as a rooted tree with root Ii. If one of bars Ii−1 or Ii+1

is below bar Ii, let Xi be the set of leaves of Ti above Ii and Yi the set of leaves of Ti

below Ii. Otherwise, let Xi be the set of leaves of Ti above Ii and Yi be the leaves of Ti

below Ii. Then no bars of Xi are visible by each other or by bars Ii−1 or Ii+1; or else T
would contain a cycle. Since bar Ii has length at most 1 and each bar of Xi has length
at least 1/k, we have |Xi| ≤ k. By our definition of Yi, the total length of all bars of Yi

is at most bi − bi−1 < 1 and thus |Yi| ≤ k − 1.

Let X =
⋃

1≤i≤m Xi and Y =
⋃

1≤i≤m Yi. Then X∪Y forms a strictly k-bounded partition

of L(P) with respect to P .

“⇐=” Suppose {X, Y } is a strictly k-bounded partition with respect to a path P =
v1v2 . . . vm. For each i, 1 ≤ i ≤ m, we define the corresponding bar for vi as Ii =
[i−1− (i−1)ε, i− (i−1)ε], where ε is a positive real number much smaller than 1/m. We
arrange the bars I1, I2, . . ., Im such that I1, I3, I5, . . . are on the horizontal line y = 1/2
and I2, I4, I6, . . . are on the horizontal line y = −1/2.

Let Ti be the component of T−E(P) containing vi. Let Xi = X∩V (Ti) and Yi = Y ∩V (Ti).
We establish an algorithm to define the corresponding bars for all vertices in each Ti.
Without loss of generality, we may assume that i is odd and |Xi| ≥ |Yi|. Since Ti is a
tree, Ti has a plane presentation such that no two vertices are in the same vertical line
and all vertices of Xi are above vi and all vertices of Yi are below vi. Furthermore, we
assume that in the plane representation the vertices x1, x2, . . . of Xi are ordered from left
to right and the vertices y1, y2, . . . of Yi are ordered from left to right too. Let Ix1

, Ix2
,

. . . be disjoint bars each of length 1/k listed from left to right above Ii.

For each xj let Pj = P [vi, xj] be the unique path of Ti from vi to xj, and similarly for
each yj let Qj = P [vi, yj]. Let Ti(X) =

⋃

j P [vi, xj] and Ti(Y) =
⋃

j Q[vi, yj]. Then each
vertex of Ti is either in Ti(X) or Ti(Y). For each w ∈ Ti(X), by the plane representation
of Ti, the j’s such that w ∈ Pj form a sequence of integers s, s + 1, . . ., s + t. Then,
define Iw to be the bar covering from the left end point of Is to the right end point of It.
Further, we arrange the heights of the bars according to the distance between the vertex
and vi such that if dist(vi, w) = `, then Iw is placed on the line y = `. Similarly, we can
define the corresponding bars for all vertices in Ti(Y). Thus we obtain those bars whose
bar-visibility graph is T . 2

Corollary. (2.2) The maximum degree of a kBVT is at most 2k + 1.

Proof. By Theorem (2.1), the leaf set of a kBVT has a strictly k-bounded partition
with respect to a path (the spine). Thus each vertex on the spine has degree at most

the electronic journal of combinatorics 13 (2006), #R90 4

2 + k + (k − 1) = 2k + 1 and each vertex not on the spine has degree at most k + 1. 2

3 Evenly partitioning a set of integers

In this section, we establish some foundation for an algorithm to realize kBVTs. A
key part of the algorithm depends on a special case of the following knapsack problem.
Suppose there is a knapsack of capacity c > 0 and N items. Each item has a value vi > 0
and a weight wi > 0. Find the selection of items (δi = 1 if selected, and δi = 0 otherwise)
that fits

N
∑

i=1

δi · wi ≤ c, and the total value

N
∑

i=1

δi · vi is maximized.

This problem is also named as the 0-1 or binary knapsack (each item may be taken
(1) or not (0)), in contrast to the fractional knapsack problem. It is also called the
bounded knapsack (BKP) because there are a limited number of items, in contrast to
the unbounded knapsack problem. The decision problem is, given some items of different
values and weights of a knapsack, to determine whether there is a subset with total value
exceeding a certain number? The decision problem is NP-complete. For literature on the
Knapsack problem, we referrer to Silvano Martello and Paolo Toth [8].

A special case of the Knapsack problem is called the minimum partition problem. Let
S be a set of positive integers. The minimum partition problem is to find a partition of
S = A∪B such that

∣

∣

∑

ai∈A ai −
∑

ai∈B ai

∣

∣ is minimum. The minimum partition problem
is NP-complete. Let P be an optimization problem, and let A be an approximation
algorithm for P . The domination ratio domr(A, n) is the maximum real q such that
the solution x(I) obtained by A for any instance I of P of size n is not worse than at
least a fraction q of the feasible solutions of I. Recently, Alon, Gutin, and Krivelevich [2]
found a deterministic, polynomial-time algorithm for the problem whose domination ratio
is 1 − o(1), improving an earlier algorithm [7] with a domination ratio of 1/2. We are
interested in the following partition: A partition of S = A ∪ B is called k-balanced if
∑

ai∈A ai ≤ k and
∑

ai∈B ai ≤ k − 1. A key part of our algorithm for the recognition of
kBVTs in Section 4 depends on finding a k-balanced partition of S. Also the problem
may be interesting in its own right.

Question (3.1) Let S = {a1, a2, . . . , ad} be a set of positive integers such that
∑

1≤i≤d ai ≤ 2k − 1. When does S have a k-balanced partition?

One may assume in Question (3.1) that
∑

ai∈S ai = 2k − 1, since otherwise one can add
2k − 1 − s elements of 1’s. So we consider the following equivalent question.

Question (3.2) Let S = {a1, a2, . . . , ad} be a set of positive integers with sum equal to
s. Is there an efficient algorithm to determine whether S can be partitioned into two sets
with sums as equal as possible; that is, to determine whether S has a partition A ∪ B

the electronic journal of combinatorics 13 (2006), #R90 5

such that the sum of all integers in A is ds/2e (and thus the sum of all integers in B is
bs/2c)?

Let C[i, S] denote the logical statement that S contains a subset A such that the sum of all
elements of A is i. To determine the truth value of C[i, S] for a general i is NP-complete
in terms of d. The following algorithm with complexity O(dk) for finding the truth values
of all C[i, S], 1 ≤ i ≤ k, is suggested in [1]. (This is not surprising since k may be as big
as 2d.)

Algorithm 1.

Input: A positive integer i and a set S = {a1, a2, · · · , ad} of positive integers.

Output: “True” if C[i, S] is true, and “False” otherwise.

Initialization: A = ∅, C[0, A] = true, C[i, A] = false for all i ≤ k.

For j = 1 . . . d
For i = 1 . . . k

C[i, A ∪ {aj}] := C[i, A] ∨ C[i − aj, A]
A := A ∪ {aj}

% A ∪ {aj} has a subset with sum i if and only if A has a subset with sum either i or
i − aj. Define C[i − aj, A] = false if i − aj < 0.

Now we give a necessary and sufficient condition to determine whether S can be parti-
tioned into two sets with sums as equal as possible. Define S1 = {a1, . . . , ad−2, ad−1 + ad}
and S2 = {a1, . . . , ad−2, |ad−1 − ad|}.

Lemma. (3.3) A set S = {a1, a2, . . . , ad} can be partitioned into two sets with sums as
equal as possible if and only if at least one of S1 and S2 can be partitioned into two sets
with sums as equal as possible.

Proof. Suppose S can be partitioned into two sets with sums as equal as possible. Then
ad−1 and ad are in the same set of the partition if and only if S1 can be partitioned into two
sets with sums as equal as possible; and ad−1 and ad are in different sets of the partition
if and only if S2 can be partitioned into two sets with sums as equal as possible. 2

The following condition is suggested by the sequence: 2i, i = 0, 1, . . . , d.

Lemma. (3.4) Suppose the elements of S are in non-descending order: a1 ≤ a2 ≤ . . . ≤
ad. Suppose

ai ≤ 1 +

i−1
∑

j=1

aj for all i, 1 ≤ i ≤ d.

Then S can be partitioned into two sets with sums as equal as possible. Furthermore, an
algorithm with complexity O(d) exists for partitioning S into two sets with sums as equal
as possible.

the electronic journal of combinatorics 13 (2006), #R90 6

Proof. We prove by induction on d. If d = 1, then a1 ≤ 1 and the lemma is trivial.
Now suppose d ≥ 2 and the lemma holds for d − 1. We re-order the elements of S2:
a1 ≤ a2 ≤ . . . ≤ ak ≤ ad − ad−1 ≤ ak+1 ≤ . . . ≤ ad−2, where 0 ≤ k ≤ d − 2. By Lemma
(3.3), it suffices to show that S2 satisfies the inequalities in Lemma (3.4). Since S satisfies
these inequalities, one only needs to verify

ad − ad−1 ≤

{

1 +
∑d−2

j=1 aj = 1 +
∑k

j=1 aj if k = d − 2,

ak+1 ≤ 1 +
∑k

j=1 aj if k < d − 2.

The above proof also suggests an algorithm with complexity O(d) to partition S into two
sets with sums as equal as possible. 2

A set S is called good if (after reordering if necessarily) the elements of S satisfy the
inequality conditions in Lemma (3.4). A set S is called potentially good if either S itself
is good or S1 is potentially good or S2 is potentially good.

Theorem. (3.5) S can be partitioned into two sets with sums as equal as possible if and
only if S is potentially good.

Proof. “⇐=” (Use induction on d.) If S is good, the theorem follows from Lemma (3.4).
If either S1 or S2 is potentially good, then by the induction hypothesis, either S1 or S2

can be partitioned into two sets with sums as equally as possible. Thus, by Lemma (3.3),
S can be partitioned into two sets with sums as equal as possible.

“=⇒” (Use induction on d.) Suppose S can partitioned into two sets with sums as equal
as possible into A, B. If ad−1 and ad are in the same set, then S1 can be partitioned into
two sets with sums as equal as possible. By the induction hypothesis, S1 is potentially
good. Similarly, if ad−1 and ad are in different sets, then S2 is potentially good. Thus S
is potentially good. 2

Theorem (3.5) does not help much in general since one needs to check O(2d−1) sets in the
worst case to determine whether S is potentially good. Nevertheless, it might be helpful
for the “average case”, especially when S contains “many” elements.

Define S(1) = {S1, S2} and S(t) = S
(t−1)
1 ∪ S

(t−1)
2 for t ≥ 2. We propose the following two

questions.

Question (3.6) Suppose a1 ≤ a2 ≤ . . . ≤ ad = N . Find the average number, denoted
t(d, N), such that S(t(d,N)) has a good set if S is potentially good.

Question (3.7) Suppose a1 ≤ a2 ≤ . . . ≤ ad = N . Also suppose d is “very big” (for
example, say, d ≥ N 1−ε for some ε > 0). Does there exist a function s(d, N) such that
S(s(d,N)) has a good set for almost all potentially good sets S?

If the answer to Question (3.7) is “yes”, then we can have an algorithm with complexity
O(2s(d,N)) to solve Question (3.1) for almost all S when d is “very big”.

the electronic journal of combinatorics 13 (2006), #R90 7

4 Algorithm for the recognition of kBVT

In this section we present an algorithm to determine whether a tree can be represented
as a kBVT. We start with some lemmas.

Lemma. (4.1) Let 1 ≤ a1 ≤ . . . ≤ ad. Then there is a partition of [d] = A∪B such that

∣

∣

∣

∣

∣

∑

i∈A

ai −
∑

i∈B

ai

∣

∣

∣

∣

∣

≤ max{ad − a1, a1}.

where [d] := {1, 2, · · · , d},

Proof. We use the following algorithm to partition [d] into A and B. We first initialize
A = B = ∅. Then we add i = d, d − 1, . . . , 1 to either A or B one by one as follows: If
∑

j∈A aj ≤
∑

j∈B aj, let A := A ∪ {i}; otherwise let B := B ∪ {i}.

We prove the lemma by induction on d. Obviously, the lemma holds for d = 1. Now
suppose d ≥ 2. Let A′ = A − {1} and B′ = B − {1}. Applying induction hypothesis to
the d − 1 numbers a2, . . . , ad, we have

∣

∣

∣

∣

∣

∑

i∈A′

ai −
∑

i∈B′

ai

∣

∣

∣

∣

∣

≤ max{ad − a2, a2}.

By the above algorithm, 1 is added to either A or B whichever has a smaller sum, we
have

∣

∣

∣

∣

∣

∑

i∈A

ai −
∑

i∈B

ai

∣

∣

∣

∣

∣

≤ max

{
∣

∣

∣

∣

∣

∑

i∈A′

ai −
∑

i∈B′

ai

∣

∣

∣

∣

∣

− a1, a1

}

≤ max{ad − a2 − a1, a2 − a1, a1} ≤ max{ad − a1, a1}.
2

Corollary. (4.2) Let 1 ≤ a1 ≤ . . . ≤ ad with
∑

ai ≤ 2k. Then {ai : 1 ≤ i ≤ d − 1} has
a k-balanced partition.

Proof. By lemma (4.1), there is a partition of [d − 1] = A ∪ B with

∣

∣

∣

∣

∣

∑

i∈A

ai −
∑

i∈B

ai

∣

∣

∣

∣

∣

≤ max{ad−1 − a1, a1} ≤ ad

and
∑

i∈A

ai +
∑

i∈B

ai ≤ 2k − ad.

Thus max{
∑

i∈A ai,
∑

i∈B ai} ≤ k and min{
∑

i∈A ai,
∑

i∈B ai} ≤ k − 1. 2

the electronic journal of combinatorics 13 (2006), #R90 8

Lemma. (4.3) Suppose the elements of S are in non-descending order: a1 ≤ a2 ≤ . . . ≤
ad. Suppose S − {aj} has a k-balanced partition for some k, 1 ≤ k ≤ d. Then S − {ad}
has a k-balanced partition.

Proof. Suppose [d] − {j} has a partition A ∪ B such that

∑

i∈A

ai ≤ k and
∑

i∈B

ai ≤ k − 1.

If d ∈ A, let A′ := A ∪ {aj} − {ad} and B′ := B. Otherwise, let A′ := A and B′ =
B ∪ {aj} − {ad}. Then,

∑

i∈A′

ai ≤
∑

i∈A

ai ≤ k and
∑

i∈B′

ai ≤
∑

i∈B

ai ≤ k − 1.
2

Let T be a tree with ` leaves. For each vertex v ∈ N(u), let l(u, v) be the number of leaves
w of T such that either w = v or v is on the unique path connecting u and w; that is, l(u, v)
is the number of leaves in the branch containing v of T rooted at u. Thus if (u, v) ∈ E,
then l(u, v) + l(v, u) = `. Let {l(u, v) : v ∈ N(u)} be ordered l1(u) ≥ l2(u) ≥ . . . ≥ ld(u),
where d = d(u) is the degree of u. Obviously, if T is a kBV T and `− l1(u) ≥ k + 1, then
u must be on the spine of T .

Lemma. (4.4) Let T be a tree with ` leaves. If ` ≤ 2k, then T is a kBVT; If ` ≥ 2k +1,
then there exists some vertex u with ` − l1(u) ≥ k + 1.

Proof. We first contract all vertices of degree 2; that is, for each u with d(u) = 2, we
delete u and connect the two neighbors of u by an edge. So, we may assume all non-leaves
of T have degrees at least 3. The lemma is trivial if T is a star. Now suppose T is not a star.
Among all edges (u, v) with u, v being non-leaves, choose one so that max{l(u, v), l(v, u)}
reaches minimum. Without loss of generality, let’s assume l(u, v) ≤ l(v, u).

Claim 1: l(u, v) = l1(u) = max{l(u, w) : w ∈ N(u)}.
Or else, suppose l(u, w) > l(u, v) for some w ∈ N(u). Let l(u, v) = A, l(u, w) = B, and
∑

j∈N(u)\{v,w} l(u, j) = C. By our assumption, we have A = l(u, v) ≤ l(v, u) = B+C.Since

max{l(u, v), l(v, u)} ≤ max{l(u, w), l(w, u)}, we have B + C ≤ max{B, A + C}. This
implies that B + C ≤ A + C, since B + C > B. Thus, B ≤ A a contradiction.

If ` ≥ 2k+1, by Claim 1, `−l1(u) = `−l(u, v) = l(v, u) ≥ d(l(v, u)+l(u, v))/2e = d`/2e ≥
k+1. Now suppose ` ≤ 2k. Since

∑

j∈N(u) l(u, j) = ` ≤ 2k, by Claim 1 and Corollary (4.2),

{l(u, j) : j ∈ N(u) \ v} has a k-balanced partition. Also {l(v, j) : j ∈ N(v) \ u} has a
k-balanced partition since

∑

j∈N(v)\u l(v, j) = l(u, v) ≤ (l(u, v) + l(v, u))/2 ≤ k. Thus T

is a representation of a kBVT with the edge (u, v) as its spine. 2

In order to establish an efficient algorithm to locate the u such that ` − `1(u) ≥ k + 1,
we impose a weight on each leave of T . Let L(T) denote the set of leaves of T and

the electronic journal of combinatorics 13 (2006), #R90 9

ω : L(T) 7→ N
+. Initially, we assume ω = 1 if no weight function is mentioned. The

following algorithm calculates l(u, v) for all uv ∈ E(T) with complexity of O(n) for any
tree T with n vertices.

Algorithm 2.

Input: A tree T with n vertices and a weight function ω on L(T).

Output: `(u, v) for all pairs of adjacent vertices u and v.

1. Using the Breadth-first Search, BFS, to form a sequence of nested subtrees
T0 = T ⊃ T1 ⊃ · · · ⊃ Tm such that Tm is a star and Ti−1 − Ti is a set of isolated
vertices adjacent to a common vertex vi ∈ V (Ti) and vi is a leaf of Ti for each
i = 1, . . . , m. Define ω0 = ω and for i ≥ 1

ωi(v) =

{

ωi−1(v) if v 6= vi
∑

w∈V (Ti−1−Ti)
ωi−1(w) if v = vi

% The complexity of this step is O(n)

2. Let u0 be the center of the star Tm and let ` =
∑

v∈L(T) ω(v). Set

l(u0, v) = ωm(v), and

l(v, u0) = ` − ωm(v).

% The complexity of this step is bounded by 3|V (Tm)|.

3. For each i < m let

l(u, v) := l(u, v) for all u, v /∈ V (Ti − Ti+1);

l(vi+1, v) := ωi(v) for each v ∈ V (Ti − Ti+1);

l(v, vi+1) := l − ωi(v)for each v ∈ V (Ti − Ti+1).

% The complexity of this step is bounded by 3
∑m−1

i=0 |V (Ti)−V (Ti+1)|. So the total
complexity is O(n).

By Lemma (4.4), we may suppose T has at least 2k +1 leaves for the following algorithm
to determine whether a given tree is a kBVT.

Algorithm 3.

Input: An integer k ≥ 1 and a tree T with n vertices and ` leaves, where ` ≥ 2k + 1.

Output: “True” if T has a kBVT representation, and “False” otherwise.

1. Contract all vertices of T with degree 2.
% The complexity of this step is O(n).

the electronic journal of combinatorics 13 (2006), #R90 10

2. Find a vertex u such that ` − l1(u) ≥ k + 1.
% By Lemma (4.4), such a vertex does exist. By Algorithm 2, the complexity of
this step is O(n).

3. Initialize the spine: Let P be formed by the vertex u found in Step 2.
% Recall that any vertex u with the condition ` − l1(u) ≥ k + 1 must be on the
spine if T is a kBVT.

4. If P contains a single vertex u and if l(u, i) ≥ k + 1 for some i ∈ N(u), extend P
to iu.
% Such a vertex i must be on the spine if T is a kBVT.

5. Suppose the current spine P is p1p2 · · · pt. Define

N0(p1) =

{

N(p1) if t = 1,
N(p1) \ p2 if t ≥ 2.

% N0(p1) contains all neighbors of p1 outside of P .

• Case 1: N0(p1) = ∅. Then the extension at p1 is complete.

• Case 2: l(p1, i) ≥ k + 1 holds for at least two i ∈ N 0(p1). Then output False.
% T is not a generalized k-caterpillar and thus is not a kBVT.

• Case 3: N0(p1) 6= ∅ and l(p1, i) ≥ k + 1 holds for at most one i ∈ N 0(p1).
Choose p0 ∈ N0(p1) with l(p1, p0) = max{l(p1, i) : i ∈ N0(p1)} and check if
{l(p1, i) : i ∈ N0(p1) \ p0} has a k-balanced partition. If no, output False;
otherwise extend P to p0p1p2 · · ·pt. Return to Step 5.
% By Algorithm 1, the complexity of this case is O (k · |N 0(p1)|) = O(k ·d(p1)).
% If {l(p1, i); i ∈ N0(p1) \ p0} does not have a k-balanced partition, then by
Lemma (4.3), no set of {l(p1, i) : i ∈ N0(p1) \ i0} has a k-balanced partition
for any i0 ∈ N0(p1), and thus T is not a kBVT. Now suppose {l(p1, i); i ∈
N0(p1) \ p0} has a k-balanced partition. Note that p0 is the only possible
vertex i such that i ∈ N 0(p1) and l(p1, i) ≥ k + 1. If l(p1, p0) ≥ k + 1, then p0

must be on the spine and thus P is forced to be extended to p0 from p1. On
the other hand, if l(p1, p0) ≤ k, although the extension of P at p1 might not be
unique, we choose to extend P to p0. This does not cause any future problem
since there is no more need to extend P at p0 when l(p1, p0) ≤ k.

6. Similar to Step 5, extend P at the other endpoint till the extension is complete.

7. Output True

Theorem. (4.5) One can determine with complexity O(kn) whether a tree T with n
vertices has a kBVT representation.

the electronic journal of combinatorics 13 (2006), #R90 11

Proof. If T has ` leaves with ` ≤ 2k, by Lemma (4.4), T can be represented as a kBVT
with complexity O(n). Now suppose ` ≥ 2k + 1 so that one can apply Algorithm 3 to
T . Let p1p2 · · ·pt be the spine determined by Algorithm 3. The complexity of Case 3 in
Step 5 is O(k · d(pi)) when extending the spine at each vertex pi, and the complexity of
all other cases and steps altogether is O(n). Thus the complexity of the algorithm is

t
∑

i=1

O(k · d(pi)) + O(n) = O

(

k
t
∑

i=1

d(pi)

)

+ O(n) = O(kn).
2

Acknowledgement: The authors thank the anonymous referees for their suggestions,
in particular, for the new proof of Claim 1 of Lemma 4.4.

References

[1] http://www2.toki.or.id/book/AlgDesignManual/BOOK/BOOK4/NODE145.HTM

[2] N. Alon, G. Gutin, and M. Krivelevich, Algorithms with large domination ratio, J.

Algorithm, 50(1):118-131 (2004).

[3] P. Bose, A. Dean, J. Hutchinson, and T. Shermer, On rectangle visibility graphs: in
Lecture Notes in Computer Science #1190, Springer-Verlag, Berline, 25-44, 1997.

[4] A. Dean, E. Gethner, and J. Hutchinson, Unit bar-visibility layouts of triangulated
polygons: extended abstract, in Lecture Notes in Computer Science #3383 : Graph
Drawing 2004, J. Pach(ed.), Springer-Verlag, Berlin (2004), 111-121.

[5] A. Dean and J. Hutchinson, Rectangle-visibility representations of bipartite graphs,
Discrete Applied Math. 75:9-25 (1997).

[6] A. Dean and N. Veytsel, Unit bar-visibility graphs, Congressus Numerantium

160:161-175 (2003).

[7] G. Gutin, A. Vainshtein, and A. Yeo, Domination analysis of combinatorial opti-
mization problems, Discrete Appl. Math. 129(2-3):513–520 (2003).

[8] S. Martello and P. Toth, Knapsack problems: algorithms and computer implemen-
tations, Wiley Interscience Series in Discrete Mathematics and Optimization, John
Wiley & Sons, Ltd., Chichester, 1990.

[9] R. Tamassia and I. Tollis, A unified approach to visibility representations of planar
graphs, Discrete and Computational Geometry, 1:321-341 (1986).

[10] D. West, Introduction to graph theory, Prentice Hall, Inc., Upper Saddle River, NJ,

1996.

[11] S. Wismath, Characterizing bar line-of-sight graphs, Proceedings of 1st ACM Sym-

posium on Computational Geometry, 147-152, Baltimore, MD, 1985.

the electronic journal of combinatorics 13 (2006), #R90 12

